JPS63156069A - Manufacture of mixed powder comprising zirconium oxide, aluminum oxide and carbide - Google Patents

Manufacture of mixed powder comprising zirconium oxide, aluminum oxide and carbide

Info

Publication number
JPS63156069A
JPS63156069A JP61304195A JP30419586A JPS63156069A JP S63156069 A JPS63156069 A JP S63156069A JP 61304195 A JP61304195 A JP 61304195A JP 30419586 A JP30419586 A JP 30419586A JP S63156069 A JPS63156069 A JP S63156069A
Authority
JP
Japan
Prior art keywords
powder
oxide
zirconium
carbide
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61304195A
Other languages
Japanese (ja)
Inventor
隆博 和田
成司 安達
三原 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61304195A priority Critical patent/JPS63156069A/en
Priority to US07/041,810 priority patent/US4902457A/en
Publication of JPS63156069A publication Critical patent/JPS63156069A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超硬工具や高温構造材用の原料として用いら
れる酸化ジルコニウムと酸化アルミニウムと炭化物とよ
りなる混合粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a mixed powder of zirconium oxide, aluminum oxide, and carbide, which is used as a raw material for cemented carbide tools and high-temperature structural materials.

従来の技術 従来、酸化ジルコニウム−酸化アルミニウムー炭化物複
合焼結体用の混合粉末は、まず金属またはその酸化物に
炭素粉末または固形炭素を混合し、高温で反応させるこ
とによって合成した炭化物粉末と酸化ジルコニウム粉末
、酸化アルミニウム粉末を十分に混合することによって
製造してぃた。
Conventional technology Conventionally, mixed powder for zirconium oxide-aluminum oxide-carbide composite sintered bodies has been produced by first mixing carbon powder or solid carbon with a metal or its oxide, and reacting it at high temperature to synthesize carbide powder and oxidation. It was manufactured by thoroughly mixing zirconium powder and aluminum oxide powder.

発明が解決しようとする問題点 この方法は、製造工程が長く複雑であるため不純物が混
入しやす<、シかもエネルギー消費が非常に大きかうた
Problems to be Solved by the Invention This method requires a long and complicated manufacturing process, which makes it easy for impurities to be mixed in and consumes a lot of energy.

問題点を解決するための手段 本発明の特徴は、ジルコニウム金属粉末(反応後には酸
化ジルコニウムとなる)と、アルミニウム金属粉末(反
応後には酸化アルミニウムとなる)と、酸化物粉末(反
応後には炭化物になる)と、炭素とからなる混合物の成
形体の一部を強熱点火して燃焼反応を起こさせ、この化
学反応によって炭化物と酸化ジルコニウム、酸化アルミ
ニウムの粒子を合成することにある。
Means for Solving the Problems The present invention is characterized by the following: zirconium metal powder (becomes zirconium oxide after reaction), aluminum metal powder (becomes aluminum oxide after reaction), and oxide powder (becomes carbide after reaction). The method involves igniting a part of a compact of a mixture of carbon and carbon to cause a combustion reaction, and through this chemical reaction, carbide, zirconium oxide, and aluminum oxide particles are synthesized.

作用 本発明によれば、成形体に点火するだけで高純度の酸化
ジルコニウムと酸化アルミニウムと炭化物とよりなる混
合粉末が容易に得られる。したがって従来の炭化物と酸
化ジルコニウムと酸化アルミニウムの粉末を用いて作製
する混合粉末の製造方法と比較してきわめて省エネルギ
ーであり、しかも得られる粉体もきわめて高純度である
According to the present invention, a mixed powder of high-purity zirconium oxide, aluminum oxide, and carbide can be easily obtained by simply igniting a compact. Therefore, compared to the conventional manufacturing method of a mixed powder using carbide, zirconium oxide, and aluminum oxide powders, this method is extremely energy-saving, and the resulting powder is also extremely high in purity.

実施例 実施例1 出発原料として粒径10μm以下のジルコニウム粉末、
粒径1θμI以下のアルミニウム粉末、平均粒径1μ慣
の二酸化チタン(TiO2)粉末、それにアセチレンを
原料とするカーボンブラックを用い、それらを0.2 
+ 1.6 : 1.4 : 1.26のモル比で混合
した。そしてその混合粉体を直径20mm 、高さ2〇
−1の柱状にプレス成形した。成形体への着火は、試料
上部に設けたタングステンフィラメントに通電すること
によって行った。成形体を室温・真空(1mmHg)雰
囲気下で、着火用ヒーターに通電して反応を開始させた
。得られた多孔体をボールミルを用いて粉砕した後、X
線回折で同定したところ、炭化チタンと酸化ジルコニウ
ム、酸化アルミニウムの回折線しか見られなかった。得
られた混合粉末の粒径は、それぞれ0.1〜0.2μm
であり、出発原料の粒径よりも小さくなっていた。
Examples Example 1 Zirconium powder with a particle size of 10 μm or less as a starting material,
Using aluminum powder with a particle size of 1θμI or less, titanium dioxide (TiO2) powder with an average particle size of 1μI, and carbon black made from acetylene,
+1.6:1.4:1.26 molar ratio. Then, the mixed powder was press-molded into a column having a diameter of 20 mm and a height of 20-1. The molded body was ignited by energizing a tungsten filament provided above the sample. The molded body was placed at room temperature under a vacuum (1 mmHg) atmosphere, and the ignition heater was energized to start the reaction. After pulverizing the obtained porous body using a ball mill,
When identified by line diffraction, only the diffraction lines of titanium carbide, zirconium oxide, and aluminum oxide were observed. The particle size of the obtained mixed powder is 0.1 to 0.2 μm, respectively.
The particle size was smaller than that of the starting material.

このプロセスの化学反応式は以下のようになる。The chemical reaction equation for this process is as follows.

0.2Zr+1.6AI+1.4TiO2+1.26C
O,2ZrO2+0.8AI 203+1.4Tico
、9この化学反応式かられかるようにこの反応は、Zr
金属及びAI金金属よるTiO2の還元を基本にして、
還元されたTi金属(融解して液体になっているものと
思われる)が、Cと反応してTiCになるものである。
0.2Zr+1.6AI+1.4TiO2+1.26C
O,2ZrO2+0.8AI 203+1.4Tico
, 9 As can be seen from this chemical reaction equation, this reaction
Based on the reduction of TiO2 by metal and AI gold metal,
The reduced Ti metal (presumably melted into liquid) reacts with C to become TiC.

このときの反応熱が大きいので外部から加熱しなくても
試料が高温(2000℃程度まで上昇する)になりZr
O2、Al 203とTiCからなる混合粉末が得られ
る。
Since the heat of reaction at this time is large, the sample reaches a high temperature (up to about 2000°C) even without external heating, and the Zr
A mixed powder consisting of O2, Al 203 and TiC is obtained.

実施例2 出発原料として、粒径10μ薄以下のジルコニウム粉末
、粒径10μm以下のアルミニウム粉末、平均粒径1μ
−の五酸化ニオブ(Nb20s)およびアセチレンを原
料とするカーボンブラックを用い、それらを0.4 :
 1.2 : 0.52 : 1のモル比で混合後、実
施例1と同様のプロセスで処理した。得られた混合粉末
をX線回折を用いて同定したところ炭化ニオブ、酸化ジ
ルコニウム、酸化アルミニウムの回折線しか見られなか
った。得られた混合粉末の粒径は、それぞれ0.1〜0
.2μmであり、出発原料の粒径よりも小さくなってい
た。
Example 2 As starting materials, zirconium powder with a particle size of 10 μm or less, aluminum powder with a particle size of 10 μm or less, and an average particle size of 1 μm.
- Using carbon black made from niobium pentoxide (Nb20s) and acetylene, they were mixed at 0.4:
After mixing at a molar ratio of 1.2:0.52:1, the same process as in Example 1 was performed. When the obtained mixed powder was identified using X-ray diffraction, only the diffraction lines of niobium carbide, zirconium oxide, and aluminum oxide were observed. The particle size of the obtained mixed powder is 0.1 to 0.
.. The particle size was 2 μm, which was smaller than the particle size of the starting material.

実施例3 出発原料として、粒径325メツシユ以下のイツトリウ
ムを5mo1%含有したジルコニウム粉末、粒径lOμ
国以下のアルミニウム粉末、平均粒径1μmの五酸化ニ
オブ(Nb20s )およびアセチレンを原料とするカ
ーボンブラックを用い、本実施例ではさらに平均粒径0
.5μmのイツトリウムで安定化した酸化ジルコニウム
粉末を加えた。それらを0.2 : 1.6 : 0.
559 : 1.11Bのモル比で混合後、実施例1と
同様のプロセスで処理した。得られた混合粉末をX線回
折を用いて同定したところ炭化ニオブ、酸化ジルコニウ
ム、酸化アルミニウムの回折線しか見られなかった。得
られた混合粉末の粒径は、それぞれ0.1〜0.3μm
であり、出発原料の粒径よりも小さくなっていた。
Example 3 As a starting material, zirconium powder containing 5 mo1% of yttrium with a particle size of 325 mesh or less, a particle size of lOμ
Carbon black made from aluminum powder, niobium pentoxide (Nb20s) with an average particle size of 1 μm, and acetylene was used as raw materials, and in this example, the average particle size was 0.
.. 5 μm of yttrium stabilized zirconium oxide powder was added. They are 0.2: 1.6: 0.
After mixing at a molar ratio of 559:1.11B, the same process as in Example 1 was performed. When the obtained mixed powder was identified using X-ray diffraction, only the diffraction lines of niobium carbide, zirconium oxide, and aluminum oxide were observed. The particle size of the obtained mixed powder is 0.1 to 0.3 μm, respectively.
The particle size was smaller than that of the starting material.

実施例4 出発原料として粒径10μ層以下のジルコニウム粉末、
粒径10μ−以下のアルミニウム粉末、平均粒径3μ曽
の三酸化二チタン(Ti20s)およびアセチレンを原
料とするカーボンブラックを用い、それらを0.6 :
 0.8 : 0.8 : 1.44のモル比で1昆合
後、実施例1と同様のプロセスで処理した。得られた混
合粉末をX線回折を用いて同定したところ炭化チタンと
酸化ジルコニウムの回折線しか見られなかった。得られ
た混合粉末の粒径は、それぞれ0.3〜0.5μmであ
り、出発原料の粒径よりも小さくなっていた。
Example 4 Zirconium powder with a particle size of 10 μm or less as a starting material,
Using aluminum powder with a particle size of 10μ or less, dititanium trioxide (Ti20s) with an average particle size of 3μ, and carbon black made from acetylene,
After mixing at a molar ratio of 0.8:0.8:1.44, the same process as in Example 1 was carried out. When the obtained mixed powder was identified using X-ray diffraction, only the diffraction lines of titanium carbide and zirconium oxide were observed. The particle size of the obtained mixed powder was 0.3 to 0.5 μm, which was smaller than the particle size of the starting raw material.

発明の効果 本発明の製造方法によれば、ジルコニウム粉末と、アル
ミニウム粉末と、酸化物と、炭素とからなる混合物の成
形体の一部に点火して燃焼反応を起こさせるだけで勤化
ジルコニウムと酸化アルミニウム、炭化物からなる混合
粉末が作製できる。
Effects of the Invention According to the manufacturing method of the present invention, zirconium carbide can be produced by simply igniting a part of the molded body of a mixture of zirconium powder, aluminum powder, oxide, and carbon to cause a combustion reaction. A mixed powder consisting of aluminum oxide and carbide can be produced.

従って、本発明の製造方法によれば、従来の炭化物粉末
に酸化ジルコニウムと酸化アルミニウムを混合する製造
方法に比較してはるかに低温のプロセスで、つまり、き
わめて小さなエネルギーで、酸化ジルコニウムと、酸化
アルミニウムと炭化物の混合粉末が作製できる。また、
得られる混合粉末は純度が高く、その粒径はいずれも0
.1−0.3μMの範囲で分布していて、出発原料の粒
径よりも小さくなっている。したがって焼結体作製の原
料粉末として非常に遺したものである。
Therefore, according to the manufacturing method of the present invention, zirconium oxide and aluminum oxide can be mixed in a much lower temperature process, that is, with extremely small energy, compared to the conventional manufacturing method of mixing zirconium oxide and aluminum oxide with carbide powder. A mixed powder of carbide and carbide can be prepared. Also,
The resulting mixed powder has high purity, and its particle size is 0.
.. It is distributed in the range of 1-0.3 μM, which is smaller than the particle size of the starting material. Therefore, it is very important as a raw material powder for producing sintered bodies.

Claims (4)

【特許請求の範囲】[Claims] (1)ジルコニウム粉末、アルミニウム粉末、酸化物粉
末および炭素からなる成形体の一部に点火して燃焼過程
を開始させ、その後のジルコニウム粉末とアルミニウム
粉末、酸化物粉末および炭素の反応を、燃焼過程の結果
発生する熱によって進行させる酸化ジルコニウムと酸化
アルミニウムと炭化物とよりなる混合粉末の製造方法。
(1) A part of the compact made of zirconium powder, aluminum powder, oxide powder, and carbon is ignited to start the combustion process, and the subsequent reaction between the zirconium powder, aluminum powder, oxide powder, and carbon is controlled by the combustion process. A method for producing a mixed powder consisting of zirconium oxide, aluminum oxide, and carbide, which is progressed by heat generated as a result of.
(2)加熱条件下で、ジルコニウム粉末とアルミニウム
粉末、酸化物粉末および炭素からなる成形体に点火して
燃焼過程を開始させることを特徴とする特許請求の範囲
第1項記載の酸化ジルコニウムと酸化アルミニウムと炭
化物とよりなる混合粉末の製造方法。
(2) Zirconium oxide and oxidation according to claim 1, characterized in that a compact made of zirconium powder, aluminum powder, oxide powder, and carbon is ignited under heating conditions to start a combustion process. A method for producing a mixed powder consisting of aluminum and carbide.
(3)酸化物粉末が酸化チタンあるいは酸化ニオブのい
ずれかである特許請求の範囲第1項記載の酸化ジルコニ
ウムと酸化アルミニウムと炭化物とよりなる混合粉末の
製造方法。
(3) The method for producing a mixed powder of zirconium oxide, aluminum oxide, and carbide according to claim 1, wherein the oxide powder is either titanium oxide or niobium oxide.
(4)成形体中に酸化ジルコニウムの安定化元素の金属
粉末、あるいは酸化物粉末を混合する特許請求の範囲第
1項記載の酸化ジルコニウムと酸化アルミニウムと炭化
物とよりなる混合粉末の製造方法。
(4) A method for producing a mixed powder of zirconium oxide, aluminum oxide, and carbide according to claim 1, wherein a metal powder of a stabilizing element of zirconium oxide or an oxide powder is mixed in the compact.
JP61304195A 1986-04-07 1986-12-19 Manufacture of mixed powder comprising zirconium oxide, aluminum oxide and carbide Pending JPS63156069A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61304195A JPS63156069A (en) 1986-12-19 1986-12-19 Manufacture of mixed powder comprising zirconium oxide, aluminum oxide and carbide
US07/041,810 US4902457A (en) 1986-04-07 1987-04-07 Method for manufacturing a porous material or a composite sintered product comprising zirconium oxide and a carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61304195A JPS63156069A (en) 1986-12-19 1986-12-19 Manufacture of mixed powder comprising zirconium oxide, aluminum oxide and carbide

Publications (1)

Publication Number Publication Date
JPS63156069A true JPS63156069A (en) 1988-06-29

Family

ID=17930162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61304195A Pending JPS63156069A (en) 1986-04-07 1986-12-19 Manufacture of mixed powder comprising zirconium oxide, aluminum oxide and carbide

Country Status (1)

Country Link
JP (1) JPS63156069A (en)

Similar Documents

Publication Publication Date Title
US4520114A (en) Production of metastable tetragonal zirconia
US3577487A (en) Preparation of submicron sized alkaline earth titanate and zirconate powders
US5660774A (en) Process for making a sintered body from ultra-fine superconductive particles
US3352632A (en) Production of lead titanate and lead zirconate for ceramic bodies
JPS63156069A (en) Manufacture of mixed powder comprising zirconium oxide, aluminum oxide and carbide
JPS62256767A (en) Manufacture of composite sintered body comprising carbonitride and oxide
JPH01122964A (en) Zirconia stabilized by yttrium and its production
JP3190060B2 (en) Method for producing fine ceria solid solution tetragonal zirconia powder
JPH027906B2 (en)
JPS63151672A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JPS62235258A (en) Manufacture of carbide oxide composite sintered body
JPS62235256A (en) Manufacture of zirconium oxide base composite sintered body
JPS62256773A (en) Manufacture of composite sintered body comprising carbide and composite oxide
JPS63156015A (en) Production of powdery mixture consisting of zirconium oxide and carbide
JP2616772B2 (en) Method for producing proton conductive ceramics
JPH0712922B2 (en) Method of forming inorganic hydroxide precipitate
JP2607517B2 (en) Method for producing zirconia ceramics
Shukla et al. Combustion Synthesis: A Versatile Method for Functional Materials
JPS62288166A (en) Manufacture of tungsten carbide-oxide composite sintered body
JPS62288165A (en) Manufacture of titanium carbide-oxide composite sintered body
JPS62256766A (en) Manufacture of composite sintered body comprising nitride and oxide
JPS62288164A (en) Manufacture of vanadium carbide-oxide composite sintered body
JPS63282165A (en) Powder mixture containing zirconium oxide and boride and production of composite sintered body containing said powder
JPS61106457A (en) Manufacture of plzt light permeable ceramics
JPS6389457A (en) Manufacture of composite sintered body comprising carbon and composite oxide