JPH0672048B2 - Method for producing zirconium oxide-based composite sintered body - Google Patents

Method for producing zirconium oxide-based composite sintered body

Info

Publication number
JPH0672048B2
JPH0672048B2 JP61079705A JP7970586A JPH0672048B2 JP H0672048 B2 JPH0672048 B2 JP H0672048B2 JP 61079705 A JP61079705 A JP 61079705A JP 7970586 A JP7970586 A JP 7970586A JP H0672048 B2 JPH0672048 B2 JP H0672048B2
Authority
JP
Japan
Prior art keywords
oxide
zirconium
powder
sintered body
zirconium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61079705A
Other languages
Japanese (ja)
Other versions
JPS62235256A (en
Inventor
隆博 和田
成司 安達
敏弘 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61079705A priority Critical patent/JPH0672048B2/en
Priority to US07/041,810 priority patent/US4902457A/en
Publication of JPS62235256A publication Critical patent/JPS62235256A/en
Publication of JPH0672048B2 publication Critical patent/JPH0672048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超硬工具や高温構造材として用いられる酸化
ジルコニウム基複合焼結体の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a zirconium oxide-based composite sintered body used as a cemented carbide tool or a high temperature structural material.

従来の技術 従来、酸化ジルコニウム−炭化物複合焼結体は、まず金
属またはその酸化物に炭素粉末または固形炭素を混合
し、高温で反応させることによって合成した炭化物粉末
と酸化ジルコニウム粉末を十分に混合した後高温高圧下
で焼結させることによって製造していた。
2. Description of the Related Art Conventionally, in a zirconium oxide-carbide composite sintered body, a carbide powder and a zirconium oxide powder synthesized by first mixing carbon powder or solid carbon with a metal or an oxide thereof and reacting at a high temperature are sufficiently mixed. After that, it was manufactured by sintering under high temperature and high pressure.

発明が解決しようとする問題点 この方法は、製造工程が長く複雑であるため不純物が混
入しやすく、しかもエネルギー消費が非常に大きかっ
た。
Problems to be Solved by the Invention Since the manufacturing process of this method is long and complicated, impurities are easily mixed in, and energy consumption is very large.

問題点を解決するための手段 本発明の特徴は、ジルコニウム金属粉末(反応後には酸
化ジルコニウムとなる)と酸化物(反応後には炭化物に
なる)それに炭素とからなる混合物の成形体に圧力をか
けた状態で、その成形体の一部を強熱点火して燃焼反応
を起こさせ、この化学反応によって炭化物と酸化ジルコ
ニウムの粒子を合成し、反応熱によってこれらの粒子を
焼結して酸化ジルコニウム−炭化物複合焼結体を得るこ
とにある。
Means for Solving the Problems A feature of the present invention is that pressure is applied to a compact of a mixture of zirconium metal powder (which becomes zirconium oxide after the reaction), an oxide (which becomes carbide after the reaction), and carbon. In this state, a part of the molded body is ignited by a strong ignition to cause a combustion reaction, and the chemical reaction synthesizes particles of carbide and zirconium oxide, and the reaction heat sinters these particles to produce zirconium oxide- The purpose is to obtain a carbide composite sintered body.

作用 本発明によれば、加圧下で成形体に点火するだけで高密
度の酸化ジルコニウム−炭化物複合焼結体が容易に得ら
れる。したがって従来の炭化物と酸化ジルコニウムの粉
末を用いて作成する焼結体の製造方法と比較してきわめ
て省エネルギーであり、しかも得られる焼結体もきわめ
て高純度である。また本発明の製造方法によれば、従来
の製造方法では困難であった炭化物と酸化ジルコニウム
の複合焼結体もきわめて容易に作製できる。
Effects According to the present invention, a high-density zirconium oxide-carbide composite sintered body can be easily obtained only by igniting the molded body under pressure. Therefore, compared with the conventional method for producing a sintered body prepared by using powders of carbide and zirconium oxide, energy saving is extremely high, and the obtained sintered body also has an extremely high purity. Further, according to the manufacturing method of the present invention, a composite sintered body of carbide and zirconium oxide, which was difficult by the conventional manufacturing method, can be manufactured very easily.

実施例 実施例1 出発原料として粒径10μm以下のジルコニウム粉末、平
均粒径1μmの二酸化チタン(TiO2)粉末、それにアセチ
レンを原料とするカーボンブラックを用い、それらを1:
1:0.9のモル比で混合後、直径10mm,高さ10mmの柱状にプ
レス成形した。この成形体を炭化ケイ素製の型材を用い
た一軸加圧真空ホットプレスを用いて焼結を行った。成
形体への着火は、タングステンフィラメントに通電する
ことによって行った。試料を室温・真空(1mmHg)雰囲気
・0.1GPaの圧力条件下で、着火用ヒーターに通電して反
応を開始させた。得られた焼結体をX線回折を用いて同
定したところ炭化チタンと正方晶の酸化ジルコニウムと
単斜晶のジルコニウムの回折線しか見られなかった。こ
のX線回折から正方晶の酸化ジルコニウムと単斜晶のジ
ルコニウムがほぼ1:1の割合で含まれていることがわか
った。この焼結体の密度は5.25g/cm3であった。
Examples Example 1 As starting materials, zirconium powder having a particle size of 10 μm or less, titanium dioxide (TiO 2 ) powder having an average particle size of 1 μm, and carbon black using acetylene as a raw material were used.
After mixing at a molar ratio of 1: 0.9, it was press-molded into a column having a diameter of 10 mm and a height of 10 mm. The compact was sintered using a uniaxial pressure vacuum hot press using a silicon carbide mold material. Ignition of the molded body was performed by energizing the tungsten filament. The sample was heated at room temperature in a vacuum (1 mmHg) atmosphere under a pressure of 0.1 GPa to energize the ignition heater to start the reaction. When the obtained sintered body was identified by X-ray diffraction, only diffraction lines of titanium carbide, tetragonal zirconium oxide and monoclinic zirconium were found. From this X-ray diffraction, it was found that tetragonal zirconium oxide and monoclinic zirconium were contained at a ratio of about 1: 1. The density of this sintered body was 5.25 g / cm 3 .

このプロセスの化学反応式は以下のようになる。The chemical reaction equation of this process is as follows.

Zr+TiO2+C→ZrO2+TiC この化学反応式からわかるようにこの反応は、Zr金属に
よるTiO2の還元を基本にして、還元されたTi金属(融解
して液体になっているものと思われる)がCと反応して
TiCになるのである。このときの反応熱が大きいので外
部から加熱しなくても試料が高温(2000℃程度まで上昇
する)になり、しかも加圧しているのでZrO2粒子とTiC
粒子が焼結してZrO2‐TiC複合焼結体が得られるのであ
る。
Zr + TiO 2 + C → ZrO 2 + TiC As can be seen from this chemical reaction formula, this reaction is based on the reduction of TiO 2 by Zr metal, and the reduced Ti metal (it seems to be melted into a liquid) Reacts with C
It becomes TiC. Since the reaction heat at this time is large, the sample will reach a high temperature (up to about 2000 ° C) without being heated from the outside, and since it is pressurized, ZrO 2 particles and TiC
The particles are sintered to obtain a ZrO 2 -TiC composite sintered body.

通常、純粋な状態では不安定な正方晶の酸化ジルコニウ
ムが室温でも焼結体中で安定に存在するのはこの焼結プ
ロセスで製造した酸化ジルコニウム基複合焼結体の大き
な特徴である。
Generally, tetragonal zirconium oxide, which is unstable in a pure state, exists stably in the sintered body even at room temperature, which is a major feature of the zirconium oxide-based composite sintered body produced by this sintering process.

実施例2 出発原料として粒径10μm以下のジルコニウム粉末、焼
成非晶質二酸化ケイ基(シオノギ製薬製カープレックス
CS−5)それにアセチレンを原料とするカーボンブラッ
クを用い、それらを1:1:1のモル比で混合後、実施例1
と同様のプロセスで処理した。但し、本実施例では300
℃まで加熱して反応を開始させた。得られた焼結体をX
線回折を用いて同定したところβ型の炭化ケイ素と正方
晶の酸化ジルコニウムと単斜晶のジルコニウムの回折線
しか見られなかった。このX線回折から正方晶の酸化ジ
ルコニウムと単斜晶のジルコニウムがほぼ1:1の割合で
含まれていることがわかった。この焼結体の密度は4.72
g/cm3であった。
Example 2 Zirconium powder having a particle size of 10 μm or less as a starting material, calcined amorphous silica dioxide (Carplex manufactured by Shionogi Pharmaceutical Co., Ltd.)
CS-5) Using carbon black made from acetylene as a raw material, mixing them at a molar ratio of 1: 1: 1, and then cultivating Example 1
It was processed in the same process as. However, in this embodiment, 300
The reaction was started by heating to ° C. The obtained sintered body is X
As a result of identification using line diffraction, only diffraction lines of β-type silicon carbide, tetragonal zirconium oxide and monoclinic zirconium were found. From this X-ray diffraction, it was found that tetragonal zirconium oxide and monoclinic zirconium were contained at a ratio of about 1: 1. The density of this sintered body is 4.72
It was g / cm 3 .

実施例3 出発原料として、粒径325メッシュ以下のジルコニウム
粉末と、平均粒径1μmの五酸化ニオブ(Nb2O5)それに
アセチレンを原料とするカーボンブラックを用い、本実
施例ではさらに平均粒径0.5μmの酸化ジルコニウム粉
末を加えた、それらを2:5:4:0.2のモル比で混合後、実
施例1と同様のプロセスで処理した。得られた焼結体を
X線回折を用いて同定したところ炭化ニオブと正方晶の
酸化ジルコニウムと単斜晶のジルコニウムの回折線しか
見られなかった。このX線回折から正方晶の酸化ジルコ
ニウムと単斜晶のジルコニウムがほぼ6:4の割合で含ま
れていることがわかった。この焼結体の密度は6.33g/cm
3であった。
Example 3 As a starting material, zirconium powder having a particle size of 325 mesh or less, niobium pentoxide (Nb 2 O 5 ) having an average particle size of 1 μm, and carbon black using acetylene as a raw material were used. 0.5 μm zirconium oxide powder was added, they were mixed in a molar ratio of 2: 5: 4: 0.2 and then treated in the same manner as in Example 1. When the obtained sintered body was identified by X-ray diffraction, only diffraction lines of niobium carbide, tetragonal zirconium oxide and monoclinic zirconium were found. From this X-ray diffraction, it was found that tetragonal zirconium oxide and monoclinic zirconium were contained at a ratio of about 6: 4. The density of this sintered body is 6.33 g / cm
Was 3 .

実施例4 出発原料として粒径1000メッシュ以下のジルコニウム粉
末、平均粒径1μmの五酸化タンタル(Ta2O5)それにア
セチレンを原料とするカーボンブラックを用い、それら
を2:5:4のモル比で混合後、実施例1と同様のプロセス
で処理した。得られた焼結体をX線回折を用いて同定し
たところ炭化タンタルと正方晶の酸化ジルコニウムと単
斜晶の酸化ジルコニウムの回折線しか見られなかった。
この焼結体の密度は9.60g/cm3であった。
Example 4 Zirconium powder having a particle size of 1000 mesh or less, tantalum pentoxide (Ta 2 O 5 ) having an average particle size of 1 μm, and carbon black using acetylene as a raw material were used as starting materials, and they were used in a molar ratio of 2: 5: 4. After mixing in, the same process as in Example 1 was carried out. When the obtained sintered body was identified by X-ray diffraction, only diffraction lines of tantalum carbide, tetragonal zirconium oxide and monoclinic zirconium oxide were found.
The density of this sintered body was 9.60 g / cm 3 .

実施例5 出発原料として粒径10μm以下のジルコニウム粉末、平
均粒径3μmの三酸化タングステン(WO3)それにアセチ
レンを原料とするカーボンブラックを用い、それらを2:
1:1のモル比で混合後、実施例1と同様のプロセスで処
理した。得られた焼結体をX線回折を用いて同定したと
ころα型の炭化タングステントと正方晶の酸化ジルコニ
ウムと単斜晶のジルコニウムの回折線しか見られなかっ
た。この焼結体の密度は9.72g/cm3であった。
Example 5 Zirconium powder having a particle size of 10 μm or less, tungsten trioxide (WO 3 ) having an average particle size of 3 μm, and carbon black using acetylene as a raw material were used as starting materials.
After mixing at a molar ratio of 1: 1, the same process as in Example 1 was carried out. When the obtained sintered body was identified by X-ray diffraction, only diffraction lines of α-type tungsten carbide, tetragonal zirconium oxide and monoclinic zirconium were found. The density of this sintered body was 9.72 g / cm 3 .

発明の効果 本発明の製造方法によれば、ジルコニウム粉末と酸化物
それに炭素とからなる混合物の成形体に圧力をかけた状
態で、その成形体の一部に点火して燃焼反応を起こさせ
るだけで酸化ジルコニウム−炭化物複合焼結体が作製で
きる。従って、本発明の製造方法によれば、従来の炭化
物粉末と酸化物粉末を用いた製造方法に比較してはるか
に低温のプロセスで、つまり、きわめて小さなエネルギ
ーで酸化ジルコニウム−炭化物複合焼結体が作製でき
る。しかも、得られた焼結体は、従来の製造方法によっ
て作製した焼結体と全く変わらない特性を有している。
また本発明の製造方法は、酸化カルシウムや酸化イット
リウムを固溶させなくても酸化ジルコニウムを安定化で
きるという特徴も有している。
EFFECTS OF THE INVENTION According to the production method of the present invention, in a state where pressure is applied to a molded body of a mixture of zirconium powder, an oxide and carbon, only a part of the molded body is ignited to cause a combustion reaction. Thus, a zirconium oxide-carbide composite sintered body can be produced. Therefore, according to the production method of the present invention, a zirconium oxide-carbide composite sintered body can be obtained at a much lower temperature process as compared with the conventional production method using the carbide powder and the oxide powder, that is, with a very small energy. Can be made. Moreover, the obtained sintered body has the same characteristics as the sintered body produced by the conventional manufacturing method.
Further, the production method of the present invention has a feature that zirconium oxide can be stabilized without solid solution of calcium oxide or yttrium oxide.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ジルコニウム粉末と酸化物粉末それに炭素
とからなる成形体を、加圧条件下でその成形体の一部に
点火して燃焼過程を開始させ、その後のジルコニウム粉
末と酸化物粉末それに炭素との反応及び生成した酸化ジ
ルコニウムと炭化物の焼結を、燃焼過程の結果発生する
熱によって進行させる酸化ジルコニウム基複合焼結体の
製造方法。
1. A compact formed of zirconium powder, oxide powder and carbon is ignited under pressure to a part of the compact to initiate a combustion process, and thereafter zirconium powder, oxide powder and A method for producing a zirconium oxide-based composite sintered body, wherein the reaction with carbon and the sintering of the generated zirconium oxide and carbide proceed by the heat generated as a result of the combustion process.
【請求項2】加圧・加熱の条件下で、ジルコニウム粉末
と酸化物粉末それに炭素とからなる成形体に点火して燃
焼過程を開始させることを特徴とする特許請求の範囲第
1項記載の酸化ジルコニウム基複合焼結体の製造方法。
2. The method according to claim 1, characterized in that, under the conditions of pressurization and heating, a compact made of zirconium powder, oxide powder and carbon is ignited to start a combustion process. A method for producing a zirconium oxide-based composite sintered body.
【請求項3】酸化物粉末が周期率表第4族、5b族、6b族
のいずれかの元素の酸化物である特許請求の範囲第1項
記載の酸化ジルコニウム基複合焼結体の製造方法。
3. The method for producing a zirconium oxide-based composite sintered body according to claim 1, wherein the oxide powder is an oxide of any one of elements of Groups 4, 5b and 6b of the periodic table. .
【請求項4】ジルコニウム粉末と酸化物粉末それに炭
素、さらに反応に関与しない酸化物粉末とからなる成形
体を、加圧条件下でその成形体の一部に点火して燃焼過
程を開始させ、その後のジルコニウム粉末と酸化物粉末
それに炭素との反応及び生成した酸化ジルコニウムと炭
化物それに反応に関与しない酸化物の焼結を、燃焼過程
の結果発生する熱によって進行させる酸化ジルコニウム
基複合焼結体の製造方法。
4. A molded body made of zirconium powder, oxide powder, carbon, and oxide powder not participating in the reaction is ignited on a part of the molded body to start a combustion process, Subsequent reaction of zirconium powder and oxide powder and carbon and sintering of the produced zirconium oxide and carbide and the oxide not involved in the reaction are promoted by the heat generated as a result of the combustion process. Production method.
【請求項5】反応に関与しない酸化物粉末が酸化ジルコ
ニウムである特許請求の範囲第4項記載の酸化ジルコニ
ウム基複合焼結体の製造方法。
5. The method for producing a zirconium oxide-based composite sintered body according to claim 4, wherein the oxide powder not involved in the reaction is zirconium oxide.
JP61079705A 1986-04-07 1986-04-07 Method for producing zirconium oxide-based composite sintered body Expired - Lifetime JPH0672048B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61079705A JPH0672048B2 (en) 1986-04-07 1986-04-07 Method for producing zirconium oxide-based composite sintered body
US07/041,810 US4902457A (en) 1986-04-07 1987-04-07 Method for manufacturing a porous material or a composite sintered product comprising zirconium oxide and a carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61079705A JPH0672048B2 (en) 1986-04-07 1986-04-07 Method for producing zirconium oxide-based composite sintered body

Publications (2)

Publication Number Publication Date
JPS62235256A JPS62235256A (en) 1987-10-15
JPH0672048B2 true JPH0672048B2 (en) 1994-09-14

Family

ID=13697620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61079705A Expired - Lifetime JPH0672048B2 (en) 1986-04-07 1986-04-07 Method for producing zirconium oxide-based composite sintered body

Country Status (1)

Country Link
JP (1) JPH0672048B2 (en)

Also Published As

Publication number Publication date
JPS62235256A (en) 1987-10-15

Similar Documents

Publication Publication Date Title
Ciftci et al. Hydrothermal precipitation and characterization of nanocrystalline BaTiO3 particles
US4902457A (en) Method for manufacturing a porous material or a composite sintered product comprising zirconium oxide and a carbide
JPH0672048B2 (en) Method for producing zirconium oxide-based composite sintered body
JPS62256767A (en) Manufacture of composite sintered body comprising carbonitride and oxide
JP3190060B2 (en) Method for producing fine ceria solid solution tetragonal zirconia powder
JPH0672062B2 (en) Method for producing composite sintered body composed of carbide and complex oxide
JPS62235258A (en) Manufacture of carbide oxide composite sintered body
JPS6153119A (en) Lead-containing oxide powder and its preparation
JPS62288166A (en) Manufacture of tungsten carbide-oxide composite sintered body
JPS63282165A (en) Powder mixture containing zirconium oxide and boride and production of composite sintered body containing said powder
JPS63156015A (en) Production of powdery mixture consisting of zirconium oxide and carbide
JP2968608B2 (en) Method for producing fine ceria solid solution tetragonal zirconia powder
JPS62256766A (en) Manufacture of composite sintered body comprising nitride and oxide
KR100648862B1 (en) Method of producing amorphous Strontium titanate precursor
JPS63156069A (en) Manufacture of mixed powder comprising zirconium oxide, aluminum oxide and carbide
JPH0262496B2 (en)
JPS62288165A (en) Manufacture of titanium carbide-oxide composite sintered body
KR970001051B1 (en) Process for the preparation of al203 and tic using self propagating high temperature synthesis
JPH075369B2 (en) Method for producing composite sintered body composed of carbide and two or more kinds of oxides
KR100341723B1 (en) Process for producing hexagonal Boron Nitride using self-propagating high-temperature synthesis
JPS63288960A (en) Production of (pb, bi) (zr, ti)o3
RU2058961C1 (en) Method for production of ceramics from titanium dioxide (tinpox)
Sōmiya et al. A high potential material—zirconia
JP2634209B2 (en) Method for producing powdered barium titanate
JPH06345520A (en) Production of multiple oxide