JPH0248490B2 - - Google Patents

Info

Publication number
JPH0248490B2
JPH0248490B2 JP60140289A JP14028985A JPH0248490B2 JP H0248490 B2 JPH0248490 B2 JP H0248490B2 JP 60140289 A JP60140289 A JP 60140289A JP 14028985 A JP14028985 A JP 14028985A JP H0248490 B2 JPH0248490 B2 JP H0248490B2
Authority
JP
Japan
Prior art keywords
powder
lead
solution
temperature
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60140289A
Other languages
Japanese (ja)
Other versions
JPS623018A (en
Inventor
Shinichi Shirasaki
Toichi Takagi
Kohei Ametani
Koichi Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP60140289A priority Critical patent/JPS623018A/en
Publication of JPS623018A publication Critical patent/JPS623018A/en
Publication of JPH0248490B2 publication Critical patent/JPH0248490B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高純度鉛含有酸化物微粉末の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing high purity lead-containing oxide fine powder.

一般に鉛含有酸化物には、強誘電材料・圧電材
料、焦電材料などエレクトロセラミツクスとして
有用なものが多い。
In general, many lead-containing oxides are useful as electroceramics, such as ferroelectric materials, piezoelectric materials, and pyroelectric materials.

エレクトロセラミツク部品の小形化、高性能化
に伴い高純度で粒径分布の狭い反応性の高い微粉
末原料に対する要求が高まりつつあり、特に高い
純度であることは、素子の電気的特性ばかりでな
く、経時変化などの信頼性においても重要であ
る。
As electroceramic parts become smaller and more sophisticated, there is an increasing demand for high-purity, highly reactive fine powder raw materials with a narrow particle size distribution. Particularly high purity is important not only for the electrical properties of the device but also for the electrical properties of the device. It is also important in terms of reliability, such as changes over time.

(従来の技術) 従来、鉛含有酸化物粉末の製造方法としては、
鉛含有酸化物を構成すべき各種金属を含有する酸
化物、炭酸塩などの化合物粉末を目的組成となる
ように秤量混合後、仮焼し、さらに粉砕仮焼によ
る固相反応を何度も繰り返して製造するいわゆる
固相法がある。
(Prior art) Conventionally, the method for producing lead-containing oxide powder is as follows:
Compound powders such as oxides and carbonates containing various metals that should constitute the lead-containing oxide are weighed and mixed to achieve the desired composition, then calcined, and the solid phase reaction by crushing and calcining is repeated many times. There is a so-called solid-phase method for manufacturing.

この方法では粉砕時に混入する不純物のために
高純度の粉末の製造が困難であつた。また粉砕に
よつて効率よく製造できる粉末の粒径は数μm程
度が限界であり、しかもその粒径も不均一となり
やすく反応性に劣る欠点があつた。
With this method, it is difficult to produce highly pure powder due to impurities mixed in during pulverization. Furthermore, the particle size of powder that can be efficiently produced by pulverization is limited to a few micrometers, and the particle size tends to be non-uniform, resulting in poor reactivity.

これらの固相法の欠点を改良する方法として溶
液を出発原料として粉末を製造する共沈法が知ら
れていて、この方法によれば、一般に粒度分布の
狭い微粉末が得られる利点はある。
As a method for improving the drawbacks of these solid-phase methods, a coprecipitation method is known in which a powder is produced using a solution as a starting material, and this method generally has the advantage that fine powder with a narrow particle size distribution can be obtained.

(発明が解決しようとする問題点) しかしながら、鉛含有酸化物微粉末の調整に有
用な共沈法においても出発原料溶液中にハロゲン
を含有する場合、その除去が問題である。一般的
には生成沈澱物中のハロゲン化物やその他不純物
を除去するために水洗浄が行われているが、その
除去は完全なものとは云えない。
(Problems to be Solved by the Invention) However, even in the coprecipitation method useful for preparing lead-containing oxide fine powder, if a halogen is contained in the starting material solution, its removal is a problem. Generally, water washing is performed to remove halides and other impurities from the produced precipitate, but the removal cannot be said to be complete.

また沈澱剤との反応時に生成する沈澱の溶解度
が大きく目的組成としにくい金属成分、例えば
Mgなどのアルカリ土類金属、Liなどのアルカリ
金属などの成分を沈澱させたり、洗浄時の溶解を
防止するために、多量の溶媒、例えばアルコール
類を添加しなければならずアルコール類を用いる
と、高価につき工業用的に有利な方法とは云えな
い。
In addition, the solubility of the precipitate generated during the reaction with the precipitant is large, making it difficult to achieve the desired composition, such as metal components.
In order to precipitate components such as alkaline earth metals such as Mg and alkali metals such as Li, or to prevent them from dissolving during cleaning, a large amount of solvent, such as alcohol, must be added. However, it is expensive and cannot be said to be an industrially advantageous method.

つまり洗浄工程を採らずに塩素成分を含まない
方法が望まれている。
In other words, a method that does not require a cleaning step and does not contain chlorine components is desired.

(問題点を解決するための手段) 発明者らは従来の鉛含有酸化物微粉末中のハロ
ゲン化合物を除去する方法について研究を行つた
結果、鉛含有酸化物を構成すべき各種金属及びハ
ロゲンを含む溶液、又は懸濁液を沈澱剤と反応さ
せて得られた沈澱物を熱水処理することにより、
ハロゲン化物を含有しない鉛含有酸化物微粉末が
得られるという知見により本発明に到達したもの
である。すなわち、本発明は、 鉛含有酸化物微粉末の製造にあたり、 (a) 鉛含有酸化物を構成すべき各種金属及びハロ
ゲンを含む溶液、又は懸濁液を沈澱剤と撹拌下
に反応させてスラリー状物とし、これから上澄
みを除去して沈澱物を得る工程と、 (b) 前記工程で得られた沈澱物を温度250〜450℃
で熱水処理して不純物を除去し、ついで加熱処
理して粉末とする工程と、 (c) 前記工程で得られた粉末に鉛化合物粉末を添
加混合する工程及び、 (d) 前記工程で得られた粉末混合物を温度600〜
1000℃で焼成する工程 の各工程を結合することを特徴とする高純度鉛含
有酸化物微粉末の製造方法である。
(Means for solving the problem) The inventors conducted research on a method for removing halogen compounds from conventional lead-containing oxide fine powder. By treating the precipitate obtained by reacting the containing solution or suspension with a precipitant with hot water,
The present invention was achieved based on the knowledge that lead-containing oxide fine powder containing no halide can be obtained. That is, in producing a lead-containing oxide fine powder, the present invention involves: (a) reacting a solution or suspension containing various metals and halogens to form a lead-containing oxide with a precipitant under stirring to form a slurry; (b) heating the precipitate obtained in the above step to a temperature of 250 to 450°C;
(c) adding and mixing lead compound powder to the powder obtained in the above step; (d) adding and mixing the powder obtained in the above step with the powder obtained in the above step; The powder mixture is heated to a temperature of 600~
This is a method for producing high-purity lead-containing oxide fine powder, which is characterized by combining each step of firing at 1000°C.

以下さらに本発明についてより詳しく説明す
る。
The present invention will be explained in more detail below.

まず(a)工程から順に説明を進める。 First, we will explain step by step starting from step (a).

本発明において、鉛含有酸化物を構成すべき各
種金属の具体例としてはPb,Zr,Ti,Mg,Nb,
Sn,Zn,Sb,Al,Fe,Ta,Co,Ni,Bi,Li,
Sr,Ba,Ca,Se,La,Cu,Y,Yb,Te,Re,
Cd,Inなどがあげられる。
In the present invention, specific examples of various metals that should constitute the lead-containing oxide include Pb, Zr, Ti, Mg, Nb,
Sn, Zn, Sb, Al, Fe, Ta, Co, Ni, Bi, Li,
Sr, Ba, Ca, Se, La, Cu, Y, Yb, Te, Re,
Examples include Cd and In.

次に、これらの金属成分を含む溶液としては、
塩酸溶液、弗酸溶液等の無機酸溶液があげられる
が、さらにこれらと、ぎ酸、しゆう酸、アルコキ
シド等の混合溶液などがあげられる。溶液の調製
法としては、前記各種金属の塩類を水に溶解する
一般的方法、アルコキシドの合成及びアルコール
への溶解などがあげられる。
Next, as a solution containing these metal components,
Examples include inorganic acid solutions such as hydrochloric acid solutions and hydrofluoric acid solutions, and mixed solutions of these and formic acid, oxalic acid, alkoxides, and the like. Examples of methods for preparing the solution include the general method of dissolving salts of the various metals mentioned above in water, synthesis of alkoxides, and dissolution in alcohol.

一方本発明でいう懸濁液とは、液体中に固体粒
子が均一に分散しているものを指し、具体的には
鉛含有酸化物を構成すべき各種金属成分又はその
化合物たとえば酸化物、炭酸塩、水酸化物、しゆ
う酸塩などの粉末を、少なくとも1種分散懸濁し
た液である。
On the other hand, the suspension as used in the present invention refers to a liquid in which solid particles are uniformly dispersed, and specifically refers to various metal components or compounds thereof that constitute the lead-containing oxide, such as oxides, It is a liquid in which at least one powder of salt, hydroxide, oxalate, etc. is dispersed and suspended.

この分散懸濁に用いる液としては、前記溶液の
他、水、アルコールなどがあげられる。
Examples of the liquid used for this dispersion and suspension include water, alcohol, and the like, in addition to the above-mentioned solutions.

分散懸濁に用いる前記粉末の特性は重要であ
り、懸濁分散性のよい微粉末が好ましい。
The properties of the powder used for dispersion and suspension are important, and fine powder with good suspension and dispersibility is preferred.

次に沈澱剤としてはアンモニア水などの無機塩
基のほか炭酸アンモニウム、しゆう酸アンモニウ
ムなどの各種塩類や、メチルアミン、エチルアミ
ンなどの有機塩基などの他、水、アルコール溶液
などがあげられ、また過酸化水素、ヒドラジンな
ど、沈澱生成を効率化する添加剤を添加すること
もできる。
Precipitating agents include inorganic bases such as aqueous ammonia, various salts such as ammonium carbonate and ammonium oxalate, organic bases such as methylamine and ethylamine, water, alcohol solutions, etc. Additives such as hydrogen oxide, hydrazine, etc. that improve the efficiency of precipitation formation can also be added.

本発明でいうスラリー状物とは、懸濁した前記
各種金属成分を含有する前記粉末と沈澱剤と反応
して生成した沈澱物の混合物、または沈澱剤と反
応して得られた沈澱物の意味である。
The term "slurry-like material" as used in the present invention means a mixture of the above-mentioned suspended powder containing the various metal components and a precipitate produced by reacting with a precipitant, or a precipitate obtained by reacting with a precipitant. It is.

溶液又は懸濁液と沈澱剤との反応方法として
は、溶液又は懸濁液中に沈澱剤を撹拌しながら加
える方法やスラリー状物生成槽内に溶液、懸濁
液、沈澱剤を逐次添加する方法、などがあげられ
る。この溶液又は懸濁液を、沈澱剤と反応させる
際の撹拌は重要であり、充分撹拌することが好ま
しい。
The reaction method of the solution or suspension with the precipitant is to add the precipitant to the solution or suspension while stirring, or to sequentially add the solution, suspension, and precipitant to a slurry production tank. methods, etc. Stirring is important when reacting this solution or suspension with a precipitant, and it is preferable to stir sufficiently.

このようにして得られたスラリー状物はろ過な
どの方法によつて上澄み液部分を除去すれば沈澱
物が得られる。この沈澱物は洗浄しても、しなく
てもよい。
A precipitate can be obtained by removing the supernatant liquid from the slurry thus obtained by a method such as filtration. This precipitate may or may not be washed.

次に(b)工程では沈澱物に熱処理を行う。 Next, in step (b), the precipitate is heat treated.

本発明において、熱水処理とは、沈澱物に対
し、熱と水蒸気とを同時に作用させることであつ
て、上澄み液部分を除去した場合のほか乾燥揮散
させたものであつても効果には差はないが、前者
のものを用いると熱的に有利なのはいうまでもな
い。
In the present invention, hot water treatment refers to applying heat and steam to the precipitate at the same time, and there is no difference in the effect even if the supernatant liquid part is removed or if it is dried and volatilized. However, it goes without saying that using the former is thermally advantageous.

熱水処理は温度200〜450℃で水蒸気を作用させ
ればよい。熱水処理ではハロゲン、その他の不純
物が除去されるだけであるので、さらに温度450
〜1200℃で熱処理して沈澱物を酸化物とする。熱
水処理は200℃より低い温度では不純物の除去が
困難であり、450℃より高い温度では熱的に不経
済である。
Hot water treatment can be carried out by applying steam at a temperature of 200 to 450°C. Hydrothermal treatment only removes halogens and other impurities;
The precipitate is converted into an oxide by heat treatment at ~1200°C. Hydrothermal treatment has difficulty removing impurities at temperatures below 200°C, and is thermally uneconomical at temperatures above 450°C.

熱水処理後に加熱処理を行う理由は、沈澱物を
酸化するほか沈澱物中の水分等を除去するため
で、これが不充分であると、次の工程において秤
量仕込みする際に目的組成とすることが困難であ
る。熱処理は450℃より低い温度では沈澱物中の
水分等の除去および沈澱物の酸化が不充分であ
る。また、1200℃より高い場合には、粉末同志の
焼結などによる凝集が起こり反応性が低下する難
点がある。またエネルギー的にも高温では実用的
ではない。
The reason for heat treatment after hot water treatment is to oxidize the precipitate and remove water etc. in the precipitate. If this is insufficient, the target composition may be used when weighing and preparing in the next step. is difficult. When the heat treatment is performed at a temperature lower than 450°C, removal of water etc. in the precipitate and oxidation of the precipitate are insufficient. Furthermore, if the temperature is higher than 1200°C, there is a problem that agglomeration occurs due to sintering of powders and reactivity decreases. Also, it is not practical at high temperatures in terms of energy.

熱水処理時間としては、特に限定されないが5
分〜3時間より好ましくは5〜30分間である。
The hot water treatment time is not particularly limited, but is 5
The time is preferably 5 to 30 minutes, more preferably 5 to 30 minutes.

なお熱水処理したものは、温度450〜1200℃で
さらに5分〜5時間加熱処理すればよい。
In addition, what is necessary is just to heat-process what was hot-water-treated at the temperature of 450-1200 degreeC for 5 minutes - 5 hours.

熱水処理の具体例としては、温度200℃未満の
水蒸気、あるいは微細な液滴を温度200℃以上の
加熱処理装置、例えば電気炉、ロータリーキルン
等に沈澱物とキヤリアガスと共に供給し所定時間
滞留させ、排ガスを系外に排出する。この場合ロ
ータリーキルン等により流動化させ接触を良くす
ることが好ましい。
A specific example of hydrothermal treatment is to supply water vapor at a temperature of less than 200°C or fine droplets to a heat treatment device at a temperature of 200°C or more, such as an electric furnace or a rotary kiln, together with a precipitate and a carrier gas, and leave it there for a predetermined period of time. Exhaust the exhaust gas out of the system. In this case, it is preferable to fluidize using a rotary kiln or the like to improve contact.

なお排出側には発生するハロゲン化物の気体を
回収するトラツプをを設けることが好ましく、そ
のトラツプとしてはハロゲン化物の気体を吸収可
能なものでなければならない。その具体例として
は苛性ソーダ等のアルカリ溶液があげられる。な
お熱水処理をする前に予めボールミル、振動ミ
ル、ジエツトミルなどにより沈澱物を解砕させて
おくことが好ましい。
It is preferable to provide a trap on the discharge side to collect the generated halide gas, and the trap must be capable of absorbing the halide gas. A specific example thereof is an alkaline solution such as caustic soda. Note that it is preferable to crush the precipitate in advance using a ball mill, vibration mill, jet mill, etc. before the hot water treatment.

次に(c)工程で用いる鉛化合物としては、酸化鉛
(PbO,Pb3O4)、炭酸鉛、塩基性炭酸鉛、水酸化
鉛、しゆう酸鉛、ぎ酸鉛などが挙げられる。
Next, lead compounds used in step (c) include lead oxide (PbO, Pb 3 O 4 ), lead carbonate, basic lead carbonate, lead hydroxide, lead oxalate, lead formate, and the like.

鉛化合物粉末の粉末特性としては、混合物のよ
い微粉末が好ましい。
Regarding the powder characteristics of the lead compound powder, a fine powder with good mixture is preferable.

混合方法としては、にゆう鉢やボールミルなど
による一般的方法で良く、とくに乾式混合よりも
アルコール、アセトンなどを用いる乾式混合の方
が効果も良く好ましい。
The mixing method may be a general method using a pot or a ball mill, and in particular, dry mixing using alcohol, acetone, etc. is more effective and preferable than dry mixing.

鉛化合物粉末の混合量は、目的とする相を形成
する化学量論量よりも8モル%以下の過剰量を混
合することが目的とする相形成のため及び粉末の
反応性を高めるためにはより有効である。
The amount of lead compound powder to be mixed should be 8 mol% or less in excess of the stoichiometric amount to form the desired phase, in order to form the desired phase and to increase the reactivity of the powder. more effective.

この(c)工程において微量の添加物、たとえば
MnO2,Fe2O3,SrCO3,SrO,CaO,BaO,
BaCO3,NiO,Al2O3などを添加することができ
る。
In this step (c), trace amounts of additives, such as
MnO 2 , Fe 2 O 3 , SrCO 3 , SrO, CaO, BaO,
BaCO 3 , NiO, Al 2 O 3 and the like can be added.

次に(d)工程であるがこの工程での焼成温度は
600℃より低い温度では、反応の効率が低い。一
方、1000℃より高い温度では鉛化合物が融解など
を起しやすく、また粉末同志の固い凝集を形成し
やすいので微粉末となりにくい。したがつて焼焼
成温度は600〜1000℃であり、好ましくは、700〜
900℃さらに好ましくは750〜850℃である。
Next is step (d), but the firing temperature in this step is
At temperatures lower than 600°C, the efficiency of the reaction is low. On the other hand, at temperatures higher than 1000°C, lead compounds tend to melt and form solid agglomerates of powders, making it difficult to form fine powders. Therefore, the firing temperature is 600-1000℃, preferably 700-1000℃.
The temperature is 900°C, more preferably 750 to 850°C.

(作用) 本発明の特徴のひとつとして鉛化合物を後から
反応させることにより、粉末特性を向上している
点が挙げられる。すなわち鉛化合物を、他の成分
と同時に生成させて高温処理すると鉛化合物が融
解などして粉末同志の強固な凝集が形成されやす
く粉末特性が悪くなる。鉛化合物を後から反応さ
せることにより鉛以外の成分よりなる粉末を高温
処理することができる点も塩素不純物除去を効率
的にしており本発明の解決した点であり特徴であ
る。
(Function) One of the features of the present invention is that the powder properties are improved by reacting the lead compound afterwards. That is, if a lead compound is produced simultaneously with other components and subjected to high temperature treatment, the lead compound will melt and the powder will tend to form strong agglomerations, resulting in poor powder properties. Another feature of the present invention is that powders made of components other than lead can be treated at high temperatures by reacting with lead compounds later on, thereby making it possible to efficiently remove chlorine impurities.

(実施例) 実施例 1 金属濃度1.02モル/の塩化ジルコニル水溶液
と金属濃度1.63モル/の四塩化チタン水溶液
を、Zr:Tiの原子比で0.125:0.4375となるよう
に混合し、該溶液に金属Mg粉末及び金属Mn粉
末をTi:Mgの原子比で30:10:1となるように
撹拌しながら加え、紫色溶液を得た。
(Example) Example 1 A zirconyl chloride aqueous solution with a metal concentration of 1.02 mol/metal and a titanium tetrachloride aqueous solution with a metal concentration of 1.63 mol/metal are mixed so that the atomic ratio of Zr:Ti is 0.125:0.4375, and the metal is added to the solution. Mg powder and metallic Mn powder were added with stirring so that the atomic ratio of Ti:Mg was 30:10:1 to obtain a purple solution.

これとは別に水酸化ニオブ沈澱を用いて金属濃
度0.422モル/のニオブのしゆう酸性溶液を調
製した。
Separately, a strongly acidic solution of niobium with a metal concentration of 0.422 mol/metal was prepared using niobium hydroxide precipitation.

この溶液に前記Zr,Ti,MgおよびMnを含む
紫色溶液をNb:Mgの原子比で2:1となるよう
に添加し茶褐色溶液を得た。
The purple solution containing Zr, Ti, Mg and Mn was added to this solution at an atomic ratio of Nb:Mg of 2:1 to obtain a brownish-brown solution.

この溶液をエタノール(沈澱助剤)及びアンモ
ニア水(沈澱剤)でPH9.0に保持した共沈槽内に
撹拌しながら噴霧して沈澱を生成させた。このと
きのエタノール(沈澱助剤)の添加量は、共沈槽
内の内容物に対して50容量%であつた。
This solution was sprayed with stirring into a coprecipitation tank maintained at pH 9.0 with ethanol (precipitation aid) and aqueous ammonia (precipitant) to form a precipitate. The amount of ethanol (precipitation aid) added at this time was 50% by volume based on the content in the coprecipitation tank.

生成した沈澱をろ過し、得られた沈澱物を温度
80℃で乾繰した。
The formed precipitate is filtered, and the obtained precipitate is heated to
It was dried at 80°C.

乾繰物を解砕後、内径40mmφの管状電気炉内に
乾繰物約150gを入れ、温度350℃で水蒸気を30分
間作用させて熱水処理を行い、ついで温度900℃
で1時間加熱分解を行つた。なお、熱水処理する
場合、温度約110℃の水蒸気を30分間炉内に流し
込み、出口側に濃度0.1モル/のNaOH溶液を
トラツプとして用いた。
After crushing the dry refining material, approximately 150 g of the dry refining material was placed in a tubular electric furnace with an inner diameter of 40 mmφ, and subjected to hot water treatment by applying steam at a temperature of 350°C for 30 minutes, and then heated to a temperature of 900°C.
Thermal decomposition was carried out for 1 hour. In the case of hot water treatment, steam at a temperature of about 110°C was poured into the furnace for 30 minutes, and a NaOH solution with a concentration of 0.1 mol/min was used as a trap on the outlet side.

得られた粉末の塩素含有量の定量分析法として
以下の方法を用いた。粉末約0.1gを温度900℃に
保持した内径30mmφの管状炉内に30分間入れた。
このとき、温度95℃に保持した水槽から発生した
水蒸気をキヤリアガスとして、空気を350ml/分
の速度で管状炉内に流した。なお出口側に濃度
0.6モル/の炭酸ナトリウム水溶液でトラツプ
して、イオンクロマトグラフイーで定量した。
The following method was used to quantitatively analyze the chlorine content of the obtained powder. Approximately 0.1 g of powder was placed in a tube furnace with an inner diameter of 30 mm and maintained at a temperature of 900° C. for 30 minutes.
At this time, air was flowed into the tube furnace at a rate of 350 ml/min using water vapor generated from a water tank maintained at a temperature of 95° C. as a carrier gas. Note that the concentration is on the outlet side.
It was trapped with a 0.6 mol/aqueous sodium carbonate solution and quantified by ion chromatography.

この結果塩素は検出されなかつた。 As a result, no chlorine was detected.

この粉末を走査型電子顕微鏡(SEM)で観察
したところ粒径0.3μ程度のそろつた微粉末であつ
た。
When this powder was observed using a scanning electron microscope (SEM), it was found to be a uniform fine powder with a particle size of approximately 0.3 μm.

この粉末96.2600gに対して酸化鉛(PbO)
223.2000gをアセトンを用いて湿式混合したのち
温度780℃で1時間焼成して鉛含有酸化物粉末を
得た。この粉末は走査型電子顕微鏡観察の結果
0.3μm程度の非常に粒度のそろつた微粉末であつ
た。
Lead oxide (PbO) for 96.2600g of this powder
223.2000 g was wet mixed using acetone and then fired at a temperature of 780° C. for 1 hour to obtain a lead-containing oxide powder. This powder is the result of scanning electron microscopy observation.
It was a fine powder with extremely uniform particle size of about 0.3 μm.

また不純物分析を行なつたところ、 不純物金属は10ppm以下で高純度であることが
判明した。
Furthermore, an impurity analysis revealed that the metal impurities were 10 ppm or less, indicating high purity.

この粉末の反応性を評価するためにこの微粉末
3.0gを成形圧力1000Kg/cm2で直径20mmφのデイス
ク状に形成し、温度1150℃で1時間焼結を行なつ
た。
This fine powder is used to evaluate the reactivity of this powder.
3.0 g was formed into a disk shape with a diameter of 20 mm at a molding pressure of 1000 Kg/cm 2 and sintered at a temperature of 1150° C. for 1 hour.

その結果、焼結密度は7.94g/cm3であり、ほぼ
理論密度の焼結体を得た。
As a result, the sintered density was 7.94 g/cm 3 , and a sintered body having approximately the theoretical density was obtained.

比較例 1 実施例1において温度350℃の熱水処理を行わ
ない点以外は、同様の条件で熱処理した。得られ
た粉末の塩素含有量を実施例1の方法で定量した
ところ320ppmであり、実施例1に比較して多量
の塩素不純物を含んでいることが判明した。この
ことは、熱水処理が塩素不純物除去に有効に作用
していることを示している。
Comparative Example 1 Heat treatment was carried out under the same conditions as in Example 1 except that the hot water treatment at a temperature of 350°C was not performed. The chlorine content of the obtained powder was determined by the method of Example 1 and was found to be 320 ppm, which revealed that it contained a larger amount of chlorine impurities than in Example 1. This shows that the hydrothermal treatment is effective in removing chlorine impurities.

実施例 2 実施例1で用いたZr,Ti,Mg,MnおよびNb
を含む茶かつ色溶液にさらに金属濃度1.01モル/
の塩化ストロンチウム水溶液をZr:Srの原子
比で0.125:0.05となるように混合して溶液を調
製した。
Example 2 Zr, Ti, Mg, Mn and Nb used in Example 1
In addition, the metal concentration of 1.01 mol /
A solution was prepared by mixing strontium chloride aqueous solutions such that the atomic ratio of Zr:Sr was 0.125:0.05.

これにより実施例1と同一の操作でZr,Ti,
Mg,Mn,NbおよびSrを含む熱処理粉末を得
た。
As a result, Zr, Ti,
A heat treated powder containing Mg, Mn, Nb and Sr was obtained.

この粉末も実施例1同様塩素は検出されなかつ
た。
Similarly to Example 1, no chlorine was detected in this powder.

得られた粉末は粒径0.3μm程度の粒度のそろつ
た微粉末であつた。
The obtained powder was a fine powder with a uniform particle size of about 0.3 μm.

この微粉末101.441gに対して一酸化鉛(PbO)
212,0400gをアセトンを用いて湿式混合したの
ち温度780℃で1時間焼成して鉛含有酸化物微粉
末を得た。
Lead monoxide (PbO) for 101.441g of this fine powder
After wet mixing 212,0400 g with acetone, the mixture was fired at a temperature of 780° C. for 1 hour to obtain a lead-containing oxide fine powder.

この粉末の特性は実施例1とほぼ同様であつ
た。
The properties of this powder were almost the same as in Example 1.

実施例 3 金属濃度1.02モル%の塩化ジルコニル水溶液と
金属濃度2.03モル/の四塩化チタン水溶液とを
Zr:Tiの原子比で0.125:0.4375となるように混
合し、この溶液に金属Mn粉末を、Ti:Mnの原
子比で30:1となるように撹拌しながら加え、
Zr,TiおよびMnを含む溶液を得た。
Example 3 A zirconyl chloride aqueous solution with a metal concentration of 1.02 mol% and a titanium tetrachloride aqueous solution with a metal concentration of 2.03 mol/% were combined.
Mix Zr:Ti so that the atomic ratio is 0.125:0.4375, add metal Mn powder to this solution while stirring so that the Ti:Mn atomic ratio is 30:1,
A solution containing Zr, Ti and Mn was obtained.

これとは別に水酸化ニオブの沈澱を用いて金属
濃度0.583モル/のNbのしゆう酸性溶液を調整
しこのニオブのしゆう酸酸性溶液中に粒径0.2μm
程度の酸化マグネシウム粉末をNb:Mgの原子比
で2:1となるようにホモジナイザーを用いて懸
濁分散させ、Nb,Mgを含む懸濁液を得た。
Separately, an acidic solution of Nb with a metal concentration of 0.583 mol/metal was prepared using the precipitation of niobium hydroxide, and the particle size of the particles in the acidic solution of niobium was 0.2 μm.
A homogenizer was used to suspend and disperse a certain amount of magnesium oxide powder so that the atomic ratio of Nb:Mg was 2:1 to obtain a suspension containing Nb and Mg.

次に前記Zr,Ti,Mnを含む溶液及びNb,Mg
を含む懸濁液をMg:Mnの原子比が20:1とな
る割合で、アンモニア水を用いてPH7に保持した
沈澱生成槽内に滴下してスラリー状物を得た。こ
の際、ホモジナイザーを用いて充分撹拌を行なつ
た。
Next, the solution containing Zr, Ti, Mn and Nb, Mg
A suspension containing Mg:Mn in an atomic ratio of 20:1 was dropped into a precipitation tank maintained at pH 7 using aqueous ammonia to obtain a slurry. At this time, sufficient stirring was performed using a homogenizer.

さらにスラリー状物100mlに対して1mlの過酸
化水素水を加えた。
Furthermore, 1 ml of hydrogen peroxide solution was added to 100 ml of the slurry.

得られたスラリー状物をろ過し得られた沈澱物
を温度80℃で乾燥後、解砕し、以下実施例1と同
一条件で熱水処理して粉末を得た。
The resulting slurry was filtered, and the resulting precipitate was dried at a temperature of 80° C., crushed, and then treated with hot water under the same conditions as in Example 1 to obtain a powder.

この粉末も実施例1同様塩素は検出されなかつ
た。
Similarly to Example 1, no chlorine was detected in this powder.

この粉末を走査型電子顕微鏡で観察したところ
粒径0.4μm程度に粒度のそろつた微粉末であるこ
とが確認された。
When this powder was observed with a scanning electron microscope, it was confirmed that it was a fine powder with a uniform particle size of about 0.4 μm.

次にこの粉末96.2600gに対して酸化鉛(PbO)
223.2000gをアセトンを用いて湿式混合した。
Next, for 96.2600g of this powder, lead oxide (PbO)
223.2000g were wet mixed using acetone.

しかるのち上記の粉末混合物を温度780℃で1
時間焼成して鉛含有酸化物粉末を得た。この粉末
は走査型電子顕微鏡観察の結果0.4μm程度の非常
に粒度のそろつた微粉末であつた。
After that, the above powder mixture was heated to 780°C.
A lead-containing oxide powder was obtained by firing for a period of time. As a result of scanning electron microscope observation, this powder was found to be a fine powder with extremely uniform particle size of approximately 0.4 μm.

(発明の効果) 本発明は、鉛含有酸化物微粉末を製造する方法
において、鉛含有酸化物を構成すべき各種金属及
びハロゲンを含む溶液又は懸濁液を沈澱剤の存在
下、反応させて得られた沈澱物を熱水処理するこ
とにより、ハロゲン化物等の不純物を200〜450℃
という比較的低い温度で容易に除去することがで
き、従来の洗浄工程を省略または簡略化でき、つ
いで加熱処理することにより高純度の粉末が得ら
れ、さらにこれを鉛化合物と反応させると高純度
の鉛含有酸化物微粉末が得られるという利点があ
る。
(Effects of the Invention) The present invention provides a method for producing a lead-containing oxide fine powder, in which a solution or suspension containing various metals and halogens to constitute the lead-containing oxide is reacted in the presence of a precipitant. By treating the obtained precipitate with hot water, impurities such as halides are removed at 200 to 450℃.
The conventional cleaning process can be omitted or simplified, and a high-purity powder can be obtained by subsequent heat treatment, which can be further reacted with a lead compound to obtain a high-purity powder. This method has the advantage that lead-containing oxide fine powder of 100% can be obtained.

Claims (1)

【特許請求の範囲】 1 鉛含有酸化物微粉末の製造にあたり、 (a):鉛含有酸化物を構成すべき各種金属及びハロ
ゲンを含む溶液、又は懸濁液を沈澱剤と撹拌下
に反応させてスラリー状物とし、これから上澄
みを除去して沈澱物を得る工程、 (b):前記工程で得られた沈澱物を温度200〜450℃
で熱水処理して不純物を除去し、ついで加熱処
理して粉末とする工程、 (c):前記工程で得られた粉末に鉛化合物粉末を添
加混合する工程及び、 (d):前記工程で得られた粉末混合物を温度600〜
1000℃で焼成する工程の各工程を結合すること
を特徴とする高純度鉛含有酸化物微粉末の製造
方法。
[Claims] 1. In producing the lead-containing oxide fine powder, (a): A solution or a suspension containing various metals and halogens to constitute the lead-containing oxide is reacted with a precipitant under stirring. (b): The precipitate obtained in the above step is heated to a temperature of 200 to 450°C.
(c): Adding and mixing lead compound powder to the powder obtained in the above step; (d): In the above step, The resulting powder mixture is heated to a temperature of 600~
A method for producing high-purity lead-containing oxide fine powder, characterized by combining each step of firing at 1000°C.
JP60140289A 1985-06-28 1985-06-28 Production of high-purity lead-containing oxide fine powder Granted JPS623018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60140289A JPS623018A (en) 1985-06-28 1985-06-28 Production of high-purity lead-containing oxide fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60140289A JPS623018A (en) 1985-06-28 1985-06-28 Production of high-purity lead-containing oxide fine powder

Publications (2)

Publication Number Publication Date
JPS623018A JPS623018A (en) 1987-01-09
JPH0248490B2 true JPH0248490B2 (en) 1990-10-25

Family

ID=15265322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60140289A Granted JPS623018A (en) 1985-06-28 1985-06-28 Production of high-purity lead-containing oxide fine powder

Country Status (1)

Country Link
JP (1) JPS623018A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158819A (en) * 1984-12-29 1986-07-18 Denki Kagaku Kogyo Kk Production of lead-containing fine powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158819A (en) * 1984-12-29 1986-07-18 Denki Kagaku Kogyo Kk Production of lead-containing fine powder

Also Published As

Publication number Publication date
JPS623018A (en) 1987-01-09

Similar Documents

Publication Publication Date Title
KR930002232B1 (en) Process for producing composition which includes perovskite compound
JP4992003B2 (en) Method for producing metal oxide fine particles
JP2004508261A (en) Method for producing mixed metal oxide and metal oxide compound
KR20070051935A (en) Fine-particle alkaline-earth titanates and method for the production thereof using titanium oxide particles
UA123135C2 (en) Method for Producing Alloy Powders Based on Titanium Metal
JP2004517020A (en) Zirconia in the form of fine powder, zirconia hydroxycarbonate and methods for producing them
JPH0251847B2 (en)
JP2010285334A (en) Method for producing composite oxide fine particle
JPH0246531B2 (en)
JP2764111B2 (en) Method for producing perovskite ceramic powder
JPH0321487B2 (en)
JPH0248490B2 (en)
CN1295976A (en) Method for producing high-activity super fine grain barium titanate
CN111094189A (en) Method for preparing electrode active material
JPH03141115A (en) Production of fine yttrium oxide powder
JPH0255375B2 (en)
JPH0210091B2 (en)
JP4185197B2 (en) Method for producing bismuth (III) oxide
JPS6086024A (en) Production of titanic acid salt
KR20060102928A (en) Manufacturing method of barium titanate powder
JPS63144116A (en) Production of oxide particle
JPS61186220A (en) Production of fine powder of lead-containing oxide
JPH11140513A (en) Manufacture of spherical nickel powder
JPS59232920A (en) Manufacture of zirconium oxide powder containing yttrium as solid solution
JPS62148323A (en) Production of high-purity fine powder of oxide containing lead

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term