JPS62235256A - Manufacture of zirconium oxide base composite sintered body - Google Patents

Manufacture of zirconium oxide base composite sintered body

Info

Publication number
JPS62235256A
JPS62235256A JP61079705A JP7970586A JPS62235256A JP S62235256 A JPS62235256 A JP S62235256A JP 61079705 A JP61079705 A JP 61079705A JP 7970586 A JP7970586 A JP 7970586A JP S62235256 A JPS62235256 A JP S62235256A
Authority
JP
Japan
Prior art keywords
zirconium
sintered body
oxide
powder
zirconium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61079705A
Other languages
Japanese (ja)
Other versions
JPH0672048B2 (en
Inventor
隆博 和田
成司 安達
三原 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61079705A priority Critical patent/JPH0672048B2/en
Priority to US07/041,810 priority patent/US4902457A/en
Publication of JPS62235256A publication Critical patent/JPS62235256A/en
Publication of JPH0672048B2 publication Critical patent/JPH0672048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超硬工具や高温構造材として用いられる酸化
ジルコニウム基複合焼結体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a zirconium oxide-based composite sintered body used as a cemented carbide tool or a high-temperature structural material.

従来の技術 従来、酸化ジルコニウム−炭化物複合焼結体は、まず金
属またはその酸化物に炭素粉末または固形炭素を混合し
、高温で反応させることによって合成した炭化物粉末と
酸化ジルコニウム粉末を十分に混合した後高温高圧下で
焼結させることによって製造していた。
Conventional technology Conventionally, zirconium oxide-carbide composite sintered bodies were produced by first mixing metal or its oxide with carbon powder or solid carbon, and then reacting at high temperature to thoroughly mix carbide powder and zirconium oxide powder. It was manufactured by sintering at high temperature and pressure.

発明が解決しようとする問題点 この方法は、製造工程が長(複雑であるため不純物が混
入しやす<、シかもエネルギー消費が非常に大きかった
Problems to be Solved by the Invention This method requires a long manufacturing process (because it is complex, it is easy for impurities to be mixed in), and consumes a lot of energy.

問題点を解決するための手段 本発明の特徴は、ジルコニウム金属粉末(反応後には酸
化ジルコニウムとなる)と酸化物(反応後には炭化物に
なる)それに炭素とからなる混合物の成形体に圧力をか
けた状態で、その成形体の一部を強熱点火して燃焼反応
を起こさせ、この化学反応によって炭化物と酸化ジルコ
ニウムの粒子を合成し、反応熱によってこれらの粒子を
焼結して酸化ジルコニウム−炭化物複合焼結体を得るこ
とにある。
Means for Solving the Problems The present invention is characterized by applying pressure to a compact of a mixture of zirconium metal powder (which becomes zirconium oxide after reaction), oxide (which becomes carbide after reaction), and carbon. In this state, a part of the compact is ignited at high heat to cause a combustion reaction, and this chemical reaction synthesizes carbide and zirconium oxide particles, and the reaction heat sinters these particles to form zirconium oxide. The objective is to obtain a carbide composite sintered body.

作用 本発明によれば、加圧下で成形体に点火するだけで高密
度の酸化ジルコニウム−炭化物複合焼結体が容易に得ら
れる。したがって従来の炭化物と酸化ジルコニウムの粉
末を用いて作成する焼結体の製造方法と比較してきわめ
て省エネルギーであり、しかも得られる焼結体もきわめ
て高純度である。また本発明の製造方法によれば、従来
の製造方法では困難であった炭化物と酸化ジルコニウム
の複合焼結体もきわめて容易に作製できる。
According to the present invention, a high-density zirconium oxide-carbide composite sintered body can be easily obtained by simply igniting the compact under pressure. Therefore, compared to the conventional method of producing a sintered body using carbide and zirconium oxide powder, this method is extremely energy-saving, and the resulting sintered body is also extremely high in purity. Furthermore, according to the manufacturing method of the present invention, a composite sintered body of carbide and zirconium oxide, which has been difficult to produce using conventional manufacturing methods, can be produced very easily.

実施例 実施例1 出発原料として粒径10μm以下のジルコニウム粉末、
平均粒径1μmの二酸化チタン(TiO2)粉末、それ
にアセチレンを原料とするカーボンブラックを用い、そ
れらを1:1:0.9のモル比で混合後、直径10mm
、高さ10mmの柱状にプレス成形した。この成形体を
炭化ケイ素製の型材を用いた一軸加圧真空ホットプレス
を用いて焼結を行った。成形体への着火は、タングステ
ンフィラメントに通電することによって行った。試料を
室温・真空(1+++mHg)雰囲気・O,1GPaの
圧力条件下で、着火用ヒーターに通電して反応を開始さ
せた。得られた焼結体をX線回折を用いて同定したとこ
ろ炭化チタンと正方晶の酸化ジルコニウムと単斜晶のジ
ルコニウムの回折線しか見られながった。このX線回折
から正方品の酸化ジルコニウムと単斜晶のジルコニウム
がほぼ1:1の割合で含まれていることがわかった。こ
の焼結体の密度は5.25g/−であった。
Examples Example 1 Zirconium powder with a particle size of 10 μm or less as a starting material,
Using titanium dioxide (TiO2) powder with an average particle size of 1 μm and carbon black made from acetylene, the mixture was mixed at a molar ratio of 1:1:0.9, and then a diameter of 10 mm was obtained.
, was press-molded into a columnar shape with a height of 10 mm. This molded body was sintered using a uniaxial pressure vacuum hot press using a mold made of silicon carbide. The molded body was ignited by energizing the tungsten filament. The sample was placed at room temperature, in a vacuum (1+++ mHg) atmosphere, and under a pressure of O, 1 GPa, and the ignition heater was energized to start the reaction. When the obtained sintered body was identified using X-ray diffraction, only the diffraction lines of titanium carbide, tetragonal zirconium oxide, and monoclinic zirconium were observed. This X-ray diffraction revealed that tetragonal zirconium oxide and monoclinic zirconium were contained in a ratio of approximately 1:1. The density of this sintered body was 5.25 g/-.

このプロセスの化学反応式は以下のようになる。The chemical reaction equation for this process is as follows.

Zr+TiO2+c→ZrO2+’ricこの化学反応
式かられかるようにこの反応は、Zr金属によるTiO
2の還元を基本にして、還元されたTi金属(融解して
液体になっているものと思われる)がCと反応してTi
Cになるのである。このときの反応熱が大きいので外部
から加熱しな(でも試料が高温(2000’C程度まで
上昇する)になり、しかも加圧しているのでZrO2粒
子とTiC粒子が焼結してZrO2−TiC複合焼結体
が得られるのである。
Zr+TiO2+c→ZrO2+'ricAs can be seen from this chemical reaction formula, this reaction is caused by the formation of TiO by Zr metal.
Based on the reduction of 2, the reduced Ti metal (presumably melted into a liquid) reacts with C to form Ti.
It becomes C. Because the reaction heat at this time is large, no external heating is required (but the sample becomes high temperature (up to about 2000'C) and is pressurized, so ZrO2 particles and TiC particles sinter and form a ZrO2-TiC composite. A sintered body is obtained.

通常、純粋な状態では不安定な正方晶の酸化ジルコニウ
ムが室温でも焼結体中で安定に存在するのはこの焼結プ
ロセスで製造した酸化ジルコニウム基複合焼結体の大き
な特徴である。
A major feature of the zirconium oxide-based composite sintered body produced by this sintering process is that tetragonal zirconium oxide, which is normally unstable in its pure state, exists stably in the sintered body even at room temperature.

実施例2 出発原料として粒径10μm以下のジルコニウム粉末、
焼成非晶質二酸化ケイ素(ジオツギ製薬製カープレック
スC3−5)それにアセチレンを原料とするカーボンブ
ラックを用い、それらを1:1:1のモル比で混合後、
実施例1と同様のプロセスで処理した。但し、本実施例
では300’Cまで加熱して反応を開始させた。得られ
た焼結体をX線回折を用いて同定したところβ型の炭化
ケイ素と正方晶の酸化ジルコニウムと単斜晶のジルコニ
ウムの回折線しか見られなかった。このX線回折から正
方晶の酸化ジルコニウムと単斜晶のジルコニウムがほぼ
1:1の割合で含まれていることがわかった。この焼結
体の密度は4.72g/cn?であった。
Example 2 Zirconium powder with a particle size of 10 μm or less as a starting material,
After mixing calcined amorphous silicon dioxide (Carplex C3-5 manufactured by Geotsugi Pharmaceutical) and carbon black made from acetylene at a molar ratio of 1:1:1,
The same process as in Example 1 was used. However, in this example, the reaction was initiated by heating to 300'C. When the obtained sintered body was identified using X-ray diffraction, only the diffraction lines of β-type silicon carbide, tetragonal zirconium oxide, and monoclinic zirconium were observed. This X-ray diffraction revealed that tetragonal zirconium oxide and monoclinic zirconium were contained in a ratio of approximately 1:1. Is the density of this sintered body 4.72g/cn? Met.

実施例3 出発原料として、粒径325メツシユ以下のジルコニウ
ム粉末と、平均粒径1μmの五酸化ニオブ(NbzOs
)それにアセチレンを原料とするカーボンブラックを用
い、本実施例ではさらに平均粒径0.5μmの酸化ジル
コニウム粉末を加えた、それらを2:5:4:0.2の
モル比で混合後、実施例1と同様のプロセスで処理した
。得られた焼結体をX線回折を用いて同定したところ炭
化ニオブと正方晶の酸化ジルコニウムと単斜晶のジルコ
ニウムの回折線しか見られなかった。このX線回折から
正方晶の酸化ジルコニウムと単斜晶のジルコニウムがほ
ぼ6:4の割合で含まれていることがわかった。この焼
結体の密度は6.33g/cdであった。
Example 3 As starting materials, zirconium powder with a particle size of 325 mesh or less and niobium pentoxide (NbzOs) with an average particle size of 1 μm were used.
) Using carbon black made from acetylene as a raw material, in this example, zirconium oxide powder with an average particle size of 0.5 μm was further added, and after mixing them at a molar ratio of 2:5:4:0.2, the process was carried out. The same process as in Example 1 was followed. When the obtained sintered body was identified using X-ray diffraction, only the diffraction lines of niobium carbide, tetragonal zirconium oxide, and monoclinic zirconium were observed. This X-ray diffraction revealed that tetragonal zirconium oxide and monoclinic zirconium were contained in a ratio of approximately 6:4. The density of this sintered body was 6.33 g/cd.

実施例4 出発原料として粒径1000メツシユ以下のジルコニウ
ム粉末、平均粒径1μmの五酸化タンタル(Ta2ks
)それにアセチレンを原料とするカーボンブラックを用
い、それらを2:5:4のモル比で混合後、実施例1と
同様のプロセスで処理した。得られた焼結体をX線回折
を用いて同定したところ炭化タンタルと正方晶の酸化ジ
ルコニウムと単斜晶の酸化ジルコニウムの回折線しか見
られなかった。この焼結体の密度は9.60g/c−で
あった。
Example 4 Zirconium powder with a particle size of 1000 mesh or less and tantalum pentoxide (Ta2ks) with an average particle size of 1 μm were used as starting materials.
) and carbon black made from acetylene as a raw material, and after mixing them in a molar ratio of 2:5:4, they were treated in the same process as in Example 1. When the obtained sintered body was identified using X-ray diffraction, only the diffraction lines of tantalum carbide, tetragonal zirconium oxide, and monoclinic zirconium oxide were observed. The density of this sintered body was 9.60 g/c-.

実施例5 出発原料として粒径10μm以下のジルコニウム粉末、
平均粒径3μmの三酸化タングステン(WO2)それに
アセチレンを原料とするカーボンブラックを用い、それ
らを11:1のモル比で混合後、実施例1と同様のプロ
セスで処理した。得られた焼結体をX線回折を用いて同
定したところα型の炭化タングステントと正方晶の酸化
ジルコニウムと単斜晶のジルコニウムの回折線しか見ら
れなかった。この焼結体の密度は9.72g/ciであ
った。
Example 5 Zirconium powder with a particle size of 10 μm or less as a starting material,
Tungsten trioxide (WO2) having an average particle size of 3 μm and carbon black made from acetylene were mixed at a molar ratio of 11:1, and then treated in the same process as in Example 1. When the obtained sintered body was identified using X-ray diffraction, only the diffraction lines of α-type tungsten carbide, tetragonal zirconium oxide, and monoclinic zirconium were observed. The density of this sintered body was 9.72 g/ci.

発明の効果 本発明の製造方法によれば、ジルコニウム粉末と酸化物
それに炭素とからなる混合物の成形体に圧力をかけた状
態で、その成形体の一部に点火して燃焼反応を起こさせ
るだけで酸化ジルコニウム−炭化物複合焼結体が作製で
きる。従って、本発明の製造方法によれば、従来の炭化
物粉末と酸化物粉末を用いた製造方法に比較してはるか
に低温のプロセスで、つまり、きわめて小さなエネルギ
ーで酸化ジルコニウム−炭化物複合焼結体が作製できる
。しかも、得られた焼結体は、従来の製造方法によって
作製した焼結体と全(変わらない特性を有している。ま
た本発明の製造方法は、酸化カルシウムや酸化イツトリ
ウムを固溶させなくても酸化ジルコニウムを安定化でき
るいう特徴も有している。
Effects of the Invention According to the manufacturing method of the present invention, only a part of the molded body is ignited to cause a combustion reaction while pressure is applied to a molded body of a mixture of zirconium powder, oxide, and carbon. A zirconium oxide-carbide composite sintered body can be produced using the following steps. Therefore, according to the manufacturing method of the present invention, a zirconium oxide-carbide composite sintered body can be produced in a much lower temperature process, that is, with extremely low energy, compared to the conventional manufacturing method using carbide powder and oxide powder. It can be made. Moreover, the obtained sintered body has the same characteristics as the sintered body produced by the conventional manufacturing method.In addition, the manufacturing method of the present invention does not dissolve calcium oxide or yttrium oxide. It also has the characteristic that it can stabilize zirconium oxide.

Claims (5)

【特許請求の範囲】[Claims] (1)ジルコニウム粉末と酸化物粉末それに炭素とから
なる成形体を、加圧条件下でその成形体の一部に点火し
て燃焼過程を開始させ、その後のジルコニウム粉末と酸
化物粉末それに炭素との反応及び生成した酸化ジルコニ
ウムと炭化物の焼結を、燃焼過程の結果発生する熱によ
って進行させる酸化ジルコニウム基複合焼結体の製造方
法。
(1) A compact made of zirconium powder, oxide powder, and carbon is ignited under pressurized conditions to start a combustion process, and then the zirconium powder, oxide powder, and carbon are A method for producing a zirconium oxide-based composite sintered body, in which the reaction of zirconium oxide and carbide are sintered using heat generated as a result of the combustion process.
(2)加圧・加熱の条件下で、ジルコニウム粉末と酸化
物粉末それに炭素とからなる成形体に点火して燃焼過程
を開始させることを特徴とする特許請求の範囲第1項記
載の酸化ジルコニウム基複合焼結体の製造方法。
(2) Zirconium oxide according to claim 1, characterized in that under pressurized and heated conditions, a compact made of zirconium powder, oxide powder, and carbon is ignited to start a combustion process. Method for manufacturing a base composite sintered body.
(3)酸化物粉末が周期率表第4族、5b族、6b族の
いずれかの元素の酸化物である特許請求の範囲第1項記
載の酸化ジルコニウム基複合焼結体の製造方法。
(3) The method for producing a zirconium oxide group composite sintered body according to claim 1, wherein the oxide powder is an oxide of an element belonging to Group 4, Group 5b, or Group 6b of the periodic table.
(4)ジルコニウム粉末と酸化物粉末それに炭素、さら
に反応に関与しない酸化物粉末とからなる成形体を、加
圧条件下でその成形体の一部に点火して燃焼過程を開始
させ、その後のジルコニウム粉末と酸化物粉末それに炭
素との反応及び生成した酸化ジルコニウムと炭化物それ
に反応に関与しない酸化物の焼結を、燃焼過程の結果発
生する熱によって進行させる酸化ジルコニウム基複合焼
結体の製造方法。
(4) A compact made of zirconium powder, oxide powder, carbon, and oxide powder that does not participate in the reaction is ignited in a part of the compact under pressure to start the combustion process. A method for producing a zirconium oxide-based composite sintered body, in which the reaction between zirconium powder, oxide powder, and carbon, and the sintering of the generated zirconium oxide, carbide, and oxides not involved in the reaction are progressed by heat generated as a result of the combustion process. .
(5)反応に関与しない酸化物粉末が酸化ジルコニウム
である特許請求の範囲第4項記載の酸化ジルコニウム基
複合焼結体の製造方法。
(5) The method for producing a zirconium oxide group composite sintered body according to claim 4, wherein the oxide powder that does not participate in the reaction is zirconium oxide.
JP61079705A 1986-04-07 1986-04-07 Method for producing zirconium oxide-based composite sintered body Expired - Lifetime JPH0672048B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61079705A JPH0672048B2 (en) 1986-04-07 1986-04-07 Method for producing zirconium oxide-based composite sintered body
US07/041,810 US4902457A (en) 1986-04-07 1987-04-07 Method for manufacturing a porous material or a composite sintered product comprising zirconium oxide and a carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61079705A JPH0672048B2 (en) 1986-04-07 1986-04-07 Method for producing zirconium oxide-based composite sintered body

Publications (2)

Publication Number Publication Date
JPS62235256A true JPS62235256A (en) 1987-10-15
JPH0672048B2 JPH0672048B2 (en) 1994-09-14

Family

ID=13697620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61079705A Expired - Lifetime JPH0672048B2 (en) 1986-04-07 1986-04-07 Method for producing zirconium oxide-based composite sintered body

Country Status (1)

Country Link
JP (1) JPH0672048B2 (en)

Also Published As

Publication number Publication date
JPH0672048B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
US4902457A (en) Method for manufacturing a porous material or a composite sintered product comprising zirconium oxide and a carbide
JPS63156054A (en) Manufacture of polycomponent ceramics
JP3190060B2 (en) Method for producing fine ceria solid solution tetragonal zirconia powder
JPS62256767A (en) Manufacture of composite sintered body comprising carbonitride and oxide
JPS62235256A (en) Manufacture of zirconium oxide base composite sintered body
JPS63151672A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JPS62235258A (en) Manufacture of carbide oxide composite sintered body
JPS62256773A (en) Manufacture of composite sintered body comprising carbide and composite oxide
JPS62288166A (en) Manufacture of tungsten carbide-oxide composite sintered body
JPS62256766A (en) Manufacture of composite sintered body comprising nitride and oxide
JPS62288165A (en) Manufacture of titanium carbide-oxide composite sintered body
JPS63156069A (en) Manufacture of mixed powder comprising zirconium oxide, aluminum oxide and carbide
JP2968608B2 (en) Method for producing fine ceria solid solution tetragonal zirconia powder
JPH075369B2 (en) Method for producing composite sintered body composed of carbide and two or more kinds of oxides
JPS62283874A (en) Manufacture of composite sintered body comprising molybdenum silicate and oxide
JP2607517B2 (en) Method for producing zirconia ceramics
JPS62288164A (en) Manufacture of vanadium carbide-oxide composite sintered body
JP2616772B2 (en) Method for producing proton conductive ceramics
JPS63282165A (en) Powder mixture containing zirconium oxide and boride and production of composite sintered body containing said powder
JPH0262496B2 (en)
JPS63156015A (en) Production of powdery mixture consisting of zirconium oxide and carbide
JPS6389457A (en) Manufacture of composite sintered body comprising carbon and composite oxide
JPS63151676A (en) Manufacture of zirconium titanate base ceramics
JPH09183648A (en) Aluminous sintered compact
JPS60239356A (en) Highly sinterable powder composition containing zirconium asmajor component, manufacture and manufacture of zirconia sintered body