JPS6153119A - Lead-containing oxide powder and its preparation - Google Patents

Lead-containing oxide powder and its preparation

Info

Publication number
JPS6153119A
JPS6153119A JP59172425A JP17242584A JPS6153119A JP S6153119 A JPS6153119 A JP S6153119A JP 59172425 A JP59172425 A JP 59172425A JP 17242584 A JP17242584 A JP 17242584A JP S6153119 A JPS6153119 A JP S6153119A
Authority
JP
Japan
Prior art keywords
lead
powder
oxide
phase
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59172425A
Other languages
Japanese (ja)
Other versions
JPH0425207B2 (en
Inventor
Toichi Takagi
東一 高城
Kouhei Ametani
飴谷 公兵
Koichi Shimizu
晃一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP59172425A priority Critical patent/JPS6153119A/en
Priority to FR8512527A priority patent/FR2569398B1/en
Priority to KR8505997A priority patent/KR900002982B1/en
Priority to DE19853529933 priority patent/DE3529933A1/en
Publication of JPS6153119A publication Critical patent/JPS6153119A/en
Priority to US07/012,103 priority patent/US4812426A/en
Publication of JPH0425207B2 publication Critical patent/JPH0425207B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To prepare a lead-containing oxide powder which can be sintered easily to form a sintered material having high density, by using an oxide powder containing >=2 kinds of metals in addition to lead as the constituent components, and distributing the lead component in higher concentration at the outer layer that at the inner part. CONSTITUTION:An oxide containing at least two kinds of metals as the constituent components or its precursor powder is prepared beforehand. A lead compound is added to the above oxide powder. The amount of the lead compound is stoichiometric amount to the powdery composition, or excess to the stoichiometric amount by <=8mol%. The mixture is calcined to 400-1,200 deg.C to obtain a lead-containing oxide powder containing at least two kinds of metals in addition to lead, as the constituent components, and containing the lead component at higher concentration in the outer layer than in the inner part.

Description

【発明の詳細な説明】 (埋東上のオリ用分野〕 本発明は易焼結性鉛含有酸化物粉体及びその製造方法、
さらに詳しくは、物体の表面付近の鉛含有量が粉体内部
より大きい易焼結性鉛含有酸化物粉体及び鉛含有酸化物
粉体を構成する各種金属を含有する酸化物又はその前駆
体の粉末と鉛含有化合物とを高温で焼成し反応させるこ
とを特徴とする易焼結性鉛含有酸化物粉体の製造方法に
関する、(従来技術と問題点) 鉛含有酸化物には強誘電材料、圧電材料、焦電材料など
として有用なものが多い。従って、低温焼成で高密度の
焼結体が得られる易焼結性の鉛含有酸化物粉体及びその
製造方法が要望されている。
DETAILED DESCRIPTION OF THE INVENTION (Field of use in buried ore materials) The present invention provides an easily sinterable lead-containing oxide powder and a method for producing the same;
More specifically, we will discuss easily sinterable lead-containing oxide powders in which the lead content near the surface of the object is larger than in the inside of the powder, and oxides containing various metals constituting the lead-containing oxide powders, or their precursors. (Prior art and problems) Concerning a method for producing easily sinterable lead-containing oxide powder, which is characterized by firing the powder and a lead-containing compound at high temperatures and causing a reaction between them. Many of them are useful as piezoelectric materials, pyroelectric materials, etc. Therefore, there is a need for an easily sinterable lead-containing oxide powder that can yield a high-density sintered body by low-temperature firing, and a method for producing the same.

従来、鉛含有量を化学量論量よりも多量に添加すること
によって、焼結が促進されることが知られている。(「
粉体および粉末冶金」誌M17巻第3号116頁山口修
「PbOとPZTの焼結に関する研究」) これは、化学量論量よりも10〜60%過剰の酸化鉛を
添加したチタン酸ジルコン酸鉛はg8結中に過剰の酸化
鉛が液相を生成し焼結を促進するいわゆる液相焼結機構
に関するものである。しかしながら、この方法によると
過剰の酸化鉛が焼結体中に残存し電気特性や機械的特性
に問題点があつ゛た。また、液相焼結では一般に焼結の
初期段階で急激な焼結収縮を起こすために焼結体中の気
孔が閉じこめられて残留気孔となり、最終的な焼結体密
度が上がらない欠点があった。このことは、チタン酸ジ
ルコン酸鉛の例に限らす鉛含[!化物焼結体を作製する
際に一般的な問題点である。
Conventionally, it has been known that sintering is promoted by adding lead in an amount larger than the stoichiometric amount. (“
"Powder and Powder Metallurgy", Vol. M17, No. 3, p. 116, Osamu Yamaguchi "Study on sintering of PbO and PZT") This is zirconium titanate to which lead oxide is added in an amount of 10 to 60% in excess of the stoichiometric amount. Acid lead is related to the so-called liquid phase sintering mechanism in which excess lead oxide generates a liquid phase during g8 sintering and promotes sintering. However, according to this method, excessive lead oxide remained in the sintered body, causing problems in electrical properties and mechanical properties. In addition, liquid phase sintering generally causes rapid sintering shrinkage in the initial stage of sintering, which causes the pores in the sintered body to become trapped and become residual pores, which has the disadvantage that the final density of the sintered body cannot be increased. Ta. This is limited to the example of lead zirconate titanate containing lead [! This is a common problem when producing compound sintered bodies.

(問題点を解決するだめの手段〕 本発明は液相焼結機構によって焼結を促進し、かつ鉛含
有量が化学量論量に近い組成の最終焼結密度の高い鉛含
有酸化物焼結体が得られる易焼結性鉛含有酸化物粉体及
びその製造方法を提供しようとするものである。
(Another Means to Solve the Problems) The present invention promotes sintering by a liquid phase sintering mechanism, and produces a lead-containing oxide sinter with a composition in which the lead content is close to stoichiometric and has a high final sintering density. The object of the present invention is to provide an easily sinterable lead-containing oxide powder and a method for producing the same.

本発明の第1の発明は各種金属酸化物粉体の表面に酸化
鉛層又は各種金属酸化物粉体の内部より鉛含有量が大な
る表面層を有する易焼結性鉛含有酸化物粉体であり、そ
の第2の発明は鉛含有酸化物粉体を製造するにあたり、 fal  鉛含有酸化物粉体を構成する各種金属を含有
する酸化物又はその前駆体の粉体を調整する工程・ (bl  前記(a)工程で得られた粉体に目的する相
を形成する債の鉛化合物粉末を添加混合する工程、(C
1前記(bl工程で得られた粉末混合物を温度400〜
1200°Cで焼成する工程の各工程を結合してなる鉛
含有酸化物粉体の製造方法である。
The first aspect of the present invention is an easily sinterable lead-containing oxide powder having a lead oxide layer on the surface of the various metal oxide powders or a surface layer having a higher lead content than the inside of the various metal oxide powders. The second invention is a step of preparing powder of an oxide or its precursor containing various metals constituting the lead-containing oxide powder in producing the lead-containing oxide powder. bl A step of adding and mixing a lead compound powder that forms the desired phase to the powder obtained in step (a), (C
1. The powder mixture obtained in the above (bl step) is heated to a temperature of 400~
This is a method for producing lead-containing oxide powder by combining each step of firing at 1200°C.

以下本発明をさらに詳しく説明する。まず第1の発明か
ら順に説明する。
The present invention will be explained in more detail below. First, the first invention will be explained in order.

本発明において易焼結性鉛含有酸化物粉体とは、粉体試
料全体の組成を化学分析、螢光エックス糎分粧等の手段
により分析した鉛含有量が目的と丁体表面を分析して粉
体表面に酸化鉛層又は粉体内部より鉛含有量の大なる表
面層を有することを特徴とする粉体である。粉体表面の
分所方法としてはエックス線光電子分光法、電子プロー
ブマイクロアナリシス、オージェ電子分光法、走査型オ
ージェ電子顕微鏡、粒子線励起エックス線分光法、イオ
ン散乱分光法、角度分解エックス線光電子分光法、うず
フォード後方散乱分光法、原子ゾローブ電界イオン顕微
鏡、二次イオン散乱分光法、イオンマイクロプローブi
i−分析法、などの分光学的手法などが挙げられる。こ
れらの測定法はいずれも用いることができるが、特にエ
ックス嶽光電子分光測定器を用いる方法が好ましい。
In the present invention, easily sinterable lead-containing oxide powder refers to the lead content determined by analyzing the composition of the entire powder sample by means such as chemical analysis or fluorescent X-ray dispersion. This powder is characterized by having a lead oxide layer on the surface of the powder or a surface layer having a higher lead content than the inside of the powder. Powder surface spotting methods include X-ray photoelectron spectroscopy, electron probe microanalysis, Auger electron spectroscopy, scanning Auger electron microscopy, particle beam excited X-ray spectroscopy, ion scattering spectroscopy, angle-resolved X-ray photoelectron spectroscopy, and vortices. Ford backscattering spectroscopy, atomic Zorobe field ion microscopy, secondary ion scattering spectroscopy, ion microprobe i
Examples include spectroscopic methods such as i-analysis method. Although any of these measurement methods can be used, a method using an X-ray photoelectron spectrometer is particularly preferred.

また表面層か結晶相である場合には、特に粉末エックス
渕回折による分析が好ましい。本発明の粉体な粉末エッ
クス線回折によって測定した結果が表面層の結晶相たと
えば酸化鉛又は粉体内部よりも鉛含有量の多い結晶相の
回折ピーク強度が目的とする鉛含有酸化物粉体組成中の
鉛の丁ぺてが酸化鉛又は鉛含有量の多い相である場合に
測定される酸化鉛又は鉛含有量の多い相の回折ピーク強
度の0.01〜30%、さらに好ましくは0.1〜10
%である鉛含有酸化物粉体である。また、該粉体の粉体
内部より鉛含有量が大きい表面層の厚みの必要量は、焼
結条件によっても異なる0たとえば焼結時の雰囲気中の
鉛分圧、昇温速度、炉成温度と時間などによって異なる
が、一般的には焼結条件下で表面層が液相となり、かつ
焼成後表面層が粉体内部に拡散して、均一で目的とする
相である鉛含有酸化物焼結体となる表面層の厚みが好ま
しく粉体径の1〜80%であるものが好ましい。
When the surface layer is a crystalline phase, analysis by powder X-Fuchi diffraction is particularly preferred. The diffraction peak intensity of the crystalline phase in the surface layer, such as lead oxide, or the crystalline phase with a higher lead content than in the interior of the powder, as measured by powder X-ray diffraction of the present invention, indicates the desired lead-containing oxide powder composition. 0.01 to 30%, more preferably 0.01 to 30% of the diffraction peak intensity of the lead oxide or lead-rich phase measured when the lead content is lead oxide or a lead-rich phase. 1-10
% lead-containing oxide powder. In addition, the required thickness of the surface layer of the powder, which has a higher lead content than the inside of the powder, varies depending on the sintering conditions. Although it varies depending on the time and other factors, the surface layer generally becomes a liquid phase under sintering conditions, and after sintering, the surface layer diffuses into the powder to form a uniform lead-containing oxide sintered phase, which is the desired phase. The thickness of the surface layer that becomes the aggregate is preferably 1 to 80% of the powder diameter.

ブた、どのような微構造の鉛含有焼結体を目的とするか
Kよっても異なる。たとえば粒界に酸化鉛層又は鉛含有
量の多い相が必要な場合には、表面層の厚みを大きくし
、焼成条件としては焼成時間を短くする。逆に粒界に酸
化鉛層又は鉛含有量の多い相なくしたい場合には、表面
層厚みをIトさくし焼成時間を長めにする手段などが挙
げられる。
However, it also depends on what kind of microstructure the lead-containing sintered body is intended for. For example, if a lead oxide layer or a phase with a high lead content is required at grain boundaries, the thickness of the surface layer is increased and the firing time is shortened as the firing conditions. On the other hand, if it is desired to eliminate a lead oxide layer or a phase with a high lead content at the grain boundaries, methods include reducing the thickness of the surface layer and increasing the firing time.

次に第2の発明について説明する。第2の発明は3工程
からなるものである。以下順に各工程について説明する
Next, the second invention will be explained. The second invention consists of three steps. Each step will be explained below in order.

本発明で用いる鉛含有酸化物粉体を構成する各種金属を
含有する酸化物粉体とは、各種金属の酸化物の混合物又
は各種金属の固溶体又は化合物であり、各種金属が均一
に分布したものが好ましく、粒径が小さく粒径分布の狭
いものが好ましい。
The oxide powder containing various metals constituting the lead-containing oxide powder used in the present invention is a mixture of oxides of various metals or a solid solution or compound of various metals, in which various metals are uniformly distributed. is preferable, and those with small particle size and narrow particle size distribution are preferable.

また、前ゐ体粉体とは鉛含有化合物との反応時に、酸化
物となるものであり、例えば水酸化物、炭酸塩、シュウ
酸塩、ギ酸塩等およびこれらの混合物が挙げられ、酸化
物となった際に前記のように各種金属が均一に分布した
ものを形成づ−るものが好ましく、粒径か/」1さく、
粒径分布のせまいものか好ましい。鉛含有酸化物粉体を
構成する各種金属を含有する酸化物又はその前駆体の粉
体の製法としては、特に限定されるものではなく、公九
の方法が用いられるが、各種金属が均一に分布したもの
を形成し、粒径が小さい粒径分布のせまいものが得られ
る方法が好ましい。これらの製法としては気相法、液相
法及び固相法に大別される。
Precursor powders are those that become oxides when reacting with lead-containing compounds, such as hydroxides, carbonates, oxalates, formates, etc., and mixtures thereof. It is preferable to form particles in which various metals are uniformly distributed as described above when the particle size is 1.
Preferably, the particle size distribution is narrow. The method for producing the powder of oxides containing various metals or their precursors constituting the lead-containing oxide powder is not particularly limited, and the Kokyu method is used, but it is possible to uniformly distribute the various metals. Preferred is a method in which a particle with a narrow particle size distribution is obtained by forming a particle with a small particle size distribution. These manufacturing methods are broadly classified into gas phase methods, liquid phase methods, and solid phase methods.

まず気相法から順に説明すると、蒸発−凝縮法と気相化
学反応法がある。前者は、アークあるいはプラズマジェ
ットなどを用いて原料を高温に加熱して気化させ、次い
でアークやプラズマフレームの大きな温度勾配によって
急冷し粒子状に凝集させる方法である。後者の気相化学
反応法は揮発性金属化合物蒸気の化学反応によるもので
、単一化学種の熱分解や2種以上の化学種間の反応など
がある。
Starting with the gas phase method, there are the evaporation-condensation method and the gas phase chemical reaction method. The former is a method in which the raw material is heated to a high temperature using an arc or plasma jet to vaporize it, and then rapidly cooled by the large temperature gradient of the arc or plasma flame to coagulate it into particles. The latter gas phase chemical reaction method is based on a chemical reaction of volatile metal compound vapor, and includes thermal decomposition of a single chemical species and reaction between two or more chemical species.

また、液相法としては、例えば溶湯IIJl’ 耘法や
フ0ラズマジェット法などの融成から製造する方法、沈
殿生成や溶媒除去による浴i′D’ら製造する方法があ
る。
Further, as liquid phase methods, there are, for example, a method of manufacturing by melting, such as a molten metal IIJl' method or a plasma jet method, and a method of manufacturing from a bath i'D' by precipitation formation or solvent removal.

さらに説明すると、沈殿□生成による方法としては共沈
法、均−沈殿法、アルコキシド法、電%4法などがあり
、溶媒除去による方法には噴霧乾燥法、凍結乾燥法、熱
ケロ七ン法、液体乾燥法、エマルジョン法などがあり、
沈殿生成と溶媒除去法との中間的な方法であるいわゆる
ゾルゲル法がある。
To explain further, methods that involve precipitation □ formation include the coprecipitation method, homo-precipitation method, alkoxide method, and electrolyte method, while methods that involve solvent removal include spray drying, freeze-drying, and hot kerosene method. , liquid drying method, emulsion method, etc.
There is a so-called sol-gel method, which is an intermediate method between precipitation generation and solvent removal methods.

これらの溶液としては、鉛含有酸化物粉体を構成する各
程合がを含■する溶成、たとえば酸溶液(硝酸溶液、塩
酸溶液)、アルコキシ1浴液などが挙げられ、!た沈殿
剤としてはアルカリ溶液、水、アルコール水浴液、各種
塩及びその溶液たとえば炭酸塩、シュウI!!2塩、ギ
酸塩などが挙げられる。
Examples of these solutions include aqueous solutions containing various amounts constituting the lead-containing oxide powder, such as acid solutions (nitric acid solution, hydrochloric acid solution), alkoxy 1 bath solution, etc. Examples of precipitants include alkaline solutions, water, alcohol bath solutions, various salts and their solutions, such as carbonates, and ShuI! ! Examples include di-salts and formates.

また面相法としては鉛含有酸化物を構成する金属の酸化
物や炭酸塩などの各種塩の混合粉砕及び仮焼による固相
反応をくり返し行なう方法がある。
As a surface phase method, there is a method in which a solid phase reaction is repeatedly carried out by mixing and pulverizing various salts such as metal oxides and carbonates constituting the lead-containing oxide and calcining them.

さらに以上述べた各種方法やこれらの組合せによる方法
によって鉛含有酸化物粉体をa成する各種金属を含む酸
化物又はその前駆体から製造したものであっても本発明
の原1料として用いられる。
Furthermore, even products produced from oxides containing various metals or precursors thereof that form the lead-containing oxide powder by the various methods described above or a combination thereof may be used as the raw material of the present invention. .

本発明で用いる鉛含有化合物としてはg化、鉛、炭酸鉛
、環基性炭酸鉛、水酸化鉛、ンユウ酸鉛、ギ酸鉛、塩化
鉛、フン仕始、等が挙げられる。
Examples of the lead-containing compound used in the present invention include glutin, lead, lead carbonate, cyclic lead carbonate, lead hydroxide, lead oxalate, lead formate, lead chloride, and the like.

本発明における鉛含有酸化物粉体をTf#放する各種金
戻を含有する酸化物又はその前駆体の粉体と鉛含有化合
物との反応方法としては鉛含有酸化物粉体を構成てる各
種金属を含有する酪化物又はその前駆体の粉体と鉛含有
化合物を乳鉢、ボールミル等の通常の混合方法で混合し
たのち高温処理することが享げられる。混合はできるだ
け均一となるように充分性なうことが好プしいが、混合
時に壽入する不純物の問題があるので、ボールミルの場
合であれば0.5〜12時間程度か適尚である。
In the present invention, the method of reacting the lead-containing oxide powder with a lead-containing compound and the powder of an oxide or its precursor containing various metals that release Tf# includes various metals constituting the lead-containing oxide powder. It is possible to mix a powder of a butyride containing lead or its precursor and a lead-containing compound using a conventional mixing method such as a mortar or ball mill, and then perform a high temperature treatment. It is preferable that the mixing be as thorough as possible to make it as uniform as possible, but since there is the problem of impurities being introduced during mixing, in the case of a ball mill, about 0.5 to 12 hours is appropriate.

高温処理の方法は具体的には、通常の電気炉等で仮焼す
ることが挙げられる。この際一般に鉛含有酸化物を仮焼
するときに行なわれるように、鉛の蒸発を防止するため
、密封状態とするか、鉛雰囲気下で行なうことが好まし
い。仮焼条件は仮焼後前述のように粉体表面層を分析す
るか、もしくは粉末エックス源回折により評価すること
によって決定される。一般的には仮焼温度は400〜1
200℃好ましくは600〜1000℃である、このよ
うに限定した理由は温度400℃未満では混合粉末の固
相反応が不十分であり、また1200℃をこえると粉末
が粗大化するからである。
Specifically, the method of high-temperature treatment includes calcination in a normal electric furnace or the like. At this time, in order to prevent evaporation of lead, as is generally done when calcining a lead-containing oxide, it is preferable to carry out the calcining in a sealed state or in a lead atmosphere. The calcination conditions are determined by analyzing the powder surface layer after calcination as described above or by evaluating it by powder X-source diffraction. Generally, the calcination temperature is 400-1
200°C, preferably 600 to 1000°C. The reason for this limitation is that if the temperature is less than 400°C, the solid phase reaction of the mixed powder will be insufficient, and if it exceeds 1200°C, the powder will become coarse.

また鉛含有酸化物粉体を構成する各種金属を含有する酸
化物又はその前駆体の粉体と鉛含有化合物との反応方法
として鉛含有酸化物粉体を構成する各種金属を含有する
芦厳化物又はその前駆体の粉体と鉛を含む溶液、たとえ
ば鉛イオンを含む酸性水溶液や鉛アルコキシド溶液とを
、混合後沈殿剤、たとえばアンモニア水、炭酸アンモニ
ウム、シュウ酸アンモニウム、アルコール水溶液又は水
と反応させる。ことにより鉛含有酸化物粉体を構成する
各種金属を含有する酸化物又はその前駆体の粉体と鉛含
有化合物との混合物沈殿を得て洗浄、ろ過等の通常の沈
殿物の処理後乾燥して高温処理する方法も挙げられる。
In addition, as a method of reacting a powder of an oxide containing various metals constituting the lead-containing oxide powder or a powder of its precursor with a lead-containing compound, an ashigan compound containing various metals constituting the lead-containing oxide powder is used. Or, after mixing the powder of its precursor and a solution containing lead, such as an acidic aqueous solution containing lead ions or a lead alkoxide solution, the mixture is reacted with a precipitant, such as aqueous ammonia, ammonium carbonate, ammonium oxalate, an aqueous alcohol solution, or water. . By obtaining a mixture precipitate of a powder of an oxide or its precursor containing various metals constituting the lead-containing oxide powder and a lead-containing compound, the precipitate is washed, filtered, etc., and then dried. Another example is a method of high-temperature treatment.

高温処理方法及び条件は前記と同1様である、 (実施例) 以下さらに実施例を挙げて詳しく説明する。The high temperature treatment method and conditions are the same as above. (Example) The present invention will be further described in detail below with reference to Examples.

実施例1 酸化ジルコニウムと酸化チタンとをジルコニウムとチタ
ンの原子比がLl、52 : 0.48となるように配
合しボールミルによる湿式粉砕と温度900”Cでの仮
焼をくり返して、ゾルコニウムとチタンとを含む酸化物
粉体を得た。これを粉末Xa回折により測定したところ
Z;、+TiO4相であった、この゛zr’rio、粉
末にPb (ZY0.52 Ti0−48)03組成と
なるように一酸仕始を加えて混合した後、温度800℃
1時間仮焼した。この粉末について粉末xMA回折によ
り調べたところ、P b (Zy t T i )03
相の他に酸化鉛相のピークが見られ、そのピーク強度は
Pb(ZY0−52 Tio、4E1 )03組成とな
るように一酸仕始を加え混合した時潰で測定した酸化鉛
相のピーク強度の約5%に相当していた。またこの粉末
を組成分析したところ、Pb1−ool(Zyo−51
9Tie−481)03であり、鉛含有量はほぼ化学童
論量であった、また、この粉末を10001j/cn7
の圧力で成形した試料について熱収縮曲線を測定した。
Example 1 Zirconium oxide and titanium oxide were mixed so that the atomic ratio of zirconium to titanium was Ll, 52:0.48, and wet pulverization with a ball mill and calcination at a temperature of 900"C were repeated to form zirconium and titanium. An oxide powder containing the following was obtained.When measured by powder Xa diffraction, it was found to be a +TiO4 phase. After adding monoacid and mixing, the temperature is 800℃.
It was calcined for 1 hour. When this powder was examined by powder xMA diffraction, it was found that P b (Zy t T i )03
In addition to the phase, a peak of the lead oxide phase was observed, and the peak intensity was the same as the peak of the lead oxide phase measured by adding monoacid and mixing to obtain the Pb(ZY0-52 Tio, 4E1)03 composition. This corresponded to about 5% of the strength. In addition, when this powder was analyzed for composition, it was found that Pb1-ool (Zyo-51
9Tie-481) 03, and the lead content was approximately the same as chemical children's theoretical amount.
The heat shrinkage curve was measured for a sample molded at a pressure of .

その結果、図1面に示すように700℃付近から収縮か
開始している。またこの粉末を1DOO[1/−の成形
圧力で20賜φのディスク状に成形し、温度950’Q
ろ、pb(zr、’ri、)o3単相であり酸化鉛相の
ピーク(工認められず、均一な焼結体であった。また、
エックスa元雷子分光法で粉末の深さ方向の鉛の含有量
を測定したところ、表面付近が非常に多く深さ方向に向
って鉛含有量・が低下していることかわ力・ ゝつた。
As a result, as shown in FIG. 1, shrinkage started around 700°C. In addition, this powder was molded into a disc shape of 20mmφ at a molding pressure of 1DOO[1/-, and the temperature was 950'Q.
ro, pb(zr,'ri,)o3 was a single phase with a peak of the lead oxide phase (no cracks were observed, and it was a uniform sintered body.
When we measured the lead content in the depth direction of the powder using X-A lightning spectroscopy, we found that the lead content was very high near the surface and decreased in the depth direction. .

丁なわち、粉体の表面付近に鉛含有量の多い層があるこ
とがわかる。
It can be seen that there is a layer with high lead content near the surface of the powder.

比e例1 融化ジルコニウム、酸化チタン、酸化鉛をPb(Zro
、sz Tio、4s )031m成となるように配合
しボールミルによる湿式粉砕及び900℃での仮焼をく
り返してPb(Z’?0.52 Tio、48)03粉
末を得た。
Ratio example 1 Fused zirconium, titanium oxide, and lead oxide were mixed with Pb (Zro
, sz Tio, 4s)031m, wet milling in a ball mill and calcination at 900°C were repeated to obtain Pb(Z'?0.52 Tio, 48)03 powder.

この粉木乞吻末xH回折により調べたところPb(ZY
、Ti)03単相でありPbo相のピークは見られなか
った。この粉床を組成分析したところ?bx−oo1c
Zro、519Tie、481)03であり、鉛含有量
はほぼ化学量論Cであった。また実施例1と同様の方法
でdll+定した。その熱収縮曲線は山面に示すように
900’C4・y近から収縮を開始している。この温度
は実施例1よつも200°C品い。また実施例1と同様
のム5件950℃1時間焼結したところ焼結密度5.0
197’a”であった。
When examined by xH diffraction at the end of this powdered tree, Pb(ZY
, Ti)03 single phase, and no Pbo phase peak was observed. Did you analyze the composition of this powder bed? bx-oo1c
Zro, 519Tie, 481) 03, and the lead content was approximately stoichiometric C. In addition, dll+ was determined in the same manner as in Example 1. The heat shrinkage curve starts shrinking near 900'C4·y, as shown by the peak. This temperature was 200°C higher than in Example 1. In addition, when five pieces of the same material as in Example 1 were sintered at 950°C for 1 hour, the sintered density was 5.0.
It was 197'a''.

焼結体を粉砕して粉末XSJ回折を行なったところPb
(Zr、Ti)03単相であった、またエックス線光電
子分光法で粉末の深さ方向の鉛の含有量°を測定したと
ころ表面付近も内部も鉛含有量に大差はなく表面付近に
鉛含臀片の多い層はないことがわかった。
When the sintered body was crushed and powder XSJ diffraction was performed, Pb
(Zr, Ti)03 was a single phase, and when the lead content in the depth direction of the powder was measured using X-ray photoelectron spectroscopy, there was no significant difference in the lead content near the surface and inside. It was found that there was no layer with many buttock pieces.

実施例2 実施例1で用いたものと同一のz、’r:to、粉末を
硝酸鉛水溶液(金arm度1.22mo17))に”Z
)、0.52TiO−4803組成となるように入れ攪
拌混合した。得られた懸濁液を炭酸アンモニウムでpH
8に保持した槽内に滴下しスラリー状物を得た。これを
洗浄ろ鍋、乾燥後1度800℃で1時間仮焼した。得ら
れた粉末の熱収縮曲稼は実施例1と一様に700’C句
近から収縮が開始した。温度950℃1時間焼結したと
ころ焼結密度7.78.S’/嗅3であり実施例1と同
様の特性をもった粉体であった、 実施例3 酸化マグネシウム、酸化ニオブ、酸化チタン、酸化ジル
コニウム、二酸化マンガンを組成比(Mg”/3 Nb
”/sン0・4375 Ti0 ・4375 zyo−
125”0−035  と なるように混合後、温度9
00℃3時間仮焼後ボールミルで湿式粉砕し、さらに温
度900℃3時間仮焼を行なった後、酸化鉛を組成比P
b1.oo (Mgよ/SNb″’/3)0・4375
 Tio・4375 Zro・125  となるように
混合し・温度850℃1時間仮焼して得られた粉末につ
いて粉末X蔵回折により調べたところ、ペロブスカイト
相目と極少量の3 Pb O−2Nb2O5相ノピーク
か見られた。、組成発信°の結果、分析誤差内でPb(
Mgl/3N+)”/3) o−4375Tie、43
75 Zro9.2s 03+0.035Mn02組成
であった。
Example 2 The same z, 'r:to, powder as used in Example 1 was added to a lead nitrate aqueous solution (gold arm degree 1.22 mo17)).
) and 0.52TiO-4803 and mixed with stirring. The resulting suspension was adjusted to pH with ammonium carbonate.
The mixture was dropped into a tank maintained at a temperature of 8 to obtain a slurry-like material. This was washed and dried in a filter pot, and then calcined once at 800°C for 1 hour. The heat shrinkage curve of the obtained powder was similar to that of Example 1, and the shrinkage started around 700'C. When sintered at a temperature of 950°C for 1 hour, the sintered density was 7.78. Example 3 Magnesium oxide, niobium oxide, titanium oxide, zirconium oxide, and manganese dioxide were mixed at a composition ratio (Mg''/3Nb
”/sun0・4375 Ti0・4375 zyo-
After mixing so that it becomes 125"0-035, the temperature is 9
After calcination at 00°C for 3 hours, wet grinding in a ball mill and further calcination at 900°C for 3 hours, lead oxide was reduced to a composition ratio of P.
b1. oo (Mgyo/SNb''/3) 0.4375
Tio・4375 Zro・125 was mixed and calcined for 1 hour at a temperature of 850°C. The resulting powder was examined by powder X-ray diffraction, and it was found that a perovskite phase and a very small amount of 3Pb O-2Nb2O5 phase peak were observed. I was seen. , as a result of composition transmission °, Pb(
Mgl/3N+)”/3) o-4375Tie, 43
75 Zro9.2s 03+0.035Mn02 composition.

!だエックス0光電子分光法で611]定したところ粉
床の表面付近の鉛含有iが多いことがわかった、比較圀
2 劇化マグネシウム、酸化ニオブ、酸化チタン、酸化ジル
コニウム、二識化マンガン、酸化鉛を実施例3と同一組
成Pb(入(gl/s IJb”/3)。−4375T
i。−4375Zr−o−us 03 +0.035 
MnO2トナルヨ5 FCinn後後温度900℃3時
間仮焼後ボールミルで湿式粉砕し、さらに温度900°
06時間欧焼して得られた粉末について粉末x嶽回折に
より調べたところ実施例3とほぼ同様であり、ペロブス
カイト相と極少量の3 pb O,2ムb205相のピ
ークが見られた。組成分析の結果分析誤差内でPb(M
gl/3Nb″/3 )。、43フ5Ti0.4375
 zr 04125 o3+Q、 035 Mn○2組
成であツタ。またエックス嶽光電子分元法の副冗では、
粉末表面伺近に鉛含有ゴの多いことは認められなかった
! 611] was determined by photoelectron spectroscopy, and it was found that there was a large amount of lead near the surface of the powder bed. The lead was replaced with Pb (containing (gl/s IJb"/3) having the same composition as in Example 3. -4375T
i. -4375Zr-o-us 03 +0.035
MnO2 Tonaruyo 5 After FCinn, calcining at 900°C for 3 hours, wet grinding in a ball mill, and further heating at 900°C.
When the powder obtained by sintering for 06 hours was examined by powder x-ray diffraction, it was found to be almost the same as in Example 3, with the peaks of the perovskite phase and a very small amount of 3 pb O, 2 mb205 phase being observed. As a result of compositional analysis, Pb(M
gl/3Nb″/3)., 43f5Ti0.4375
zr 04125 o3+Q, 035 Mn○2 composition with ivy. Also, in the subtext of X-take photoelectron spectroscopy,
It was not observed that there were many lead-containing particles near the powder surface.

熱収縮曲線は比較例1と同様であり実施例6よりも収縮
開始温度が200℃も高いことがわかった。
The heat shrinkage curve was similar to that of Comparative Example 1, and it was found that the shrinkage start temperature was 200° C. higher than that of Example 6.

!た950℃3時間焼結を行なったところ焼結密度5.
41 P /cjn、”であり実施例乙に比べてかなり
低い値でありほとんど焼結していなかった。
! After sintering at 950°C for 3 hours, the sintered density was 5.
41 P/cjn," which was considerably lower than that of Example B, and almost no sintering occurred.

実施例4 酸化マグネシウム、酸化ニオブ、酸化チタン、酸化ジル
コニウム、及び酸化マンガンの粉末をMg:Nb:Ti
:ZH:Mnのモル比を0.15 : 0.30 :0
.40 : 015 : 0.035となるように配合
し、ボールミルによる湿式粉砕及び温度900°Cでの
仮焼をくり返した。得られた粉末に酸化鉛をP’b(M
gl/3 Nb’/s)o、4s Tie、40 Zr
oo、s Os Mi成となるように力りえ混合後ニ度
900℃1時間仮焼して得られた粉末について粉末X線
回折により調べたところPb(Mg1/3 N1:l’
、/3)o−+s Tio・+o Zro−xs Os
固溶体相のピークの他に、酸化鉛相及びニオブ酸鉛相(
3Pb O,2Nb2o5)のピークか見られた。酸化
鉛相のピーク強度は、酸化鉛混合時漉で測定したピーク
強度の約3%に相当していた。またこの粉末を組成分析
したところ酸化鉛含有量はほぼ化学量論量であった。熱
収縮曲線を測定したところ700℃付近から収縮が開始
していることが分ったO またエックス祿光電子分光法で測定したところ、粉末の
表面に近いほど鉛含有量が多いことがわかった。
Example 4 Mg:Nb:Ti powders of magnesium oxide, niobium oxide, titanium oxide, zirconium oxide, and manganese oxide
:ZH:Mn molar ratio is 0.15:0.30:0
.. 40:015:0.035, wet milling with a ball mill and calcining at a temperature of 900°C were repeated. P'b (M
gl/3 Nb'/s) o, 4s Tie, 40 Zr
Pb(Mg1/3N1:1'
, /3) o-+s Tio・+o Zro-xs Os
In addition to the solid solution phase peak, lead oxide and lead niobate phases (
A peak of 3PbO, 2Nb2o5) was observed. The peak intensity of the lead oxide phase corresponded to about 3% of the peak intensity measured during sieving when mixing lead oxide. Further, compositional analysis of this powder revealed that the lead oxide content was approximately stoichiometric. When the heat shrinkage curve was measured, it was found that the shrinkage started at around 700°C.Also, when measured by X-ray photoelectron spectroscopy, it was found that the closer to the surface of the powder, the higher the lead content.

1050℃、2時間焼結を行なったところ焼結密度7.
72ノ/眞3の焼結体を得た。
After sintering at 1050°C for 2 hours, the sintered density was 7.
A sintered body of 72 mm/m3 was obtained.

熱収縮曲線は実施例1同様の曲線を示し、温度700℃
付近から収縮が開始していた。実施例1と同様の手法で
温度950℃、3時間焼結を行なったところ焼結密度7
.68り/臨3の焼結体を得たO 実施例5 酸化鉛、酸化ジルコニウム、劇化チタンを組成比Pb:
 z、 : Ti −0,98: 0.52 : 0.
48となるように配合しボールミルによる湿式粉砕及び
温度900℃での仮焼をくり返した。得られた粉末は粉
末xi回折で調べたところペロブスカイト相単相であっ
た。この粉末にさらに酸化鉛をpb :Zy−: Ti
 −1,00: 0.52 : 0.48組成となルヨ
うに加えて混合後800℃1時間仮焼を行なって得た粉
床の特性は実施例1と同様であった、(本発明の効果〕 本発明の効果を列記すると次のようになる。
The heat shrinkage curve showed the same curve as Example 1, and the temperature was 700°C.
Contraction had begun nearby. When sintering was performed at a temperature of 950°C for 3 hours using the same method as in Example 1, the sintered density was 7.
.. Example 5 Lead oxide, zirconium oxide, and titanium were mixed in the composition ratio Pb:
z, : Ti-0,98: 0.52: 0.
48, wet pulverization using a ball mill and calcination at a temperature of 900° C. were repeated. The obtained powder was examined by powder xi diffraction and was found to have a single perovskite phase. Further lead oxide was added to this powder as pb:Zy-:Ti
-1,00: 0.52: 0.48 composition, and the properties of the powder bed obtained by calcining at 800°C for 1 hour after mixing were the same as in Example 1 (the composition of the present invention). Effects] The effects of the present invention are listed as follows.

1)本発明品は低@焼成で高密度の焼結体が得られる。1) With the product of the present invention, a high-density sintered body can be obtained at low firing rates.

2)本発明法によれば収縮開始温度が低下する。2) According to the method of the present invention, the shrinkage start temperature is lowered.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例1と比較例1の粉末を成形した成
形体の温度と収縮との関係図である。 特許出願人 電気化学工業株式会社 手続補正書 昭和59年9月13日 昭和59年特許願第172425  号2、発明の名称 鉛含有酸化物粉体及びその製造方法 6、補正をする者 事件との関係  特許出願人 住所 東京都千代田区有楽町1丁目4番1号名称 (3
29)  電気化学工業株式会社明細書の発明の詳細な
説明の欄 5、補正の内容 5−1)明細書第15頁第9行と第10行との間に次の
文を加入する。 「 熱収縮曲線は実施例1同様の曲線を示し、実施例1
と同様の手法で温度950°C,3時間焼結を行なった
ところ焼結密度7.6s g/cIr?の焼結体を得た
。」 5−2)明細書第17頁第14行から第18行「熱収縮
曲線・・・得た。」を削除する0 手続補正書 昭和59年10月26日 特許庁長官  志 賀   学 殿 昭和59年特許願第172425号 2、発明の名称 鉛含有酸化物粉体及びその製造方法 3、補正をする者 事件との関係  特許出願人 住所 東京都千代田区有楽町1丁目4番1号名称 (6
29)電気化学工業株式会社明細書の発明の詳細な説明
の欄 5、補正の内容 明細書第18頁第8行と第9行との間に次の文を加入す
る。 「実施例6 酸化マグネシウム、酸化ニオブ、酸化チタン、酸化ゾル
コニウム、二酸化マンガンを組成比 (Mg  ’A 
 Nb%)o−+37s     0−4375   
0.125”0.035となるように混合後、温度95
0’05時間仮焼後ボールミルで10時時間式解砕しさ
らに前記仮焼及び解砕を2回くり返して得られた粉末9
.8056 &に酸化鉛25.52449を添加混合し
780℃1時間仮焼を行なった。得られた粉末について
粉末X線回折により調べたところペロブスカイト相と酸
化鉛相のピークが見られそのピーク強度は酸化鉛を加え
混合した時点で測定した酸化鉛相のピーク強度の0.1
1に相当していた。またこの粉末をIDDOICg/i
の圧力で成形した20Uφのディスク状に成形し温度9
50°01時間焼結を行なったところ焼結密度7.78
.Mの3であった。またこの粉末を組成分析したところ
酸化鉛含有量はほぼ化学量論量であった。 熱収縮曲線を測定したところ実施例1同様700°C付
近から収縮が開始していることが分った。またエックス
線光電子分光法で測定警 したところ粉末の表面に近いほど鉛含有量が多いことが
わかった。 実施例7 酸化マグネシウム、酸化ニオブ、酸化チタンを組成比(
Mg%コ〃)。、asTio、zとなるように混合後、
温度950°05時間仮焼後ボールミルで10時時間式
解砕しさらに前記仮焼及び解砕72回(り返して得られ
た粉:* 9.4284 、Fに酸化鉛22.5432
Iを添加混合し、温度780℃1時間仮焼な行なった。 得られた粉末について粉末X線回折により調べたところ
ペロブスカイト相と酸化鉛相のピークが見られそのぎ−
ク強度は酸化鉛を加え混合した時点で測定した酸化鉛相
のピーク強度の0.1%に相当していた。またこの粉末
を1000 kg/art2の圧力で20朋φのディス
ク状に成形しfu反950001時間焼結7行なったと
ころ焼結密度7.701/c−であった。またこの粉末
を組成分析したとこる酸化鉛含有量はほぼ化学量論量で
あった。熱収縮曲線を測定したところ実施例1同様70
0℃付近から収縮開始していた。 またエックス線光電子分光法で測定したところ粉末の表
面に近いほど鉛含有量が多いことがわかった。 手続補正書 昭和60年 1月18日 特許庁長官  志 賀   学 殿 1、事件の表示 昭和59年特許願第172425号 2、発明の名称 鉛含有酸化物粉体及びその製造方法 6、補正をする者 事件との関係  特許出願人 住所 東京都千代田区有楽町1丁目4番1号名称 (3
29)  電気化学工業株式会社明細書の発明の詳細な
説明の欄 5、補正の内容 5−1)明細書第7頁第1行と第2行との間に「各種金
属酸化物粉体を構成する金属の具体例としては、Zr、
 Ti、 Mg、 Nb、 Mn 、  Sn、  Z
n。 8″・A1護°・0°・0°・ゞ”で1】、・0”・S
r、  Ba、  Ca、  Cd、  In、  L
a、  Se、  Cu、Y。 Yb、Te、Reなどがあげられる。」を加入する。 5−2)明細書第9頁において、第8行「鉛含有化合物
」を「鉛含有化合物粉末」と訂正、第11行と第12行
との間に「鉛化合物粉末の粒径は、鉛含有酸化物粉体を
構成する各種金属を含有する酸化物、又はその前駆体の
粉体の粒径によっても異なるが、細かいものが好ましく
、具体的には15μm以下、さらに好ましくは5μm以
下さらに好ましくは1μm以下である。」を加入する。 手続ネ市−田1鼎 (自発) 昭和60年11月79日
The drawing is a diagram showing the relationship between temperature and shrinkage of molded bodies obtained by molding the powders of Example 1 of the present invention and Comparative Example 1. Patent Applicant: Denki Kagaku Kogyo Co., Ltd. Procedural Amendment September 13, 1980 Patent Application No. 172425 of 1980 2, Name of Invention Lead-containing oxide powder and its manufacturing method 6, Person making the amendment Related Patent Applicant Address 1-4-1 Yurakucho, Chiyoda-ku, Tokyo Name (3
29) Detailed explanation of the invention column 5 of Denki Kagaku Kogyo Co., Ltd. specification, content of amendment 5-1) The following sentence is added between lines 9 and 10 on page 15 of the specification. "The heat shrinkage curve shows a curve similar to Example 1, and
When sintering was performed at a temperature of 950°C for 3 hours using the same method as above, the sintered density was 7.6s g/cIr? A sintered body was obtained. 5-2) Delete "Heat shrinkage curve...obtained" from page 17, line 14 to 18 of the specification 0 Procedural amendment October 26, 1980 Director General of the Patent Office Manabu Shiga Tono Showa 1959 Patent Application No. 172425 2, Name of the invention Lead-containing oxide powder and its manufacturing method 3, Relationship with the amended person's case Patent applicant address 1-4-1 Yurakucho, Chiyoda-ku, Tokyo Name (6)
29) Add the following sentence between lines 8 and 9 of page 18 of the detailed description of the invention in the specification of Denki Kagaku Kogyo Co., Ltd., column 5 of the detailed description of the invention. Example 6 Composition ratio of magnesium oxide, niobium oxide, titanium oxide, zolconium oxide, and manganese dioxide (Mg 'A
Nb%) o-+37s 0-4375
After mixing to give 0.125" and 0.035, the temperature is 95
Powder 9 obtained by calcining for 0'05 hours, crushing in a ball mill for 10 hours, and repeating the above calcining and crushing twice.
.. 8056& was mixed with 25.52449 lead oxide and calcined at 780°C for 1 hour. When the obtained powder was examined by powder X-ray diffraction, peaks of the perovskite phase and the lead oxide phase were observed, and the peak intensity was 0.1 of the peak intensity of the lead oxide phase measured at the time when lead oxide was added and mixed.
It was equivalent to 1. Also, use this powder as IDDOICg/i
Molded into a 20Uφ disc shape at a pressure of 9.
After sintering at 50° for 1 hour, the sintered density was 7.78.
.. It was M3. Further, compositional analysis of this powder revealed that the lead oxide content was approximately stoichiometric. When the heat shrinkage curve was measured, it was found that the shrinkage started at around 700°C as in Example 1. Furthermore, measurements using X-ray photoelectron spectroscopy revealed that the closer the powder was to the surface, the higher the lead content. Example 7 Magnesium oxide, niobium oxide, and titanium oxide were mixed in the composition ratio (
Mg% co〃). After mixing so that , asTio, z,
After calcining at a temperature of 950° for 5 hours, it was crushed in a ball mill for 10 hours, and then the calcining and crushing were repeated 72 times (the powder obtained by repeating the calcining and crushing: *9.4284, lead oxide in F was 22.5432
I was added and mixed and calcined at a temperature of 780°C for 1 hour. When the obtained powder was examined by powder X-ray diffraction, peaks of perovskite phase and lead oxide phase were observed.
The strength was equivalent to 0.1% of the peak strength of the lead oxide phase measured at the time when lead oxide was added and mixed. When this powder was molded into a disk shape of 20 mm diameter under a pressure of 1000 kg/art2 and sintered for 7 times for 950001 hours, the sintered density was 7.701/c-. Further, compositional analysis of this powder revealed that the lead oxide content was approximately stoichiometric. When the heat shrinkage curve was measured, it was 70 as in Example 1.
Shrinkage started around 0°C. Furthermore, measurements using X-ray photoelectron spectroscopy revealed that the closer the powder was to the surface, the higher the lead content. Procedural amendment January 18, 1985 Manabu Shiga, Director General of the Patent Office1, Indication of the case Patent Application No. 172425 of 19822, Name of the invention Lead-containing oxide powder and its manufacturing method6, Amendments made Relationship with the case Patent applicant address 1-4-1 Yurakucho, Chiyoda-ku, Tokyo Name (3
29) Denki Kagaku Kogyo Co., Ltd. specification column 5, detailed explanation of the invention, contents of amendment 5-1) Between the first and second lines of page 7 of the specification, “various metal oxide powders” Specific examples of the constituent metals include Zr,
Ti, Mg, Nb, Mn, Sn, Z
n. 8″・A1 小°・0°・0°・ゞ”で1】、・0”・S
r, Ba, Ca, Cd, In, L
a, Se, Cu, Y. Examples include Yb, Te, and Re. ” to join. 5-2) On page 9 of the specification, line 8 “Lead-containing compound” is corrected to “Lead-containing compound powder,” and lines 11 and 12 are corrected to read “The particle size of lead compound powder is Although it varies depending on the particle size of the oxide containing various metals constituting the oxide powder or the powder of its precursor, fine particles are preferable, specifically 15 μm or less, more preferably 5 μm or less. is 1 μm or less.” is added. Procedure Neichi-Ten1ding (Voluntary) November 79, 1985

Claims (1)

【特許請求の範囲】 1)各種金属酸化物粉体の表面に酸化鉛層又は各種金属
酸化物粉体の内部より鉛含有量が大なる表面層を有する
易焼結性鉛含有酸化物粉体。 2)鉛含有酸化物粉体を製造するにあたり、(a)鉛含
有酸化物粉体を構成する各種金属を含有する酸化物又は
その前駆体の粉体を調整する工程、 (b)前記(a)工程で得られた粉体に目的する相を形
成する量の鉛化合物粉末を添加混合する工程、 (c)前記(b)工程で得られた粉末混合物を温度40
0〜1200℃で焼成する工程 の各工程を結合してなる鉛含有酸化物粉体の製造方法。
[Scope of Claims] 1) Easily sinterable lead-containing oxide powder having a lead oxide layer on the surface of various metal oxide powders or a surface layer having a higher lead content than the inside of the various metal oxide powders. . 2) In producing the lead-containing oxide powder, (a) the step of preparing powder of an oxide or its precursor containing various metals constituting the lead-containing oxide powder, (b) the step of (a) ) adding and mixing an amount of lead compound powder to form the desired phase to the powder obtained in step (c) heating the powder mixture obtained in step (b) above at a temperature of 40°C.
A method for producing lead-containing oxide powder, which combines the steps of firing at 0 to 1200°C.
JP59172425A 1984-08-21 1984-08-21 Lead-containing oxide powder and its preparation Granted JPS6153119A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59172425A JPS6153119A (en) 1984-08-21 1984-08-21 Lead-containing oxide powder and its preparation
FR8512527A FR2569398B1 (en) 1984-08-21 1985-08-20 PROCESS FOR THE PREPARATION OF AN OXIDE POWDER CONTAINING LEAD, POWDER OBTAINED BY THIS PROCESS AND ITS USE IN THE PREPARATION OF SINTERED BODIES AND ELECTRICAL AND OTHER ELEMENTS
KR8505997A KR900002982B1 (en) 1984-08-21 1985-08-20 Lead-containing oxide powder
DE19853529933 DE3529933A1 (en) 1984-08-21 1985-08-21 Lead-containing oxide powder, process for its production and its use
US07/012,103 US4812426A (en) 1984-08-21 1987-02-06 Lead-containing oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59172425A JPS6153119A (en) 1984-08-21 1984-08-21 Lead-containing oxide powder and its preparation

Publications (2)

Publication Number Publication Date
JPS6153119A true JPS6153119A (en) 1986-03-17
JPH0425207B2 JPH0425207B2 (en) 1992-04-30

Family

ID=15941730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59172425A Granted JPS6153119A (en) 1984-08-21 1984-08-21 Lead-containing oxide powder and its preparation

Country Status (1)

Country Link
JP (1) JPS6153119A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186220A (en) * 1985-02-13 1986-08-19 Natl Inst For Res In Inorg Mater Production of fine powder of lead-containing oxide
JPS61186221A (en) * 1985-02-13 1986-08-19 Natl Inst For Res In Inorg Mater Production of fine powder of lead-containing oxide
JPS61186223A (en) * 1985-02-13 1986-08-19 Natl Inst For Res In Inorg Mater Production of fine powder of dielectric material
JPS61186219A (en) * 1985-02-13 1986-08-19 Natl Inst For Res In Inorg Mater Production of lead-containing fine powder
JPS62138354A (en) * 1985-12-12 1987-06-22 電気化学工業株式会社 Manufacture of readily sinterable lead-containing oxide powder
JPS63239118A (en) * 1986-12-17 1988-10-05 Ngk Spark Plug Co Ltd Piezoelectric ceramics powder
US5399261A (en) * 1990-05-31 1995-03-21 Gie Anjou-Recherche Installation for the treatment of flows of liquids with monophase contactor and recirculating-degassing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725502A (en) * 1980-07-21 1982-02-10 Toshiba Mach Co Ltd Accumulator with automatic closing valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725502A (en) * 1980-07-21 1982-02-10 Toshiba Mach Co Ltd Accumulator with automatic closing valve

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186220A (en) * 1985-02-13 1986-08-19 Natl Inst For Res In Inorg Mater Production of fine powder of lead-containing oxide
JPS61186221A (en) * 1985-02-13 1986-08-19 Natl Inst For Res In Inorg Mater Production of fine powder of lead-containing oxide
JPS61186223A (en) * 1985-02-13 1986-08-19 Natl Inst For Res In Inorg Mater Production of fine powder of dielectric material
JPS61186219A (en) * 1985-02-13 1986-08-19 Natl Inst For Res In Inorg Mater Production of lead-containing fine powder
JPH0251847B2 (en) * 1985-02-13 1990-11-08 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho
JPH0255375B2 (en) * 1985-02-13 1990-11-27 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho
JPH0321487B2 (en) * 1985-02-13 1991-03-22 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho
JPS62138354A (en) * 1985-12-12 1987-06-22 電気化学工業株式会社 Manufacture of readily sinterable lead-containing oxide powder
JPS63239118A (en) * 1986-12-17 1988-10-05 Ngk Spark Plug Co Ltd Piezoelectric ceramics powder
US5399261A (en) * 1990-05-31 1995-03-21 Gie Anjou-Recherche Installation for the treatment of flows of liquids with monophase contactor and recirculating-degassing device

Also Published As

Publication number Publication date
JPH0425207B2 (en) 1992-04-30

Similar Documents

Publication Publication Date Title
Wang et al. Synthesizing nanocrystalline Pb (Zn1/3Nb2/3) O3 powders from mixed oxides
Fuierer et al. La2Ti2O7 ceramics
JP5361190B2 (en) Fine powder lead zirconate titanate, titanium zirconate hydrate, zirconium titanate and process for producing the same
Gu et al. Single‐Calcination Synthesis of Pyrochlore‐Free 0.9 Pb (Mg1/3Nb2/3) O3–0.1 PbTiO3 and Pb (Mg1/3Nb2/3) O3 Ceramics Using a Coating Method
JPS61275108A (en) Preparation of powder of dielectric substance
JPH05330824A (en) Barium titanate and its production
Wang et al. Mechanochemically synthesized lead magnesium niobate
JPS6153119A (en) Lead-containing oxide powder and its preparation
Ali et al. Synthesis and Processing Characteristics of Ba0. 65Sr0. 35TiO3 Powders from Catecholate Precursors
JPH0159967B2 (en)
JPS6153113A (en) Production of powdery raw material of easily sintering perovskite and its solid solution by wet process
US6592805B1 (en) Method for producing sintered electroceramic materials from hydroxide and oxalate precursors
US5308807A (en) Production of lead zirconate titanates using zirconia sol as a reactant
JP3710100B2 (en) Manufacturing method of oxide piezoelectric material
KR100648862B1 (en) Method of producing amorphous Strontium titanate precursor
Junmin et al. Synthesizing 0.9 PZN–0.1 BT by mechanically activating mixed oxides
JPH01172256A (en) Raw power for producing easy-to-sinter lead
JPH0262496B2 (en)
JPH0159205B2 (en)
JPS62138354A (en) Manufacture of readily sinterable lead-containing oxide powder
WO2023032412A1 (en) Perovskite-type ceramic compact and method for manufacturing same
JPS62182114A (en) Production or readily sinterable lead-containing oxide powder
JPS61127624A (en) Production of perovskite type oxide solid
JPH01122907A (en) Production of perovskite oxide powder
JPS62138353A (en) Manufacture of readily sinterable lead-containing oxide powder