JPS63282165A - Powder mixture containing zirconium oxide and boride and production of composite sintered body containing said powder - Google Patents

Powder mixture containing zirconium oxide and boride and production of composite sintered body containing said powder

Info

Publication number
JPS63282165A
JPS63282165A JP62114156A JP11415687A JPS63282165A JP S63282165 A JPS63282165 A JP S63282165A JP 62114156 A JP62114156 A JP 62114156A JP 11415687 A JP11415687 A JP 11415687A JP S63282165 A JPS63282165 A JP S63282165A
Authority
JP
Japan
Prior art keywords
powder
zirconium oxide
oxide
boride
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62114156A
Other languages
Japanese (ja)
Inventor
Takahiro Wada
隆博 和田
Seiji Adachi
成司 安達
Toshihiro Mihara
三原 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62114156A priority Critical patent/JPS63282165A/en
Publication of JPS63282165A publication Critical patent/JPS63282165A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a titled composite sintered body of high purity which is useful as a raw material for cemented carbide tools and high-temp. structural materials with less energy by igniting and burning a part of a molding contg. Zr powder, oxide powder and boron and progressing reaction by the generated heat. CONSTITUTION:The mixture obtd. by mixing (A) Zr metal powder, (B) oxide powder such as TiO2, and (C) boron powder is molded. A part of this molding is ignited to induce a combustion reaction and the reaction is progressed by the heat generated by this chemical reaction to obtain the composite sintered body consisting of ZrO2 and boride (e.g.: TiB2).

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超硬工具や高温構造材用の原料として用いら
れる酸化ジルコニウムとホウ化物よりなる混合粉末及び
それらを含む複合焼結体9製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a mixed powder of zirconium oxide and boride used as a raw material for cemented carbide tools and high-temperature structural materials, and a method for producing a composite sintered body 9 containing the same. .

従来の技術 従来、酸化ジルコニウムとホウ化物を含む複合焼結体は
、まず金属またはその酸化物にホウ素粉末を混合し、高
温で反応させることによって合成したホウ化物粉末と酸
化ジルコニウム粉末を十分に混合し、その混合粉末を成
形後、高温高圧下で焼結することによって製造していた
Conventional technology Conventionally, composite sintered bodies containing zirconium oxide and boride have been produced by first mixing boron powder with metal or its oxide, and then reacting at high temperature to thoroughly mix boride powder and zirconium oxide powder. It was manufactured by molding the mixed powder and then sintering it under high temperature and high pressure.

発明が解決しようとする問題点 この方法は、製造工程が長(複雑であるため不純物が混
入しやすり、シかもエネルギー消費が非常に大きかった
Problems to be Solved by the Invention This method requires a long (and complex) manufacturing process, which can easily introduce impurities and consumes a large amount of energy.

問題点を解決するための手段 ジルコニウム金属粉末(反応後には酸化ジルコニウムと
なる)と酸化0/(反応後にはホウ化物になる)ホウ素
とを含む混合物の成形体を作製し、その成形体の一部を
強熱点火して燃焼反応を起こさせ、この化学反応によっ
てホウ化物と酸化ジルコニウムの粒子を合成する。
Means for solving the problem A molded body of a mixture containing zirconium metal powder (becomes zirconium oxide after reaction) and boron oxide/boron (becomes boride after reaction) is prepared, and one of the molded bodies is This chemical reaction synthesizes particles of boride and zirconium oxide.

また、加圧下で上記工程を行うことにより、発生する化
学反応熱を利用して合成同時焼結を行う。
Further, by performing the above steps under pressure, simultaneous synthesis and sintering is performed using the generated chemical reaction heat.

作用 本発明によれば、成形体に点火するだけで高純度の酸化
ジルコニウムとホウ化物よりなる混合粉末が容易に得ら
れる。また、加圧下で成形体に点火することによって酸
化ジルコニウムとホウ化物を含む複合焼結体が容易に得
られる。したがって従来のホウ化物と酸化ジルコニウム
の粉末を用いて作成する混合粉末及び複合焼結体の製造
方法と比較してきわめて省エネルギーである。
According to the present invention, a mixed powder of high purity zirconium oxide and boride can be easily obtained by simply igniting a compact. Moreover, a composite sintered body containing zirconium oxide and a boride can be easily obtained by igniting the molded body under pressure. Therefore, compared to conventional methods for producing mixed powders and composite sintered bodies using powders of boride and zirconium oxide, this method is extremely energy-saving.

実施例 実施例1 出発原料として粒径10μ輪以下のジルコニウム粉末、
平均粒径1μmの二酸化チタン(TiOz)粉末、それ
に粒径が15μm以下の結晶質のホウ素粉末を用い、そ
れらを1:1:2のモル比で混合後、直径20mm 、
高さ20mmの柱状にプレス成形した。成形体への着火
は、試料下部に設けたタングステンフィラメントに通電
することによって行った。成形体を室温・アルゴン雰囲
気下で、着火用ヒーターに通電して反応を開始させた。
Examples Example 1 Zirconium powder with a particle size of 10 μm or less as a starting material,
Using titanium dioxide (TiOz) powder with an average particle size of 1 μm and crystalline boron powder with a particle size of 15 μm or less, after mixing them at a molar ratio of 1:1:2, a diameter of 20 mm,
It was press-molded into a columnar shape with a height of 20 mm. The molded body was ignited by energizing a tungsten filament provided at the bottom of the sample. The molded body was heated to an ignition heater at room temperature under an argon atmosphere to start a reaction.

得られた多孔体をボールミルを用いて粉砕した後、X線
回折で同定したところニホウ化チタンと酸化ジルコニウ
ムの回折線しか見られなかった。得られた混合粉末の粒
径は、それぞれ0.1〜0.3μIであり、出発原料の
粒径よりも小さくなっていた。
After the obtained porous body was pulverized using a ball mill, it was identified by X-ray diffraction, and only the diffraction lines of titanium diboride and zirconium oxide were observed. The particle size of the obtained mixed powder was 0.1 to 0.3 μI, which was smaller than the particle size of the starting raw material.

このプロセスの化学反応式は以下のようになる。The chemical reaction equation for this process is as follows.

Zr+TiO2+2 B−”ZrO*  +TiBzこ
の化学反応式かられかるようにこの反応は、Zr金属に
よるT i O2の還元を基本にして、還元されたTi
金属(融解して液体になっているものと思われる)がB
と反応してTiB2になるのである。このときの反応熱
が大きいので外部から加熱しなくても試料が高温(20
00℃程度まで上昇する)になりZrO2とT i B
 2からなる混合粉末が得られるのである。
Zr+TiO2+2 B-"ZrO* +TiBzAs can be seen from this chemical reaction formula, this reaction is based on the reduction of T i O2 by Zr metal, and the reduced Ti
The metal (which is thought to have melted into a liquid) is B
It reacts with TiB2. The heat of reaction at this time is large, so the sample can reach a high temperature (20
00℃), and ZrO2 and T i B
A mixed powder consisting of 2 is obtained.

実施例2 出発原料として、粒径325メツシユ以下のマグネシウ
ムを5mo1%含有したジルコニウムとマグネシウムの
合金粉末と、平均粒径1μmの二酸化チタン(TiO2
)それに粒径が15μ曙以下の結晶質のホウ素粉末を用
い、本実施例ではさらに平均粒径0.5μIの5mo1
%のマグネシウムで安定化した酸化ジルコニウム粉末を
加えた。それらを2:1.95 : 3.9 : 0.
1のモル比で混合後、実施例1と同様のプロセスで処理
した。得られた混合粉末をX線回折を用いて同定したと
ころニホウ化チタンと酸化ジルコニウムの回折線しか見
られなかった。
Example 2 As starting materials, an alloy powder of zirconium and magnesium containing 5 mo1% of magnesium with a particle size of 325 mesh or less, and titanium dioxide (TiO2) with an average particle size of 1 μm were used.
) A crystalline boron powder with a particle size of 15 μl or less was used, and in this example, 5 mol of boron powder with an average particle size of 0.5 μl was used.
% magnesium stabilized zirconium oxide powder was added. They are 2:1.95:3.9:0.
After mixing at a molar ratio of 1:1, the same process as in Example 1 was performed. When the obtained mixed powder was identified using X-ray diffraction, only the diffraction lines of titanium diboride and zirconium oxide were observed.

得られた混合粉末の粒径は、それぞれ0.1〜0.3μ
Iであり、出発原料の粒径よりも小さくなっていた。
The particle size of the obtained mixed powder is 0.1 to 0.3μ, respectively.
I, and the particle size was smaller than that of the starting material.

実施例3 出発原料として、粒径10μl以下のジルコニウム粉末
、平均粒径3μmの三酸化二チタン(Ti202)それ
に粒径が15μm以下の結晶質のホウ素粉末を用い、そ
れらを3 : 2.075 : 8.3のモル比で秤量
し、さらにジルコニウムに対して5wo1%のイツトリ
ウムを添加して混合後、実施例1と同様のプロセスで処
理した。但し、本実施例では200℃に加熱た状態で点
火した。得られた混合粉末をX線回折を用いて同定した
ところニホウ化チタンと酸化ジルコニウムの回折線しか
見られなかった。得られた混合粉末の粒径は、それぞれ
0.1〜0゜5μmであり、出発原料の粒径よりも小さ
くなっていた。
Example 3 As starting materials, zirconium powder with a particle size of 10 μl or less, dititanium trioxide (Ti202) with an average particle size of 3 μm, and crystalline boron powder with a particle size of 15 μm or less were used, and they were mixed in a ratio of 3:2.075: The mixture was weighed at a molar ratio of 8.3, and further, yttrium was added in an amount of 5w1% to zirconium, mixed, and then treated in the same process as in Example 1. However, in this example, ignition was carried out in a state where it was heated to 200°C. When the obtained mixed powder was identified using X-ray diffraction, only the diffraction lines of titanium diboride and zirconium oxide were observed. The particle size of the obtained mixed powders was 0.1 to 0.5 μm, which was smaller than the particle size of the starting raw materials.

実施例4 出発原料として粒径10μ−以下のジルコニウム粉末、
粒径lθμI以下のアルミニウム粉末、平均粒径1μm
の二酸化チタン(TiO2)粉末、それに粒径が15μ
m以下の結晶質のホウ素粉末を用い、それらを0.2 
: 1.6 : 1.4 : 2.8のモル比で混合後
、実施例1と同様のプロセスで処理した。得られた多孔
体を粉砕した後、X線回折を用いて同定したところニホ
ウ化チタンと酸化ジルコニウム、酸化アルミニウムの回
折線しか見られなかった。
Example 4 Zirconium powder with a particle size of 10μ or less as a starting material,
Aluminum powder with particle size lθμI or less, average particle size 1μm
titanium dioxide (TiO2) powder with a particle size of 15μ
Using crystalline boron powder of less than 0.2
After mixing at a molar ratio of : 1.6 : 1.4 : 2.8, the same process as in Example 1 was performed. After the obtained porous body was crushed, it was identified using X-ray diffraction, and only the diffraction lines of titanium diboride, zirconium oxide, and aluminum oxide were observed.

得られた混合粉末の粒径は、それぞれ0.1〜0.2μ
mであり、出発原料の粒径よりも非常に小さくなってい
た。
The particle size of the obtained mixed powder is 0.1 to 0.2μ, respectively.
m, which was much smaller than the particle size of the starting material.

実施例5 出発原料として粒径10μm以下のジルコニウム粉末、
粒径10μm以下のアルミニウム粉末、平均粒径3μm
の三酸化二チタン(TisO3)粉末、それに粒径が1
5μm以下の結晶質のホウ素粉末を用い、それらを0.
6 : 0.8 : 0,8 : 3.2のモル比で混
合後、実施例1と同様のプロセスで処理した。但し、本
実施例では200℃に加熱した状態で成形体に点火した
。得られた多孔体を粉砕した後、X線回折を用いて同定
したところニホウ化チタンと酸化ジルコニウム、酸化ア
ルミニウムの回折線しか見られなかった。得られた混合
粉末の粒径は、それぞれ0.2〜0.5μmであり、出
発原料の粒径よりも小さくなっていた。
Example 5 Zirconium powder with a particle size of 10 μm or less as a starting material,
Aluminum powder with a particle size of 10 μm or less, average particle size of 3 μm
dititanium trioxide (TisO3) powder with a particle size of 1
Crystalline boron powder with a size of 5 μm or less is used and
After mixing at a molar ratio of 6:0.8:0 and 8:3.2, the same process as in Example 1 was performed. However, in this example, the molded body was ignited while being heated to 200°C. After the obtained porous body was crushed, it was identified using X-ray diffraction, and only the diffraction lines of titanium diboride, zirconium oxide, and aluminum oxide were observed. The particle size of the obtained mixed powder was 0.2 to 0.5 μm, which was smaller than the particle size of the starting raw material.

実施例6 出発原料として粒径10μm以下のジルコニウム粉末、
平均粒径1μIの二酸化チタン(Ties)粉末、それ
に粒径が15μm以下の結晶質のホウ素粉末を用い、そ
れらを1:1:2のモル比で混合後、直径1011高さ
10IIII11の柱状にプレス成形した。この成形体
を炭化ケイ素製の型材に入れて、ウレタンゴム製の弾性
体を備えた一軸加圧真空ホットプレスを用いて合成同時
焼結を行った。成形体への着火は、試料下部に設けたタ
ングステンフィラメントに通電することによって行った
。成形体を室温・アルゴン雰囲気・50MPaの圧力条
件下で、着火用ヒーターに通電して反応を開始させた。
Example 6 Zirconium powder with a particle size of 10 μm or less as a starting material,
Using titanium dioxide (Ties) powder with an average particle size of 1 μI and crystalline boron powder with a particle size of 15 μm or less, they were mixed at a molar ratio of 1:1:2 and then pressed into a columnar shape with a diameter of 1011 and a height of 10III11. Molded. This molded body was placed in a mold made of silicon carbide, and simultaneously synthesized and sintered using a uniaxial pressure vacuum hot press equipped with an elastic body made of urethane rubber. The molded body was ignited by energizing a tungsten filament provided at the bottom of the sample. The reaction was started by applying electricity to the ignition heater under the conditions of room temperature, argon atmosphere, and 50 MPa pressure.

得られた焼結体をX線回折で同定したところニホウ化チ
タンと正方晶と単斜晶の酸化ジルコニウムの回折線しか
見られなかった。このX線回折図形から正方晶と単斜晶
の酸化ジルコニウムの割合がほぼ1:1であった。また
、この焼結体の相対密度は97%であった。
When the obtained sintered body was identified by X-ray diffraction, only the diffraction lines of titanium diboride and tetragonal and monoclinic zirconium oxides were observed. From this X-ray diffraction pattern, the ratio of tetragonal and monoclinic zirconium oxides was approximately 1:1. Moreover, the relative density of this sintered body was 97%.

このプロセスの化学反応式は以下のようになる。The chemical reaction equation for this process is as follows.

Zr+TiO2+2B−+ZrO2+TiB 2この化
学反応式かられかるようにこの反応は、Zr金属による
TiO2の還元を基本にして、還元されたTi金属(融
解して液体になっているものと思われる)がBと反応し
てTiB 2になるのである。このときの反応熱が大き
いので外部から加熱しなくても試料が高温(2000℃
程度まで上昇する)になり、しかもウレタンゴム製の弾
性体を介して加圧しているので、合成したZ r 02
粒子と、Ti82粒子が焼結してZrO2とTiB 2
からなる複合焼結体が得られるのである。
Zr+TiO2+2B-+ZrO2+TiB 2As can be seen from this chemical reaction formula, this reaction is based on the reduction of TiO2 by Zr metal, and the reduced Ti metal (which is thought to be melted and turned into a liquid) becomes B. It reacts to become TiB2. The heat of reaction at this time is large, so the sample can reach a high temperature (2000℃) without external heating.
Moreover, since the pressure is applied through an elastic body made of urethane rubber, the synthesized Z r 02
particles and Ti82 particles are sintered to form ZrO2 and TiB2
A composite sintered body consisting of

実施例7 出発原料として、粒径lOμI以下のジルコニウム粉末
、平均粒径3μmの三酸化二チタン(Ti203、)粉
末それに粒径が15μm以下の結晶質のホウ素粉末を用
い、それらを3:2:8のモル比で混合後、実施例6と
同様のプロセスで処理した。
Example 7 As starting materials, zirconium powder with a particle size of lOμI or less, dititanium trioxide (Ti203,) powder with an average particle size of 3 μm, and crystalline boron powder with a particle size of 15 μm or less were used, and they were mixed in a ratio of 3:2: After mixing at a molar ratio of 8, the same process as in Example 6 was carried out.

但し、本実施例では200℃まで加熱して反応を開始さ
せた。得られた焼結体をX線回折で同定したところニホ
ウ化チタンと正方晶と単斜晶の酸化ジルコニウムの回折
線しか見られなかつた。このX線回折図形から正方晶と
単斜晶の酸化ジルコニウムの割合がほぼ1:1であった
。また、この焼結体の相対密度は98.7%であった。
However, in this example, the reaction was started by heating to 200°C. When the obtained sintered body was identified by X-ray diffraction, only the diffraction lines of titanium diboride and tetragonal and monoclinic zirconium oxides were observed. From this X-ray diffraction pattern, the ratio of tetragonal and monoclinic zirconium oxides was approximately 1:1. Moreover, the relative density of this sintered body was 98.7%.

実施例8 出発原料として、粒径325メツシユ以下のマグネシウ
ム5mo1%含有したジルコニウムとマグネシウムの合
金粉末と、平均粒径1μmの二酸化チタン(Ti02)
それに粒径が15μm以下の結晶質のホウ素粉末を用い
、本実施例ではさらに平均粒径0.5μmの5mo1%
のマグネシウムで安定化した酸化ジルコニウム粉末を加
えた。それらを2:1.95 : 1.95 : 0.
1のモル比で混合後、実施例6と同様のプロセスで処理
した。得られた焼結体をX線回折で同定したところニホ
ウ化チタン、−ホウ化チタン、チタンそれに酸化ジルコ
ニウムの回折線しか見られなかった。また、この焼結体
の相対密度は99.5%であった。
Example 8 As starting materials, zirconium and magnesium alloy powder containing 5 mo1% of magnesium with a particle size of 325 mesh or less, and titanium dioxide (Ti02) with an average particle size of 1 μm.
Crystalline boron powder with a particle size of 15 μm or less is used for this, and in this example, 5mol% with an average particle size of 0.5 μm is used.
of magnesium-stabilized zirconium oxide powder was added. They are 2:1.95:1.95:0.
After mixing at a molar ratio of 1, the same process as in Example 6 was carried out. When the obtained sintered body was identified by X-ray diffraction, only the diffraction lines of titanium diboride, titanium -boride, titanium, and zirconium oxide were observed. Moreover, the relative density of this sintered body was 99.5%.

実施例9 出発原料として粒径10μm以下のジルコニウム粉末、
粒径10μm以下のアルミニウム粉末、平均粒径0.7
μmの二酸化チタン(TiO2)粉末、それに粒径が1
5μI以下の結晶質のホウ素粉末を用い、それらを0.
8 : 0.4 : 1.1 : 1.1のモル比で混
合後、実施例6と同様のプロセスで処理した。得られた
焼結体をX線回折で同定したところニホウ化チタン、−
ホウ化チタン、チタンそれに酸化ジルコニウム(はぼ9
0%が正方晶系であり、残りは単斜晶系)の回折線しか
見られなかった。また、この焼結体の相対密度は99.
7%であった。
Example 9 Zirconium powder with a particle size of 10 μm or less as a starting material,
Aluminum powder with a particle size of 10 μm or less, average particle size of 0.7
μm titanium dioxide (TiO2) powder, and particle size 1
Using crystalline boron powder of 5 μI or less, they were heated to 0.
After mixing at a molar ratio of 8:0.4:1.1:1.1, the same process as in Example 6 was performed. The obtained sintered body was identified by X-ray diffraction as titanium diboride, -
Titanium boride, titanium and zirconium oxide (Habo9
Only diffraction lines of 0% were tetragonal and the rest were monoclinic were observed. Moreover, the relative density of this sintered body is 99.
It was 7%.

発明の効果 本発明の製造方法によれば、ジルコニウム金属粉末と酸
化物粉末とホウ素を含む混合物からなる成形体を作製し
、その成形体の一部に点火して燃焼反応を起こさせるだ
けで、酸化ジルコニウムとホウ化物を含む混合粉末が得
られる。また、この成形体に圧力をかけた状態で点火す
ると、酸化ジルコニウムとホウ化物の合成同時焼結が起
こり、酸化ジルコニウムとホウ化物を含む複合焼結体が
得られる。
Effects of the Invention According to the manufacturing method of the present invention, a molded body made of a mixture containing zirconium metal powder, oxide powder, and boron is produced, and a part of the molded body is ignited to cause a combustion reaction. A mixed powder containing zirconium oxide and boride is obtained. Moreover, when this molded body is ignited under pressure, zirconium oxide and boride are simultaneously synthesized and sintered, and a composite sintered body containing zirconium oxide and boride is obtained.

従って、本発明の製造方法によれば、従来の酸化ジルコ
ニウムとホウ化物の混合粉末を製造したり・その混合粉
末を用いて複合焼結体を製造する方法に比較して、はる
かに低温のプロセスで、つまり、きわめて小さなエネル
ギー酸化ジルコニウムとホウ化物を含む混合粉末や複合
焼結体が作製できる。
Therefore, the manufacturing method of the present invention requires a much lower temperature process than the conventional method of manufacturing a mixed powder of zirconium oxide and boride or manufacturing a composite sintered body using the mixed powder. In other words, it is possible to produce mixed powders and composite sintered bodies containing extremely low energy zirconium oxide and boride.

Claims (10)

【特許請求の範囲】[Claims] (1)少なくともジルコニウム粉末と酸化物粉末とホウ
素とを含む成形体を作製し、その成形体の一部に点火し
て燃焼過程を開始させ、その後のジルコニウム粉末と酸
化物粉末それにホウ素との反応を、燃焼過程の結果発生
する熱によって進行させる酸化ジルコニウムとホウ化物
を含む混合粉末の製造方法。
(1) A molded body containing at least zirconium powder, oxide powder, and boron is produced, a part of the molded body is ignited to start the combustion process, and the subsequent reaction with the zirconium powder, oxide powder, and boron is performed. A method for producing a mixed powder containing zirconium oxide and boride, in which the process proceeds with heat generated as a result of a combustion process.
(2)加熱条件下で成形体に点火して燃焼過程を開始さ
せることを特徴とする特許請求の範囲第1項記載の酸化
ジルコニウムとホウ化物を含む混合粉末の製造方法。
(2) A method for producing a mixed powder containing zirconium oxide and a boride according to claim 1, characterized in that the compact is ignited under heating conditions to initiate a combustion process.
(3)酸化物粉末が酸化チタンである特許請求の範囲第
1項記載の酸化ジルコニウムとホウ化物を含む混合粉末
の製造方法。
(3) The method for producing a mixed powder containing zirconium oxide and a boride according to claim 1, wherein the oxide powder is titanium oxide.
(4)成形体中に酸化ジルコニウムの安定化元素を含有
する特許請求の範囲第1項記載の酸化ジルコニウムとホ
ウ化物を含む混合粉末の製造方法。
(4) A method for producing a mixed powder containing zirconium oxide and a boride according to claim 1, wherein the compact contains a stabilizing element for zirconium oxide.
(5)成形体中にアルミニウム粉末を混合する特許請求
の範囲第1項記載の酸化ジルコニウムとホウ化物を含む
混合粉末の製造方法。
(5) A method for producing a mixed powder containing zirconium oxide and a boride according to claim 1, which comprises mixing aluminum powder into a compact.
(6)少なくともジルコニウム粉末と酸化物粉末とホウ
素とを含む成形体を作製し、加圧条件下で、その成形体
の一部に点火して燃焼過程を開始させ、その後のジルコ
ニウム粉末と酸化物粉末それにホウ素との反応及び生成
した酸化ジルコニウムと炭化物の焼結を、燃焼過程の結
果発生する熱によって進行させる酸化ジルコニウムとホ
ウ化物を含む複合焼結体の製造方法。
(6) A molded body containing at least zirconium powder, oxide powder, and boron is produced, a part of the molded body is ignited under pressurized conditions to start the combustion process, and the zirconium powder and oxide are then ignited. A method for producing a composite sintered body containing zirconium oxide and boride, in which the reaction between the powder and boron and the sintering of the generated zirconium oxide and carbide are progressed by heat generated as a result of the combustion process.
(7)加熱・加圧条件下で成形体に点火して燃焼過程を
開始させることを特徴とする特許請求の範囲第6項記載
の酸化ジルコニウムとホウ化物を含む複合焼結体の製造
方法。
(7) A method for producing a composite sintered body containing zirconium oxide and a boride according to claim 6, characterized in that the compact is ignited under heated and pressurized conditions to initiate a combustion process.
(8)酸化物粉末が酸化チタンである特許請求の範囲第
6項記載の酸化ジルコニウムとホウ化物を含む複合焼結
体の製造方法。
(8) The method for producing a composite sintered body containing zirconium oxide and boride according to claim 6, wherein the oxide powder is titanium oxide.
(9)成形体中に酸化ジルコニウムの安定化元素を含有
する特許請求の範囲第6項記載の酸化ジルコニウムとホ
ウ化物を含む複合焼結体の製造方法。
(9) A method for producing a composite sintered body containing zirconium oxide and a boride according to claim 6, wherein the compact contains a stabilizing element of zirconium oxide.
(10)成形体中にアルミニウム粉末を混合する特許請
求の範囲第6項記載の酸化ジルコニウムとホウ化物を含
む複合焼結体の製造方法。
(10) A method for producing a composite sintered body containing zirconium oxide and a boride according to claim 6, wherein aluminum powder is mixed into the compact.
JP62114156A 1987-05-11 1987-05-11 Powder mixture containing zirconium oxide and boride and production of composite sintered body containing said powder Pending JPS63282165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62114156A JPS63282165A (en) 1987-05-11 1987-05-11 Powder mixture containing zirconium oxide and boride and production of composite sintered body containing said powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62114156A JPS63282165A (en) 1987-05-11 1987-05-11 Powder mixture containing zirconium oxide and boride and production of composite sintered body containing said powder

Publications (1)

Publication Number Publication Date
JPS63282165A true JPS63282165A (en) 1988-11-18

Family

ID=14630552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62114156A Pending JPS63282165A (en) 1987-05-11 1987-05-11 Powder mixture containing zirconium oxide and boride and production of composite sintered body containing said powder

Country Status (1)

Country Link
JP (1) JPS63282165A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006038406A1 (en) * 2004-10-07 2008-05-15 日鉱金属株式会社 High purity ZrB2 powder and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006038406A1 (en) * 2004-10-07 2008-05-15 日鉱金属株式会社 High purity ZrB2 powder and method for producing the same
JP2011088819A (en) * 2004-10-07 2011-05-06 Jx Nippon Mining & Metals Corp HIGH PURITY ZrB2 POWDER AND METHOD FOR PRODUCING THE SAME
JP4685023B2 (en) * 2004-10-07 2011-05-18 Jx日鉱日石金属株式会社 High purity ZrB2 powder and method for producing the same

Similar Documents

Publication Publication Date Title
Patil et al. Combustion synthesis
US3991166A (en) Ceramic materials
US4902457A (en) Method for manufacturing a porous material or a composite sintered product comprising zirconium oxide and a carbide
JPH01301508A (en) Production of silicon carbide material and raw material composition therefor
JPS63282165A (en) Powder mixture containing zirconium oxide and boride and production of composite sintered body containing said powder
CN1120817C (en) In-situ hot pressing solid-liquid phase reaction process to prepare silicon titanium-carbide material
JPH0672062B2 (en) Method for producing composite sintered body composed of carbide and complex oxide
JPS62288166A (en) Manufacture of tungsten carbide-oxide composite sintered body
JPS62235258A (en) Manufacture of carbide oxide composite sintered body
CN108793981B (en) Method for preparing alumina-based amorphous and solid solution ceramic powder mixture by combustion synthesis quenching method
JPH0672048B2 (en) Method for producing zirconium oxide-based composite sintered body
JPH075369B2 (en) Method for producing composite sintered body composed of carbide and two or more kinds of oxides
JPH01145380A (en) Production of silicon nitride sintered form
JPS63156015A (en) Production of powdery mixture consisting of zirconium oxide and carbide
JPH075368B2 (en) Method for producing composite sintered body composed of titanium carbide and oxide
JPS5988374A (en) Manufacture of silicon nitride ceramics
JPS62275067A (en) Manufacture of silicon nitride sintered body
KR970001051B1 (en) Process for the preparation of al203 and tic using self propagating high temperature synthesis
JPS62256766A (en) Manufacture of composite sintered body comprising nitride and oxide
JPS63156069A (en) Manufacture of mixed powder comprising zirconium oxide, aluminum oxide and carbide
JPH01215719A (en) Production of high-purity zirconia powder
JPH0236545B2 (en)
JPH0623041B2 (en) Method for producing high-purity stabilized zirconia powder
CN114477996A (en) Preparation method of barium titanate-based ceramic
KR930004555B1 (en) Al2o3 composite ceramic articles and methods of making same