JPS62256773A - Manufacture of composite sintered body comprising carbide and composite oxide - Google Patents
Manufacture of composite sintered body comprising carbide and composite oxideInfo
- Publication number
- JPS62256773A JPS62256773A JP61099634A JP9963486A JPS62256773A JP S62256773 A JPS62256773 A JP S62256773A JP 61099634 A JP61099634 A JP 61099634A JP 9963486 A JP9963486 A JP 9963486A JP S62256773 A JPS62256773 A JP S62256773A
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- powder
- carbide
- composite
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000000843 powder Substances 0.000 claims description 26
- 238000006243 chemical reaction Methods 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 238000002485 combustion reaction Methods 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims 1
- 239000002245 particle Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 15
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 5
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 3
- DZKDPOPGYFUOGI-UHFFFAOYSA-N tungsten(iv) oxide Chemical compound O=[W]=O DZKDPOPGYFUOGI-UHFFFAOYSA-N 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910026161 MgAl2O4 Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- JAQXDZTWVWLKGC-UHFFFAOYSA-N [O-2].[Al+3].[Fe+2] Chemical compound [O-2].[Al+3].[Fe+2] JAQXDZTWVWLKGC-UHFFFAOYSA-N 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- AOWKSNWVBZGMTJ-UHFFFAOYSA-N calcium titanate Chemical compound [Ca+2].[O-][Ti]([O-])=O AOWKSNWVBZGMTJ-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、超硬工具や高温構造材また各種機能材料とし
て用いられる炭化物と複合酸化物からなる複合焼結体の
製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a composite sintered body made of carbide and composite oxide, which is used as a cemented carbide tool, a high-temperature structural material, or various functional materials.
従来の技術
従来、炭化物と複合酸化物からなる複合焼結体は、まず
金属またはその酸化物に炭素粉末または固形炭素を混合
し、高温で反応させることによって合成した炭化物粉末
と同相法等で合成した複合酸化物粉末を十分に混合した
後高温高圧下で焼結させることによって製造していた。Conventional technology Conventionally, composite sintered bodies made of carbides and composite oxides were synthesized by the in-phase method with carbide powders, which were first synthesized by mixing carbon powder or solid carbon with metals or their oxides and reacting them at high temperatures. The composite oxide powder was mixed thoroughly and then sintered at high temperature and pressure.
発明が解決しようとする問題点
この方法は、製造工程が長く複雑であるため不純物が混
入しやす<、シかもエネルギー消費が非常に大きかった
。Problems to be Solved by the Invention In this method, the manufacturing process is long and complicated, so impurities are likely to be mixed in, and energy consumption is extremely large.
問題点を解決するための手段
本発明の特徴は、二種類以上の還元用金属粉末(反応後
には複合酸化物となる)と、酸化物(反応後には炭化物
になる)と、炭素とからなる混合物の成形体に、圧力を
かけた状態でその成形体の一部に強熱点火して燃焼反応
を起こさせ、この化学反応によって炭化物と複合酸化物
の粒子を合成し、反応熱によってこれらの粒子を焼結し
て炭化物と複合酸化物からなる複合焼結体を得ることに
ある。Means for Solving the Problems The present invention is characterized by comprising two or more types of reducing metal powder (which becomes a composite oxide after the reaction), an oxide (which becomes a carbide after the reaction), and carbon. A part of the molded body of the mixture is ignited at high heat under pressure to cause a combustion reaction, and this chemical reaction synthesizes carbide and composite oxide particles, and the heat of reaction causes these particles to be synthesized. The purpose is to obtain a composite sintered body consisting of carbide and composite oxide by sintering particles.
作用
本発明によれば、加圧下で成形体に点火するだけで高密
度の炭化物と複合酸化物からなる複合焼結体が容易に得
られる。したがって従来の炭化物と複合酸化物の粉末を
用いて作成する焼結体の製造方法と比較してきわめて省
エネルギーであり、しかも得られる焼結体もきわめて高
純度である。According to the present invention, a composite sintered body made of a high-density carbide and a composite oxide can be easily obtained by simply igniting the compact under pressure. Therefore, compared to the conventional method for producing a sintered body using powders of carbide and composite oxide, this method is extremely energy-saving, and the resulting sintered body is also extremely high in purity.
また本発明の製造方法によれば、従来の製造方法では困
難であった炭化物と複合酸化物の複合焼結体もきわめて
容易に作製できる。Furthermore, according to the manufacturing method of the present invention, a composite sintered body of carbide and composite oxide, which has been difficult to produce using conventional manufacturing methods, can be produced very easily.
実施例
実施例1
出発原料として粒径10μm以下のアルミニウム粉末、
粒径70μm以下のマグネシウム粉末、平均粒径0,5
μmの二酸化チタン(TiO2)粉末、それにアセチレ
ンを原料とするカーボンブラックを用い、それらを1:
2:2:2のモル比で混合後、直径10mm 、高さ1
0a+mの柱状にプレス成形した。この成形体を炭化ケ
イ米製の型材を用いた一軸加圧真空ホットプレスを用い
て焼結を行った。Examples Example 1 Aluminum powder with a particle size of 10 μm or less as a starting material,
Magnesium powder with a particle size of 70 μm or less, average particle size of 0.5
Using μm titanium dioxide (TiO2) powder and carbon black made from acetylene, they were mixed into 1:
After mixing at a molar ratio of 2:2:2, the diameter is 10 mm and the height is 1.
It was press-molded into a columnar shape of 0a+m. This molded body was sintered using a uniaxial pressure vacuum hot press using a mold made of silicon carbide rice.
成形体への着火は、タングステンフィラメントに通電す
ることによって行った。試料を室温・真空(I n+m
t1g)雰囲気1)、IGPaの圧力条件下で、着火用
ヒーターに通電して反応を開始させた。得られた焼結体
をX線回折を用いて同定したところ炭化チタンとマグネ
シウムアルミニウムスピネルの回折線しか見られなかっ
た。またこの焼結体の相対密度は、91.2%であった
。The molded body was ignited by energizing the tungsten filament. The sample was kept at room temperature and vacuum (I n+m
t1g) Atmosphere 1) Under the pressure conditions of IGPa, the ignition heater was energized to start the reaction. When the obtained sintered body was identified using X-ray diffraction, only the diffraction lines of titanium carbide and magnesium aluminum spinel were observed. Further, the relative density of this sintered body was 91.2%.
プロセスの化学反応式は以下のようになる。The chemical reaction equation of the process is as follows.
Mg+2AI+2TiO2+2C
→MgAl2Og+27iに
の化学反応式かられかるようにこの反応においては、A
lとMgによるTiO2の還元に基づいて、還元された
Ti金属がCと反応してTiCになるとともに、AIと
Mgが酸素を介して結合してMgAl2O4ができるの
である。このときの反応熱が大きいので外部から加熱し
なくても試料が高温(2000℃程度まで上昇する)に
なり、しかも加圧しているのでMgAlzOa粒子とT
iC粒子が焼結してM g A l 20a−TiC複
合焼結体が得られるのである。In this reaction, A
Based on the reduction of TiO2 by l and Mg, the reduced Ti metal reacts with C to become TiC, and at the same time, AI and Mg combine via oxygen to form MgAl2O4. The reaction heat at this time is large, so the sample reaches a high temperature (up to about 2000°C) even without external heating, and since it is pressurized, MgAlzOa particles and T
The iC particles are sintered to obtain a MgA120a-TiC composite sintered body.
実施例2
出発原料として粒径10μm以下のジルコニウム°粉末
、粒径10μm以下のケイ素粉末、平均粒径1μlの酸
化チタン粉末、それにアセチレンを原料とするカーボン
ブラックを用い、それらを1:1:2=2のモル比で混
合後、実施例1と同様のプロセスで処理した。但し、本
実施例では400℃まで加熱して反応を開始させた。得
られた焼結体をX線回折を用いて同定したところ炭化チ
タンとケイ酸ジルコニウムの回折線しか見られなかっま
た。Example 2 Zirconium powder with a particle size of 10 μm or less, silicon powder with a particle size of 10 μm or less, titanium oxide powder with an average particle size of 1 μl, and carbon black made from acetylene were used as starting materials, and they were mixed in a ratio of 1:1:2. After mixing at a molar ratio of =2, the same process as in Example 1 was performed. However, in this example, the reaction was started by heating to 400°C. When the obtained sintered body was identified using X-ray diffraction, only the diffraction lines of titanium carbide and zirconium silicate were observed.
またこの焼結体の相対密度は、93.5%であった。Further, the relative density of this sintered body was 93.5%.
このプロセスの化学反応式は、 Zr+Si+2TiO2+2C −+Zr5iOa+2TiCである。The chemical reaction equation for this process is Zr+Si+2TiO2+2C −+Zr5iOa+2TiC.
実施例3
出発原料として粒径10μm以下のチタン粉末、金属カ
ルシウム、焼成非晶質二酸化ケイ素(ジオツギ製薬製カ
ープレックスCl−5)それにアセチレンを原料とする
カーボンブラックを用い、それらを2:2:3.3のモ
ル比で混合後、実施例1と同様のプロセスで処理した。Example 3 Titanium powder with a particle size of 10 μm or less, metallic calcium, calcined amorphous silicon dioxide (Carplex Cl-5 manufactured by Geotsugi Pharmaceutical Co., Ltd.), and carbon black made from acetylene were used as starting materials, and they were mixed in a ratio of 2:2: After mixing at a molar ratio of 3.3, the same process as in Example 1 was carried out.
但し、本実施例では200°Cまで加熱して反応を開始
させた。得られた焼結体をX線回折を用いて同定したと
ころ炭化ケイ素とチタン酸カルシウムの回折線しか見ら
れなかった。またこの焼結体の相対密度は、87.3%
であった。However, in this example, the reaction was started by heating to 200°C. When the obtained sintered body was identified using X-ray diffraction, only diffraction lines of silicon carbide and calcium titanate were observed. Moreover, the relative density of this sintered body is 87.3%
Met.
このプロセスの化学反応式は、 2Ca+2Ti+38iO2÷3C −+2CaTiO*+38iCである。The chemical reaction equation for this process is 2Ca+2Ti+38iO2÷3C −+2CaTiO*+38iC.
実施例4
出発原料として、粒径10μm以下のアルミニウム粉末
と、粒径10μm以下のチタン粉末、平均粒径1μmの
五酸化ニオブ(Nb20s)及びアセチレンを原料とす
るカーボンブラックを用い、本実施例ではさらに平均粒
径2μmのチタン酸アルミニウム(Al 2Tio s
)を2二1:1:2:0.2のモル比で混合後、実施例
1と同様のプロセスで処理した。得られた焼結体をX線
回折を用いて同定したところ、炭化ニオブとチタン酸ア
ルミニウムの回折線しか見られなかった。またこの焼結
体の相対密度は、89.6%であった。Example 4 As starting materials, aluminum powder with a particle size of 10 μm or less, titanium powder with a particle size of 10 μm or less, niobium pentoxide (Nb20s) with an average particle size of 1 μm, and carbon black made from acetylene were used as starting materials. Furthermore, aluminum titanate (Al2Tios) with an average particle size of 2 μm
) were mixed in a molar ratio of 1:1:2:0.2 and treated in the same process as in Example 1. When the obtained sintered body was identified using X-ray diffraction, only the diffraction lines of niobium carbide and aluminum titanate were observed. Moreover, the relative density of this sintered body was 89.6%.
このプロセスの化学反応式は、
2 A I + T i + N b 20 s +
2 C→Al 2Tio 4+2NbCである。The chemical reaction equation for this process is: 2 A I + T i + N b 20 s +
2 C→Al 2Tio 4+2NbC.
また成形体に添加したチタン酸アルミニウムは化学反応
のコントロール材である。Furthermore, aluminum titanate added to the molded body is a chemical reaction control material.
実施例5
出発原料として粒径325メツシユ以下のアルミニウム
粉末、粒径325メツシユ以下の鉄粉、平均粒径1μm
の五酸化タンタル(Ta20s )及びアセチレンを原
料とするカーボンブラックを用い、本実施例ではさらに
平均粒径045μmの酸化アルミニウム粉末を加えた。Example 5 As starting materials, aluminum powder with a particle size of 325 mesh or less, iron powder with a particle size of 325 mesh or less, and an average particle size of 1 μm
In this example, aluminum oxide powder with an average particle size of 045 μm was added.
それらを5:10:4:8:0.4のモル比で混合後、
実施例1と同様のプロセスで処理した。得られた焼結体
をX線回折を用いて同定したところ炭化タンタルとアル
ミニウム酸鉄それに化学反応のコントロール材として添
加した酸化アルミニウムの回折線しか見られなかった。After mixing them in a molar ratio of 5:10:4:8:0.4,
The same process as in Example 1 was used. When the obtained sintered body was identified using X-ray diffraction, only the diffraction lines of tantalum carbide, iron aluminum oxide, and aluminum oxide added as a chemical reaction control material were observed.
またこの焼結体の相対密度は、93.7%であった。Further, the relative density of this sintered body was 93.7%.
このプロセスの化学反応式は、
10Al+5Fe+4Ta 20 S+8C−5FeA
l 20 g+8TaCである。The chemical reaction formula for this process is: 10Al+5Fe+4Ta 20S+8C-5FeA
l 20 g+8TaC.
シウム粉末、粒径400メツシユ以下のチタン粉末、粒
径10μm以下の二酸化タングステン(WO2)及びア
セチレンを原料とするカーボンブラックを用いた。それ
らを2:2:3:3のモル比で混合後、実施例1と同様
のプロセスで処理した。得られた焼結体をX線回折を用
いて同定したところα型の炭化タングステンとチタン酸
マグネシウムの回折線しか見られなかった。またこの焼
結体の相対密度は、88.7%であった。Cium powder, titanium powder with a particle size of 400 mesh or less, tungsten dioxide (WO2) with a particle size of 10 μm or less, and carbon black made from acetylene were used. After mixing them in a molar ratio of 2:2:3:3, they were treated in the same process as in Example 1. When the obtained sintered body was identified using X-ray diffraction, only the diffraction lines of α-type tungsten carbide and magnesium titanate were observed. Further, the relative density of this sintered body was 88.7%.
このプロセスの化学反応式は、 2Mg+2Ti+3WOG+3C →2MgTi○3 + 3 W Cである。The chemical reaction equation for this process is 2Mg+2Ti+3WOG+3C →2MgTi○3 + 3WC.
発明の効果
本発明の製造方法によれば、二種以上の還元用の粉末と
酸化物それに炙素とからなる混合物の成形体に圧力をか
けた状態で、その成形体の一部に強熱点火して燃焼反応
を起こさせるだけで炭化物と複合酸化物からなる複合焼
結体が作製できる。Effects of the Invention According to the manufacturing method of the present invention, a part of the molded product is ignited while pressure is applied to a molded product of a mixture of two or more types of reducing powders, an oxide, and pyrolyzate. A composite sintered body consisting of carbide and composite oxide can be produced simply by igniting and causing a combustion reaction.
従って、本発明の製造方法によれば、従来の炭化物粉末
と複合酸化物粉末を用いた製造方法に比較してはるかに
低温のプロセスで、つまり、きわめて小さなエネルギー
で炭化物と複合酸化物からなる複°合焼結体が作製でき
る。しかも、得られた焼結体は、従来の製造方法によっ
て作製した焼結体と全く変わらない特性を有している。Therefore, according to the manufacturing method of the present invention, compared to the conventional manufacturing method using carbide powder and composite oxide powder, it is possible to produce a complex made of carbide and composite oxide using a much lower temperature process, that is, with extremely small energy. ° A sintered body can be produced. Furthermore, the obtained sintered body has properties that are completely the same as those of sintered bodies produced by conventional manufacturing methods.
また本発明の製造方法によれば従来の製造方法では困難
であった炭化物と複合酸化物からなる複合焼結体もきわ
めて容易に作製できるという特徴も有している。The manufacturing method of the present invention also has the feature that it is possible to extremely easily manufacture composite sintered bodies made of carbides and composite oxides, which was difficult to do with conventional manufacturing methods.
Claims (6)
とからなる成形体を、加圧条件下でその成形体の一部に
点火して燃焼過程を開始させ、その後の金属粉末と酸化
物粉末それに炭素との反応及び生成した炭化物と複合酸
化物の焼結を、燃焼過程の結果発生する熱によって進行
させる炭化物と複合酸化物からなる複合焼結体の製造方
法。(1) A compact made of two or more types of reducing metal powder, oxide powder, and carbon is ignited in a part of the compact under pressurized conditions to start the combustion process, and the subsequent metal powder and A method for producing a composite sintered body made of a carbide and a composite oxide, in which the reaction between an oxide powder and carbon and the sintering of the generated carbide and composite oxide are progressed by heat generated as a result of the combustion process.
粉末と酸化物粉末それに炭素とからなる成形体に点火し
て燃焼過程を開始させることを特徴とする特許請求の範
囲第1項記載の炭化物と複合酸化物からなる複合焼結体
の製造方法。(2) A compact comprising two or more types of reducing metal powder, oxide powder, and carbon is ignited under pressurized and heated conditions to start a combustion process. A method for producing a composite sintered body comprising a carbide and a composite oxide according to item 1.
種が、アルミニウム粉末、マグネシウム粉末、ジルコニ
ウム粉末、及びチタン粉末から選ばれたいずれかである
特許請求の範囲第1項記載の炭化物と複合酸化物からな
る複合焼結体の製造方法。(3) Composite with carbide according to claim 1, wherein at least one of the two or more types of reducing metal powder is selected from aluminum powder, magnesium powder, zirconium powder, and titanium powder. A method for producing a composite sintered body made of an oxide.
ら選ばれたいずれかの元素の酸化物である特許請求の範
囲第1項記載の炭化物と複合酸化物からなる複合焼結体
の製造方法。(4) A composite sintered material comprising a carbide and a composite oxide according to claim 1, wherein the oxide powder is an oxide of any element selected from Groups 4, 5b, and 6b of the periodic table. Method for producing solids.
素と、さらに反応に関与しない酸化物粉末とからなる成
形体を、加圧条件下でその成形体の一部に点火して燃焼
過程を開始させ、その後の金属粉末と酸化物粉末と炭素
との反応、及び生成した炭化物と複合酸化物と反応に関
与しない酸化物の焼結を、燃焼過程の結果発生する熱に
よって進行させる炭化物と複合酸化物からなる複合焼結
体の製造方法。(5) A molded body made of two or more types of reducing metal powder, oxide powder, carbon, and oxide powder that does not participate in the reaction is ignited in a part of the molded body under pressurized conditions. The combustion process is started by the heat generated as a result of the combustion process, and the subsequent reaction between the metal powder, oxide powder, and carbon, and the sintering of the generated carbide, composite oxide, and oxides that do not participate in the reaction proceed. A method for producing a composite sintered body made of a carbide and a composite oxide.
酸化物である特許請求の範囲第5項記載の炭化物と酸化
物からなる複合焼結体の製造方法。(6) The method for producing a composite sintered body comprising a carbide and an oxide according to claim 5, wherein the oxide powder that does not participate in the reaction is an oxide of a reducing metal powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61099634A JPH0672062B2 (en) | 1986-04-30 | 1986-04-30 | Method for producing composite sintered body composed of carbide and complex oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61099634A JPH0672062B2 (en) | 1986-04-30 | 1986-04-30 | Method for producing composite sintered body composed of carbide and complex oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62256773A true JPS62256773A (en) | 1987-11-09 |
JPH0672062B2 JPH0672062B2 (en) | 1994-09-14 |
Family
ID=14252502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61099634A Expired - Lifetime JPH0672062B2 (en) | 1986-04-30 | 1986-04-30 | Method for producing composite sintered body composed of carbide and complex oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0672062B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63190761A (en) * | 1987-01-30 | 1988-08-08 | 京セラ株式会社 | Aluminum nitride-base sintered body |
JPH02212347A (en) * | 1989-02-10 | 1990-08-23 | Toyota Central Res & Dev Lab Inc | Production of composite material and composition as starting material |
JPH0714833B2 (en) * | 1988-04-13 | 1995-02-22 | クラウセン,ニルス | Ceramic molded body manufactured by powder method and manufacturing method thereof |
-
1986
- 1986-04-30 JP JP61099634A patent/JPH0672062B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63190761A (en) * | 1987-01-30 | 1988-08-08 | 京セラ株式会社 | Aluminum nitride-base sintered body |
JPH0714833B2 (en) * | 1988-04-13 | 1995-02-22 | クラウセン,ニルス | Ceramic molded body manufactured by powder method and manufacturing method thereof |
JPH02212347A (en) * | 1989-02-10 | 1990-08-23 | Toyota Central Res & Dev Lab Inc | Production of composite material and composition as starting material |
Also Published As
Publication number | Publication date |
---|---|
JPH0672062B2 (en) | 1994-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI268916B (en) | Method for producing aluminum magnesium titanate sintered product | |
Patil et al. | Combustion synthesis | |
US4902457A (en) | Method for manufacturing a porous material or a composite sintered product comprising zirconium oxide and a carbide | |
US5160716A (en) | Process for making highly reactive sub-micron amorphous titanium diboride power and products made therefrom | |
JPS62256773A (en) | Manufacture of composite sintered body comprising carbide and composite oxide | |
Sun et al. | Fabrication and characterization of cordierite/zircon composites by reaction sintering: formation mechanism of zircon | |
JPS62256767A (en) | Manufacture of composite sintered body comprising carbonitride and oxide | |
JP3190060B2 (en) | Method for producing fine ceria solid solution tetragonal zirconia powder | |
JPS62235258A (en) | Manufacture of carbide oxide composite sintered body | |
JPH01264973A (en) | Production of sintered body of beta-sialon | |
JPS63239104A (en) | Production of fine silicon nitride powder containing beta-phase | |
JPH075369B2 (en) | Method for producing composite sintered body composed of carbide and two or more kinds of oxides | |
US5334339A (en) | Boron nitride sinter and process for its production | |
JPS6389457A (en) | Manufacture of composite sintered body comprising carbon and composite oxide | |
JPS62288166A (en) | Manufacture of tungsten carbide-oxide composite sintered body | |
JPS62235256A (en) | Manufacture of zirconium oxide base composite sintered body | |
JPH04507080A (en) | Method for producing highly reactive submicron amorphous titanium diboride powder and products made thereby | |
JPS62256766A (en) | Manufacture of composite sintered body comprising nitride and oxide | |
JPS62288165A (en) | Manufacture of titanium carbide-oxide composite sintered body | |
JPS5988374A (en) | Manufacture of silicon nitride ceramics | |
KR970001051B1 (en) | Process for the preparation of al203 and tic using self propagating high temperature synthesis | |
RU2054400C1 (en) | Method for production of ceramics from aluminium titanate tonalox-tsc | |
JPS63156069A (en) | Manufacture of mixed powder comprising zirconium oxide, aluminum oxide and carbide | |
JPS63282165A (en) | Powder mixture containing zirconium oxide and boride and production of composite sintered body containing said powder | |
JPS61155209A (en) | Preparation of easily sinterable aluminum nitride powder |