JPH0255375B2 - - Google Patents

Info

Publication number
JPH0255375B2
JPH0255375B2 JP60024440A JP2444085A JPH0255375B2 JP H0255375 B2 JPH0255375 B2 JP H0255375B2 JP 60024440 A JP60024440 A JP 60024440A JP 2444085 A JP2444085 A JP 2444085A JP H0255375 B2 JPH0255375 B2 JP H0255375B2
Authority
JP
Japan
Prior art keywords
powder
lead
solution
fine powder
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60024440A
Other languages
Japanese (ja)
Other versions
JPS61186221A (en
Inventor
Shinichi Shirasaki
Toichi Takagi
Kohei Ametani
Koichi Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2444085A priority Critical patent/JPS61186221A/en
Publication of JPS61186221A publication Critical patent/JPS61186221A/en
Publication of JPH0255375B2 publication Critical patent/JPH0255375B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は鉛含有酸化物微粉末の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing lead-containing oxide fine powder.

一般的に鉛含有酸化物には、強誘電材料・圧電
材料・焦電材料などエレクトロセラミツクスとし
て有用なものが多い。
In general, many lead-containing oxides are useful as electroceramics, such as ferroelectric materials, piezoelectric materials, and pyroelectric materials.

エレクトロセラミツク部品の小型化、高性能化
に伴い高純度で粒径分布の狭い反応性の高い微粉
末原料に対する要求が高まつている。たとえばド
クターブレード法などにより薄膜を形成する際に
は表面粗さなどを改善し、また膜の品質向上のた
めに優れた微粉末を必要とするからである。
As electroceramic parts become smaller and more sophisticated, there is an increasing demand for highly reactive fine powder raw materials with high purity and narrow particle size distribution. This is because, when forming a thin film by, for example, a doctor blade method, excellent fine powder is required to improve surface roughness and improve the quality of the film.

(従来の技術) 従来、鉛含有酸化物粉末の製造方法としては、
鉛含有酸化物を構成すべき各種金属を含有する酸
化物、炭酸塩などの化合物粉末を目的組成となる
ように秤量混合後、仮焼し、さらに粉砕仮焼によ
る固相反応を何度も繰り返して製造するいわゆる
固相法がある。
(Prior art) Conventionally, the method for producing lead-containing oxide powder is as follows:
Compound powders such as oxides and carbonates containing various metals that should constitute the lead-containing oxide are weighed and mixed to achieve the desired composition, then calcined, and the solid phase reaction by crushing and calcining is repeated many times. There is a so-called solid-phase method for manufacturing.

この方法では粉砕時に混入する不純物のために
高純度の粉末の製造が困難であつた。また粉砕に
よつて効率よく製造できる粉末の粒径は数μm程
度が限界であり、しかもその粒径も不均一となり
やすく反応性に劣る欠点があつた。
With this method, it is difficult to produce highly pure powder due to impurities mixed in during pulverization. Furthermore, the particle size of powder that can be efficiently produced by pulverization is limited to a few micrometers, and the particle size tends to be non-uniform, resulting in poor reactivity.

これらの固相法の欠点を改良する方法として溶
液を出発原料として粉末を製造する共沈法が知ら
れていて、この方法によれば、一般に粒度分布の
狭い微粉末が得られる利点はある。
As a method for improving these drawbacks of the solid phase method, a coprecipitation method is known in which a powder is produced using a solution as a starting material, and this method has the advantage that fine powder with a generally narrow particle size distribution can be obtained.

(発明が解決しようとする問題点) 鉛含有酸化物微粉末の調製に有用な共沈法の適
用についても、鉛含有酸化物を構成すべき金属の
うちに、溶液調製が困難であるか或いは溶液調製
が容易であつても溶液調製プロセスが複雑で高価
となる金属成分が含まれるために、工業的に有利
でない場合がある。
(Problems to be Solved by the Invention) Regarding the application of the coprecipitation method, which is useful for preparing lead-containing oxide fine powder, it is difficult to prepare a solution of some of the metals that should constitute the lead-containing oxide, or Even if the solution is easy to prepare, it may not be industrially advantageous because it contains metal components that make the solution preparation process complicated and expensive.

たとえばNb、Taといつた金属成分はふつ酸、
しゆう酸、酒石酸などにしか溶解しないところ、
ふつ酸は装置の材質など取扱上の問題点が多く、
またしゆう酸、酒石酸などは比較的高価である難
点がある。一方金属アルコキシド溶液はどは、合
成もはん雑で高価なものが多い。
For example, metal components such as Nb and Ta are fluoric acids,
It dissolves only in oxalic acid, tartaric acid, etc.
Fluoric acid has many problems in handling, such as the material of the equipment.
Furthermore, oxylic acid, tartaric acid, etc. have the disadvantage of being relatively expensive. On the other hand, metal alkoxide solutions are often complicated to synthesize and expensive.

また溶液調製の容易な金属成分であつても、沈
澱剤との反応時に生成する沈澱の溶解度が大きく
目的組成としにくい金属成分、たとえばMgなど
のアルカリ土類金属、Liなどのアルカリ金属など
も扱い難い。すなわちこれらの成分を沈澱させる
には沈澱PHを高めるなどのために多量の沈澱剤を
使用する必要があり工業的に有利でない。
In addition, even if the metal component is easy to prepare a solution, the solubility of the precipitate formed during the reaction with the precipitant makes it difficult to achieve the desired composition, such as alkaline earth metals such as Mg and alkali metals such as Li. hard. That is, in order to precipitate these components, it is necessary to use a large amount of precipitant in order to increase the pH of the precipitate, which is not industrially advantageous.

さらに沈澱PHを高めることにより却つて沈澱物
の溶解度が増す金属成分としては、たとえばAl、
Znなどの両性金属などがあげられる。
Further, examples of metal components that increase the solubility of the precipitate by increasing the precipitate pH include Al,
Examples include amphoteric metals such as Zn.

以上のべたように共沈法の適用についても、鉛
含有酸化物を構成すべき金属のすべてに共通した
沈澱条件とすることが困難な場合が多いことが、
従来の技術上の問題点として指摘され、その解決
を図ることが本発明の目的である。
As mentioned above, when applying the coprecipitation method, it is often difficult to set precipitation conditions common to all the metals that should constitute the lead-containing oxide.
This has been pointed out as a problem in the conventional technology, and it is an object of the present invention to solve the problem.

(問題点を解決するための手段) 発明者らは、鉛含有酸化物を構成すべき鉛以外
の各種金属成分のうち、溶液調製又は沈澱生成の
際に上述の問題を有する金属成分については、そ
の金属成分を含有する化合物粉末を残りの金属の
溶液中に懸濁させた懸濁液として用いることによ
り上述の問題を解決できることを見い出し、本発
明に到達した。
(Means for Solving the Problems) Among the various metal components other than lead that should constitute the lead-containing oxide, the inventors have determined that, for metal components that have the above-mentioned problems during solution preparation or precipitate formation, The inventors have discovered that the above-mentioned problems can be solved by using a compound powder containing the metal component as a suspension in a solution of the remaining metal, and have arrived at the present invention.

すなわち本発明は鉛含有酸化物微粉末の製造に
あたつて鉛含有酸化物を構成すべき鉛以外の各種
金属のうち、アルカリ土類金属、アルカリ金属、
Al、Zn、NbおよびTaからなる群から選定した
少くとも1種の金属を含有する化合物粉末を残り
の金属の溶液中に懸濁させた懸濁液を懸濁剤と撹
拌下に反応させて得られたスラリー状物を450〜
1200℃で仮焼して粉末を得る工程、前記工程で得
られた粉末に鉛化合物粉末を添加混合する工程お
よび、前記各工程を経て得られた粉末混合物を
600〜1000℃で焼成する工程、の各工程を結合す
ることを特徴とする鉛含有酸化物微粉末の製法で
ある。
That is, in the production of lead-containing oxide fine powder, the present invention uses alkaline earth metals, alkali metals,
A suspension of a compound powder containing at least one metal selected from the group consisting of Al, Zn, Nb, and Ta in a solution of the remaining metal is reacted with a suspending agent under stirring. 450~
A step of calcining at 1200°C to obtain a powder, a step of adding and mixing lead compound powder to the powder obtained in the above step, and a step of mixing the powder mixture obtained through each of the above steps.
This is a method for producing lead-containing oxide fine powder, which is characterized by combining the steps of firing at 600 to 1000°C.

ここでまず、鉛含有酸化物を構成すべき各種金
属の具体例としてはPb、Zr、Ti、Mg、Nb、
Sn、Zn、Sb、Al、Fe、Ta、Co、Ni、Bi、Li、
Sr、Ba、Ca、Se、La、Cu、Y、Yb、Te、Re、
Cd、Inなどがあげられる。
First, specific examples of various metals that should constitute the lead-containing oxide include Pb, Zr, Ti, Mg, Nb,
Sn, Zn, Sb, Al, Fe, Ta, Co, Ni, Bi, Li,
Sr, Ba, Ca, Se, La, Cu, Y, Yb, Te, Re,
Examples include CD and In.

次にこれらの金属成分を含む溶液としては特に
限定されないが、その例として硝酸溶液、塩酸溶
液、硫酸溶液などの無機酸溶液、しゆう酸溶液、
ぎ酸溶液などの有機酸溶液、アルコキシド溶液ま
たはそれらの混合溶液などがあげられる。
Next, solutions containing these metal components are not particularly limited, but examples thereof include inorganic acid solutions such as nitric acid solutions, hydrochloric acid solutions, and sulfuric acid solutions, oxalic acid solutions,
Examples include organic acid solutions such as formic acid solutions, alkoxide solutions, and mixed solutions thereof.

溶液の調製法としては、各種塩類を水に溶解す
る一般的方法、アルコキシドの合成及びアルコー
ルへの溶解などがあげられる。
Examples of methods for preparing solutions include the general method of dissolving various salts in water, synthesis of alkoxides, and dissolution in alcohol.

一方本発明でいう懸濁液とは、液体中に固体粒
子が均一に分散しているものを指し、具体的には
鉛含有酸化物を構成すべき鉛以外の各種金属成分
のうち、アルカリ土類金属、アルカリ金属、Al、
Zn、NbおよびTaからなる群に属する金属を含有
する化合物、たとえば酸化物、炭酸塩、水酸化
物、しゆう酸塩などの粉末を、残りの金属の溶液
中に分散懸濁した液である。
On the other hand, the suspension as used in the present invention refers to a liquid in which solid particles are uniformly dispersed, and specifically, among the various metal components other than lead that should constitute the lead-containing oxide, alkaline metals, alkali metals, Al,
A liquid in which powders of compounds containing metals belonging to the group consisting of Zn, Nb, and Ta, such as oxides, carbonates, hydroxides, and oxalates, are dispersed and suspended in a solution of the remaining metals. .

分散懸濁に用いる前記粉末の特性は重要であ
り、分散懸濁する液に溶解せず、しかも懸濁分散
性のよい微粉末が好ましい。その粒径としては、
1μm以下が好ましい。また懸濁する方法としては
一般的な撹拌器よる方法の他、ホモジナイザーの
ような均質化装置を用いることが好ましく充分懸
濁させることが重要である。
The characteristics of the powder used for dispersion and suspension are important, and a fine powder that does not dissolve in the liquid to be dispersed and suspends and has good suspension and dispersibility is preferable. The particle size is
It is preferably 1 μm or less. Further, as a method for suspending, in addition to a general method using a stirrer, it is preferable to use a homogenizing device such as a homogenizer, and it is important to ensure sufficient suspension.

次に沈澱剤としてはアンモニア水などの無機塩
基のほか炭酸アンモニウム、しゆう酸アンモニウ
ムなどの各種塩類や、メチルアミン、エチルアミ
ンなどの有機塩基などの水、アルコール溶液など
があげられ、また過酸化水素、ヒドラジンなど、
沈澱生成を効率化する添加剤を添加することもで
きる。
Precipitating agents include inorganic bases such as aqueous ammonia, various salts such as ammonium carbonate and ammonium oxalate, water and alcohol solutions of organic bases such as methylamine and ethylamine, and hydrogen peroxide. , hydrazine, etc.
It is also possible to add additives that improve the efficiency of precipitate formation.

本発明でいうスラリー状物とは懸濁した各種金
属成分を含有する前記粉末と沈澱剤と反応して生
成した沈澱剤物の混合物の意味である。
The term "slurry" as used in the present invention means a mixture of a precipitant produced by reacting the powder containing various suspended metal components with a precipitant.

溶液又は懸濁液と沈澱剤との反応方法として
は、溶液又は懸濁液中に沈澱剤を撹拌しながら加
える方法やスラリー状物生成槽内に溶液、懸濁
液、沈澱剤を逐次添加する方法、などがあげられ
る。この溶液又は懸濁液を、沈澱剤と反応させる
際の撹拌は重要であり、懸濁に関しては前記した
方法などにより充分に撹拌することが好ましい。
The reaction method of the solution or suspension with the precipitant is to add the precipitant to the solution or suspension while stirring, or to sequentially add the solution, suspension, and precipitant to a slurry production tank. methods, etc. Stirring is important when reacting this solution or suspension with a precipitant, and suspension is preferably sufficiently stirred by the method described above.

このようにして得られたスラリー状物はろ過な
どの方法によつて溶液部分を除去する。
The solution portion of the slurry thus obtained is removed by a method such as filtration.

沈澱物の洗浄は沈澱生成と同一条件又はそれよ
りもPHの高い溶液をもちいることが洗浄中の溶出
を防ぐため好ましい。
It is preferable to wash the precipitate under the same conditions as those used for forming the precipitate or to use a solution with a higher pH than that to prevent elution during washing.

洗浄は沈澱物中のCl-やNO3などの不純物を除
去するため充分行なうことが望ましい。また不純
物除去後、エタノールやアセトンなどで洗浄する
ことによつて沈澱粒子同志の凝集を防ぐことも有
効である。
It is desirable to wash thoroughly to remove impurities such as Cl - and NO 3 in the precipitate. It is also effective to prevent precipitated particles from agglomerating together by washing with ethanol, acetone, etc. after removing impurities.

乾燥を行なう場合の方法としては通常の加熱乾
燥、真空乾燥の他噴霧乾燥法、振動流動乾燥法、
ドラムドライヤー、フイルムエバポレーターなど
の方法がある。
Drying methods include normal heat drying, vacuum drying, spray drying, vibration fluidized drying,
Methods include drum dryers and film evaporators.

粉末同志の凝集を防ぐことは、微粉末を得る際
に重要であるがこの点仮焼の前及び/又は後にボ
ールミル、振動ボールミル、ジエツトミルなどに
よる解砕を行なうことは有効である。
Preventing agglomeration of powders is important in obtaining fine powders, and in this respect it is effective to perform crushing using a ball mill, vibrating ball mill, jet mill, etc. before and/or after calcination.

仮焼温度は、450℃より低い温度では、沈澱物
中の水分等を除去することが不充分であり、次の
工程において秤量仕込みする際に目的組成とする
ことが困難となる。また、1200℃より高い場合に
は、粉末同志の焼結などによる凝集が起こり反応
性が低下する難点がある。またエネルギー的にも
高温での仮焼は、実際的でない。従つて仮焼温度
は450〜1200℃が好ましく、600〜1000℃がさらに
好ましい。
If the calcination temperature is lower than 450°C, it will be insufficient to remove moisture etc. from the precipitate, and it will be difficult to achieve the desired composition when weighing and charging in the next step. Further, if the temperature is higher than 1200°C, there is a problem that agglomeration occurs due to sintering of powders and reactivity decreases. Furthermore, calcining at high temperatures is not practical in terms of energy. Therefore, the calcination temperature is preferably 450 to 1200°C, more preferably 600 to 1000°C.

以上が(a)工程の具体的内容である。 The above is the specific content of step (a).

次に(b)工程で用いる鉛化合物としては、酸化鉛
(PbO、Pb3O4)、炭酸鉛、塩基性炭酸塩、水酸化
鉛、しゆう酸鉛、ぎ酸鉛などが挙げられる。
Next, examples of the lead compound used in step (b) include lead oxide (PbO, Pb 3 O 4 ), lead carbonate, basic carbonate, lead hydroxide, lead oxalate, lead formate, and the like.

鉛化合物粉末の粉末特性としては、混合性のよ
い微粉末が好ましい。
Regarding the powder characteristics of the lead compound powder, a fine powder with good mixability is preferable.

混合方法としては、乳鉢やボールミルなどによ
る一般的方法で良く、とくに乾式混合よりもアル
コール、アセトンなどを用いる湿式混合の方が効
率も良く好ましい。
As a mixing method, a general method using a mortar or a ball mill may be used, and wet mixing using alcohol, acetone, etc. is more efficient and preferable than dry mixing.

鉛化合物粉末の混合量は、目的とする相を形成
する化学量論量よりも8モル%以下の過剰量を混
合することが目的とする相形成のため及び粉末の
反応性を高めるためにはより有効である。
The amount of lead compound powder to be mixed should be 8 mol% or less in excess of the stoichiometric amount to form the desired phase, in order to form the desired phase and to increase the reactivity of the powder. more effective.

次に(c)工程であるがこの工程での焼成温度は
600℃より低い温度では、反応の効率が低い一方、
1000℃より高い温度では鉛化合物が融解などを起
こしやすく、また粉末同志の固い凝集を形成しや
すいので微粉末となりにくい。したがつて焼成温
度は600〜1000℃であり、好ましくは700〜900℃
さらに好ましくは750〜850℃である。
Next is step (c), the firing temperature in this step is
At temperatures lower than 600℃, the efficiency of the reaction is low;
At temperatures higher than 1000°C, lead compounds tend to melt and form solid agglomerates of powders, making it difficult to form fine powders. Therefore, the firing temperature is 600-1000℃, preferably 700-900℃
More preferably, the temperature is 750 to 850°C.

(実施例) 以下実施例をあげてさらに本発明を具体的に説
明する。
(Example) The present invention will be further specifically explained below with reference to Examples.

実施例 1 金属濃度1.02モル%の塩化ジルコニル水溶液と
金属濃度2.03モル/の四塩化チタン水溶液とを
Zr:Tiの原子比で0.125:0.4375となるように混
合し、この溶液に金属Mn粉末を、Ti:Mnの原
子比で30:1となるように撹拌しながら加え、
Zr、TiおよびMnを含む溶液を得た。
Example 1 A zirconyl chloride aqueous solution with a metal concentration of 1.02 mol% and a titanium tetrachloride aqueous solution with a metal concentration of 2.03 mol% were prepared.
Mix Zr:Ti so that the atomic ratio is 0.125:0.4375, add metal Mn powder to this solution while stirring so that the Ti:Mn atomic ratio is 30:1,
A solution containing Zr, Ti and Mn was obtained.

この溶液に粒径0.3μmの酸化ニオブ粉末および
粒径0.2μm程度の酸化マグネシウム粉末をMn:
Nb:Mgの原子比で0.05:2:1となるようにホ
モジナイザーを用いて懸濁分散させ、Nbおよび
Mgを含有する化合物粉末がZr、TiおよびMnを
含む溶液中に懸濁している懸濁液を得た。この懸
濁液を送液ポンプを用いてアンモニヤ水でPH7に
保持した沈澱生成層内に滴下してスラリー状物を
得た。この際、ホモジナイザーを用いて充分撹拌
を行なつた。
Mn: Niobium oxide powder with a particle size of 0.3 μm and magnesium oxide powder with a particle size of about 0.2 μm are added to this solution.
Using a homogenizer, suspend and disperse Nb and Mg so that the atomic ratio is 0.05:2:1.
A suspension was obtained in which a compound powder containing Mg was suspended in a solution containing Zr, Ti, and Mn. This suspension was dropped using a liquid pump into a precipitation layer maintained at pH 7 with aqueous ammonia to obtain a slurry. At this time, sufficient stirring was performed using a homogenizer.

さらにスラリー状物100mlに対して1mlの過酸
化水素水を加えた。
Furthermore, 1 ml of hydrogen peroxide solution was added to 100 ml of the slurry.

得られたスラリー状物を0.1Nの希アンモニア
水を用いて充分洗浄及びろ過を行なつた。ろ液中
の金属成分を分析したところMgのみ溶出が見ら
れたが仕込みモル量に対して溶出は0.06%にすぎ
なかつた。次に温度80℃で乾燥後、アセトンを用
いて湿式ボールミル解砕し温度900℃で3時間仮
焼して粉末を得た。
The obtained slurry was thoroughly washed and filtered using 0.1N diluted ammonia water. Analysis of the metal components in the filtrate revealed that only Mg was eluted, but the amount eluted was only 0.06% based on the molar amount charged. Next, after drying at a temperature of 80°C, it was crushed in a wet ball mill using acetone and calcined at a temperature of 900°C for 3 hours to obtain a powder.

この粉末を走査型電子顕微鏡で観察したところ
粒径0.4μm程度に粒度のそろつた微粉末であるこ
とが確認された。
When this powder was observed with a scanning electron microscope, it was confirmed that it was a fine powder with a uniform particle size of about 0.4 μm.

次にこの粉末96.2600gに対して酸化鉛(Pb
O)223.2000gをアセトンを用いて湿式混合し
た。
Next, for 96.2600g of this powder, lead oxide (Pb
223.2000 g of O) were wet mixed using acetone.

しかるのち上記の粉末混合物を温度780℃で1
時間焼成して鉛含有酸化物粉末を得た。この粉末
は走査型電子顕微鏡観察の結果0.4μm程度の非常
に粒度のそろつた微粉末であつた。
After that, the above powder mixture was heated to 780°C.
A lead-containing oxide powder was obtained by firing for a period of time. As a result of scanning electron microscope observation, this powder was found to be a fine powder with extremely uniform particle size of approximately 0.4 μm.

また純物分析を行なつたところ炭素、塩素及び
不純物金属は10ppm以下で高純度であることが判
明した。
Further, purity analysis revealed that carbon, chlorine, and impurity metals were less than 10 ppm, indicating high purity.

また鉛含有酸化物微粉末の反応性を評価するた
め、該微粉末3.0gを成形圧力1000Kg/cm3で直径20
mmφのデイスク状に形成し、温度1150℃で1時間
焼結を行なつたところ、焼結密度は7.89g/cm3
あり、ほぼ理論密度の焼結体が得られた。
In addition, in order to evaluate the reactivity of the lead-containing oxide fine powder, 3.0 g of the fine powder was molded at a molding pressure of 1000 kg/cm 3 with a diameter of 20 mm.
When the material was formed into a disk shape of mmφ and sintered at a temperature of 1150° C. for 1 hour, the sintered density was 7.89 g/cm 3 , and a sintered body having approximately the theoretical density was obtained.

またこの焼結体は砕いて粉末エツクス線回折に
供したところ複合ペロブスカイト相単相であり、
またエツクス線マイクロアナライザーによる分析
を行なつたところ構成金属の偏析はなく均一であ
つた。
When this sintered body was crushed and subjected to powder X-ray diffraction, it was found to be a single complex perovskite phase.
Analysis using an X-ray microanalyzer revealed that the constituent metals were uniform with no segregation.

実施例 2 実施例1で用いたZr、Ti、Mnを含む溶液に、
さらに金属濃度1.0モル/の塩化ストロンチウ
ム水溶液を、Zr:Srの原子比で0.125:0.05とな
るように混合して溶液を調製した。
Example 2 In the solution containing Zr, Ti, and Mn used in Example 1,
Further, a solution was prepared by mixing an aqueous solution of strontium chloride with a metal concentration of 1.0 mol/mole so that the atomic ratio of Zr:Sr was 0.125:0.05.

これを用いて以下実施例1で述べたところと同
一の操作でZr、Ti、Mg、Mn、Nb、Srを含む仮
焼粉末を得た。
Using this, a calcined powder containing Zr, Ti, Mg, Mn, Nb, and Sr was obtained by the same operation as described in Example 1 below.

沈澱生成の際のろ液中の金属成分の溶出は実施
例1と同様であつた。
The elution of metal components in the filtrate during precipitation formation was the same as in Example 1.

得られた粉末は粒径0.4μm程度の粒度のそろつ
た微粉末であつた。
The obtained powder was a fine powder with a uniform particle size of about 0.4 μm.

この微粉末101.441gに対して一酸化鉛(Pb
O)212.0400gをアセトンを用いて湿式混合し
た。しかるのち上記の混合粉末を温度780℃で1
時間焼成して鉛含有酸化物微粉末を得た。この微
粉末も特性は実施例1とほぼ同様であつた。
For 101.441g of this fine powder, lead monoxide (Pb
212.0400 g of O) were wet mixed using acetone. After that, the above mixed powder was heated to 780°C.
A lead-containing oxide fine powder was obtained by firing for a period of time. The characteristics of this fine powder were almost the same as those of Example 1.

実施例 3 金属濃度0.82モル/の塩化ジルコニア水溶液
と金属濃度1.02モル/の四塩化チタン水溶液
を、Zr::Tiの原子比で0.125:0.4375となるよ
うに混合し、該溶液に金属Mn粉末を、Ti:Mn
の原子比で30:1となるように撹拌しながら加
え、Zr、Ti、Mnを含む溶液を得た。
Example 3 A zirconia chloride aqueous solution with a metal concentration of 0.82 mol/metal and a titanium tetrachloride aqueous solution with a metal concentration of 1.02 mol/are mixed so that the atomic ratio of Zr::Ti is 0.125:0.4375, and metallic Mn powder is added to the solution. , Ti:Mn
were added with stirring to give an atomic ratio of 30:1 to obtain a solution containing Zr, Ti, and Mn.

この溶液中に粒径0.3μm程度の酸化ニオブ粉末
及び粒径0.2μm程度の酸化マグネシウム粉末を、
Ti:Nb:Mgの原子比が3:2:1となるよう
にホモジナイザーを用いて懸濁分散させZr、Ti、
Mn、Nb、Mgを含む懸濁液を得た。この懸濁液
を送液ポンプを用いてアンモニア水でPH7に保持
した沈澱生成槽内に滴下してスラリー状物を得
た。この際にもホモジナイザーを用いて充分撹拌
を行ないさらにスラリー状物100mlに対して1ml
の過酸化水素水を加えた。
In this solution, add niobium oxide powder with a particle size of about 0.3 μm and magnesium oxide powder with a particle size of about 0.2 μm,
Zr, Ti, and
A suspension containing Mn, Nb, and Mg was obtained. This suspension was dropped into a precipitation tank maintained at pH 7 with aqueous ammonia using a liquid pump to obtain a slurry. At this time, use a homogenizer to stir thoroughly and add 1 ml to 100 ml of slurry.
of hydrogen peroxide solution was added.

得られたスラリー状物を0.1Nの希アンモニア
水を用いて充分洗浄及びろ過を行なつた。ろ液中
の金属成分を分析したところ、Mgのみ溶出が見
られたが仕込モル量に対しての溶出は0.07%にす
ぎなかつた。
The obtained slurry was thoroughly washed and filtered using 0.1N diluted ammonia water. When the metal components in the filtrate were analyzed, only Mg was observed to be eluted, but the amount eluted was only 0.07% based on the molar amount charged.

次に温度80℃で乾燥後アセトンを用いて湿式ボ
ールミル解砕し温度940℃で5時間仮焼して粉末
を得た。
Next, it was dried at a temperature of 80°C, crushed in a wet ball mill using acetone, and calcined at a temperature of 940°C for 5 hours to obtain a powder.

この粉末を走査型電子顕微鏡で観察したところ
粒径0.4μm程度の粒度のそろつた微粉末であつ
た。
When this powder was observed with a scanning electron microscope, it was found to be a fine powder with a uniform particle size of about 0.4 μm.

次にこの粉末96.2600gに対して酸化鉛(Pb
O)223.2000gをアセトンを用いて湿式混合し
た。しかるのち混合粉末を温度780℃で1時間焼
成して鉛含有酸化物微粉末を得た。この微粉末も
特性は実施例1とほぼ同様であつた。
Next, for 96.2600g of this powder, lead oxide (Pb
223.2000 g of O) were wet mixed using acetone. Thereafter, the mixed powder was fired at a temperature of 780° C. for 1 hour to obtain a lead-containing oxide fine powder. The characteristics of this fine powder were almost the same as those of Example 1.

実施例 4 実施例1で用いた塩化ジルコニル水溶液および
四塩化チタン水溶液を、Zr:Tiの原子比で0.50:
0.49となるように混合し、該溶液に粒径0.3μm程
度の酸化ニオブ粉末をTi:Nbの原子比で0.49:
0.01となるようにホモジナイザーを用いて懸濁分
散させ、Nbを含有する化合物粉末がZrおよびTi
を含む溶液中に懸濁している懸濁液を得た。この
懸濁液を送液ポンプを用いてアンモニア水でPH7
に保持した沈澱生成層内に滴下してスラリー状物
を得た。この際ホモジナイザーを用いて充分撹拌
を行なつた。
Example 4 The zirconyl chloride aqueous solution and the titanium tetrachloride aqueous solution used in Example 1 were mixed at an atomic ratio of Zr:Ti of 0.50:
Niobium oxide powder with a particle size of about 0.3 μm is mixed in the solution so that the Ti:Nb atomic ratio is 0.49:
Suspend and disperse using a homogenizer so that the Nb-containing compound powder becomes Zr and Ti.
A suspension was obtained in which the compound was suspended in a solution containing. This suspension was mixed with ammonia water to pH 7 using a liquid pump.
A slurry-like material was obtained by dropping the solution into a precipitate-forming layer held at At this time, sufficient stirring was performed using a homogenizer.

得られたスラリー状物を0.1Nの希アンモニア
水を用いて充分洗浄及びろ過を行なつた。次に温
度80℃で乾燥後アセトンを用いて湿式ボールミル
解砕し温度900℃で3時間仮焼して粉末を得た。
The obtained slurry was thoroughly washed and filtered using 0.1N diluted ammonia water. Next, it was dried at a temperature of 80°C, crushed in a wet ball mill using acetone, and calcined at a temperature of 900°C for 3 hours to obtain a powder.

この粉末を走査型電子顕微鏡で観察したところ
粒径0.4μm程度の粒度のそろつた微粉末であつ
た。
When this powder was observed with a scanning electron microscope, it was found to be a fine powder with a uniform particle size of about 0.4 μm.

次にこの粉末3.4027gに対して酸化鉛(Pb O)
7.5144gをアセトンを用いて湿式混合した。しか
るのち混合粉末を温度780℃で1時間焼成して鉛
含有酸化物微粉末を得た。
Next, add lead oxide (Pb O) to 3.4027g of this powder.
7.5144 g were wet mixed using acetone. Thereafter, the mixed powder was fired at a temperature of 780° C. for 1 hour to obtain a lead-containing oxide fine powder.

この微粉末も特性は実施例1とほぼ同様であつ
た。
The characteristics of this fine powder were almost the same as those of Example 1.

(発明の効果) 本発明によれば、従来の共沈法にて沈澱生成困
難な成分及び共沈用原液の調製が効率的、工業的
にできない成分を含むにも拘わらず反応性、均一
性、分散性に優れた易焼結性鉛含有微粉末が製造
できる。
(Effects of the Invention) According to the present invention, components that are difficult to precipitate using conventional coprecipitation methods and preparation of a stock solution for coprecipitation are efficient, and reactivity and uniformity are achieved even though they contain components that cannot be industrially produced. , easily sinterable lead-containing fine powder with excellent dispersibility can be produced.

Claims (1)

【特許請求の範囲】 1 鉛含有酸化物微粉末の製造にあたつて、 (a) 鉛含有酸化物を構成すべき鉛以外の各種金属
のうち、アルカリ土類金属、アルカリ金属、
Al、Zn、NbおよびTaからなる群に属する金
属を含有する化合物粉末を残りの金属の溶液中
に懸濁させた懸濁液を、沈澱剤と撹拌下に反応
させて得られたスラリー状物を450〜1200℃で
仮焼して粉末を得る工程、 (b) 前記工程で得られた粉末に鉛化合物粉末を添
加混合する工程、および (c) 前記各工程を経て得られた粉末混合物を600
〜1000℃で焼成する工程、 の各工程を結合することを特徴とする鉛含有酸化
物微粉末の製法。
[Claims] 1. In producing the lead-containing oxide fine powder, (a) among the various metals other than lead that should constitute the lead-containing oxide, alkaline earth metals, alkali metals,
A slurry obtained by reacting a suspension of a compound powder containing a metal belonging to the group consisting of Al, Zn, Nb, and Ta in a solution of the remaining metal with a precipitant under stirring. (b) Adding and mixing lead compound powder to the powder obtained in the above step, and (c) Adding and mixing the powder mixture obtained through each of the above steps. 600
A method for producing a lead-containing oxide fine powder, characterized by combining the following steps: a step of firing at ~1000°C.
JP2444085A 1985-02-13 1985-02-13 Production of fine powder of lead-containing oxide Granted JPS61186221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2444085A JPS61186221A (en) 1985-02-13 1985-02-13 Production of fine powder of lead-containing oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2444085A JPS61186221A (en) 1985-02-13 1985-02-13 Production of fine powder of lead-containing oxide

Publications (2)

Publication Number Publication Date
JPS61186221A JPS61186221A (en) 1986-08-19
JPH0255375B2 true JPH0255375B2 (en) 1990-11-27

Family

ID=12138202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2444085A Granted JPS61186221A (en) 1985-02-13 1985-02-13 Production of fine powder of lead-containing oxide

Country Status (1)

Country Link
JP (1) JPS61186221A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311523A (en) * 1986-07-02 1988-01-19 Natl Inst For Res In Inorg Mater Production of easily-sinterable piezoelectric ceramic powder
JPS63235401A (en) * 1987-03-23 1988-09-30 Natl Inst For Res In Inorg Mater Production of dielectric powder containing zirconium and lead
CN100411993C (en) * 2006-03-10 2008-08-20 浙江伟星实业发展股份有限公司 Process for synthesizing pearlescent pigment crystal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153119A (en) * 1984-08-21 1986-03-17 Denki Kagaku Kogyo Kk Lead-containing oxide powder and its preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153119A (en) * 1984-08-21 1986-03-17 Denki Kagaku Kogyo Kk Lead-containing oxide powder and its preparation

Also Published As

Publication number Publication date
JPS61186221A (en) 1986-08-19

Similar Documents

Publication Publication Date Title
KR930002232B1 (en) Process for producing composition which includes perovskite compound
US4293534A (en) Molten salt synthesis of alkaline earth titanates, zirconates and their solid solutions
RU2415083C2 (en) Finely dispersed lead-zirconium titanates, zirconium titanate hydrates and zirconium titanates and production method thereof
US4534956A (en) Molten salt synthesis of barium and/or strontium titanate powder
US4293535A (en) Molten salt synthesis of alkaline zirconate powder
US4233282A (en) Molten salt synthesis of barium and/or strontium titanate powder
US4487755A (en) Preparation of large crystal sized barium and/or strontium titanate powder
US4308299A (en) Lithiated nickel oxide
JPH0251847B2 (en)
JPH0255375B2 (en)
JPH0246531B2 (en)
JP2764111B2 (en) Method for producing perovskite ceramic powder
JPH0321487B2 (en)
JP2547007B2 (en) Method for producing perovskite type oxide fine powder
JPS63144116A (en) Production of oxide particle
JPS6086024A (en) Production of titanic acid salt
JP2000281341A (en) Barium titanate powder containing rare earth element and its production
JP3681550B2 (en) Rare earth oxide and method for producing the same
JPH0248490B2 (en)
JPH0331647B2 (en)
JPS61186220A (en) Production of fine powder of lead-containing oxide
JP2865975B2 (en) Method for producing lead perovski type compound
JPS59232920A (en) Manufacture of zirconium oxide powder containing yttrium as solid solution
JPS62138354A (en) Manufacture of readily sinterable lead-containing oxide powder
JPH01167227A (en) Production of titanium-based perovskite-type ceramic material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term