JPS62288165A - Manufacture of titanium carbide-oxide composite sintered body - Google Patents

Manufacture of titanium carbide-oxide composite sintered body

Info

Publication number
JPS62288165A
JPS62288165A JP61132277A JP13227786A JPS62288165A JP S62288165 A JPS62288165 A JP S62288165A JP 61132277 A JP61132277 A JP 61132277A JP 13227786 A JP13227786 A JP 13227786A JP S62288165 A JPS62288165 A JP S62288165A
Authority
JP
Japan
Prior art keywords
sintered body
oxide
titanium carbide
powder
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61132277A
Other languages
Japanese (ja)
Other versions
JPH075368B2 (en
Inventor
隆博 和田
成司 安達
三原 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61132277A priority Critical patent/JPH075368B2/en
Publication of JPS62288165A publication Critical patent/JPS62288165A/en
Publication of JPH075368B2 publication Critical patent/JPH075368B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、超硬工具や高温構造材または各種機能材料と
して用いられる炭化チタンと酸化物からなる複合焼結体
の製造方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention Industrial Application Field The present invention is directed to the production of composite sintered bodies made of titanium carbide and oxides, which are used as cemented carbide tools, high-temperature structural materials, or various functional materials. Regarding the method.

従来の技術 従来、炭化チタンと酸化物からなる複合焼結体は、まず
金属チタンまたはその酸化物に炭素粉末または固形炭素
を混合し、高温で反応させることによって合成した炭化
チタン粉末と酸化物粉末を十分に混合した後高温高圧下
で焼結させることによって製造していた。
Conventional technology Conventionally, a composite sintered body consisting of titanium carbide and an oxide has been synthesized by mixing titanium metal or its oxide with carbon powder or solid carbon and reacting it at high temperature. It was manufactured by thoroughly mixing the ingredients and then sintering them at high temperature and pressure.

発明が解決しようとする問題点 この方法は、製造工程が長(複雑であるため不純物が混
入しやすく、シかもエネルギー消費が非常に大きかった
Problems to be Solved by the Invention This method requires a long (and complex) manufacturing process, which makes it easy for impurities to be mixed in, and consumes a lot of energy.

問題点を解決するための手段 本発明の特徴は、還元用金属粉末(反応後には酸化物と
なる)と、炭素と、三酸化二チタン(Ti203)およ
び−酸化チタン(T i O)のうちの少なくとも一種
(反応後には炭化チタンになる)とからなる混合物の成
形体に圧力をかけた状態で、その成形体の一部を強熱点
火して燃焼反応を起こさせ、この化学反応によって炭化
チタンと酸化物の粒子を合成し、その反応熱によってこ
れらの粒子を焼結して炭化チタンと酸化物からなる複合
焼結体を得ることにある。
Means for Solving the Problems The present invention is characterized by combining reducing metal powder (which becomes an oxide after reaction), carbon, dititanium trioxide (Ti203), and titanium oxide (T i O). Under pressure, a part of the molded body is ignited at high heat to cause a combustion reaction, and this chemical reaction causes carbonization. The purpose is to synthesize particles of titanium and oxide, and sinter these particles using the heat of reaction to obtain a composite sintered body consisting of titanium carbide and oxide.

作用 本発明によれば、加圧下で成形体に点火するだけで、高
密度の炭化チタンと酸化物からなる複合焼結体が容易に
得られる。したがって従来の炭化チタンと酸化物の粉末
を用いて作成する焼結体の製造方法と比較してきわめて
省エネルギーであり、しかも得られる焼結体もきわめて
高純度である。
According to the present invention, a high-density composite sintered body made of titanium carbide and an oxide can be easily obtained by simply igniting the compact under pressure. Therefore, compared to the conventional manufacturing method of a sintered body using titanium carbide and oxide powder, this method is extremely energy-saving, and the obtained sintered body is also extremely high in purity.

実施例 実施例1 出発原料として粒径10μm以下のアルミニウム粉末、
平均粒径1μmの三酸化二チタン(Ti so 3)粉
末、それにアセチレンを原料とするカーボンブラックを
用い、それらを11:1.8のモル比で混合後、直径1
OIII111高さ10mmの柱状にプレス成形した。
Examples Example 1 Aluminum powder with a particle size of 10 μm or less as a starting material,
Dititanium trioxide (Ti SO 3) powder with an average particle size of 1 μm and carbon black made from acetylene were used, and after mixing them at a molar ratio of 11:1.8, a powder with a diameter of 1 μm was used.
OIII111 was press-molded into a columnar shape with a height of 10 mm.

この成形体を炭化ケイ米製の型材を用いた一軸加圧真空
ホットプレスを用いて焼結を行った。成形体への着火は
、タングステンフィラメントに通電することによって行
った。試料を300℃・真空(1mmHg)雰囲気・0
.15 (EPaの圧力条件下で、着火用ヒーターに通
電して反応を開始させた。得られた焼結体をXvA回折
を用いて同定したところ炭化チタンと酸化アルミニウム
の回折線しか見られなかった。またこの焼結体の相対密
度は、約95%であった。
This molded body was sintered using a uniaxial pressure vacuum hot press using a mold made of silicon carbide rice. The molded body was ignited by energizing the tungsten filament. Sample at 300℃, vacuum (1mmHg) atmosphere, 0
.. 15 (Under the pressure condition of EPa, the ignition heater was energized to start the reaction. When the obtained sintered body was identified using XvA diffraction, only the diffraction lines of titanium carbide and aluminum oxide were observed. Further, the relative density of this sintered body was about 95%.

プロセスの化学反応式は以下のようになる。The chemical reaction equation of the process is as follows.

2Al+Ti 20 G+1.8C →A1203+2Ticsz+。2Al+Ti 20G+1.8C →A1203+2Ticsz+.

この化学反応式かられかるようにこの反応は、AIによ
るTi2O3の還元を基本にして、還元されたTi金属
(融液になっているものと思われる)がCと反応してT
 iCst toになるのである。このときの反応熱が
大きいので外部から少し加熱するだけで試料が高温(2
000℃程度まで上昇する)になり、しかも加圧してい
るのでA12 os粒子とT1Cs、t。
As can be seen from this chemical reaction formula, this reaction is based on the reduction of Ti2O3 by AI, and the reduced Ti metal (presumably in the form of a melt) reacts with C to produce T
It becomes iCst to. The heat of reaction at this time is large, so just a little heating from the outside will raise the sample to a high temperature (2
000℃), and since it is pressurized, the A12 os particles and T1Cs,t.

粒子が焼結してAl2O3とT1Cs/+oからなる複
合焼結体が得られるのである。
The particles are sintered to obtain a composite sintered body consisting of Al2O3 and T1Cs/+o.

表1には他の試料についての実験結果もあわせて示した
。比較例で示したように(試料5)酸化チタン源として
TiO2だけを用いた場合には、TiO2やTiOを用
いた場合と比較して反応時の体積収縮が大きいので、得
られる複合焼結体の相対密度が低いことがわかる。それ
に対してTi2O3やTiOと原料として用いる酸化チ
タンを変化させることによって、点火時の試料温度を少
し高くする必要があるが、得られる焼結体の相対密度は
この順番で高(することが出来る。これは、TiOのよ
うな低級酸化物を用いると、反応時に発生する熱量は小
さい(そのため若干の加熱を要する)が、反応時の体積
収縮が小さいので試料にスムーズにプレス圧力が伝達で
き、そのため得られる複合焼結体の相対密度が高(なる
ものと考えられる。
Table 1 also shows experimental results for other samples. As shown in the comparative example (sample 5), when only TiO2 is used as a titanium oxide source, the volumetric shrinkage during reaction is larger than when TiO2 or TiO is used, so the resulting composite sintered body It can be seen that the relative density of is low. On the other hand, by changing the titanium oxide used as a raw material with Ti2O3 or TiO, it is necessary to slightly raise the sample temperature at the time of ignition, but the relative density of the obtained sintered body can be increased in this order. This is because when lower oxides such as TiO are used, the amount of heat generated during the reaction is small (therefore some heating is required), but the volumetric contraction during the reaction is small, so the press pressure can be smoothly transmitted to the sample. Therefore, it is thought that the relative density of the obtained composite sintered body is high.

表1の試料3はチタン源としてTi2O3とTiO2を
同時に用いた場合であり、試料4はチタン源としてTi
OとTiC2を同時に用いた場合でる。このような二種
類以上のチタン酸化物を用いる方法は、複合焼結中休の
Al20GとTiCの比率を変化させたい場合や加熱温
度をコントロールしたい場合に有用である。それで試料
3は試料1に比較して加熱温度が500℃から350℃
まで低下し、試料4は試料2に比較して加熱温度が30
0℃から200℃まで低下している。これは、TiO2
を成形体中に混合して反応熱を太き(した効果である。
Sample 3 in Table 1 is a case where Ti2O3 and TiO2 are used simultaneously as a titanium source, and sample 4 is a case where Ti2O3 and TiO2 are used as a titanium source.
This occurs when O and TiC2 are used simultaneously. Such a method of using two or more types of titanium oxides is useful when it is desired to change the ratio of Al20G and TiC during composite sintering or when it is desired to control the heating temperature. Therefore, the heating temperature of sample 3 was 500℃ to 350℃ compared to sample 1.
The heating temperature of Sample 4 was 30% lower than that of Sample 2.
The temperature has decreased from 0°C to 200°C. This is TiO2
This is the effect of increasing the reaction heat by mixing in the molded body.

(以下余白) 実施例2 出発原料として粒径10μm以下のジルコニウム粉末、
平均粒径2μmの三酸化ニチタン粉末(Ti203)、
それにアセチレンを原料とするカーボンブラックを用い
、それらを3:2:4のモル比でγ足台後、実施例1と
同様のプロセスで処理した。
(Left below) Example 2 Zirconium powder with a particle size of 10 μm or less as a starting material,
Nititanium trioxide powder (Ti203) with an average particle size of 2 μm,
Carbon black made from acetylene was used as a raw material, and the same process as in Example 1 was carried out after using a γ-stool at a molar ratio of 3:2:4.

ただし本実施例では、0.1GPaの加圧条件で行った
。得られた焼結体をX線回折を用いて同定したところ炭
化チタンと正方品の酸化ジルコニウムと単斜晶の酸化ジ
ルコニウムの回折線しか見られなかった。正方晶の酸化
ジルコニウムと単斜晶の酸化ジルコニウムの比率は約1
=1であった。またこの焼結体の相対密度は97%であ
った。
However, in this example, the pressure was applied at 0.1 GPa. When the obtained sintered body was identified using X-ray diffraction, only the diffraction lines of titanium carbide, tetragonal zirconium oxide, and monoclinic zirconium oxide were observed. The ratio of tetragonal zirconium oxide to monoclinic zirconium oxide is approximately 1.
=1. Moreover, the relative density of this sintered body was 97%.

表2には他の試料についての実験結果もあわせて示した
。この表から実施fM1と同様にチタン源としてTiO
2だけを用いた場合には、Ti 203やTiOを原料
として用いた場合に比較して反応時の体積収縮が若干大
きいので、得られる複合焼結体の相対密度が他の試料に
比較して少し低いことがわかる。そしてT 20 CI
、TiOと用いる酸1ヒチタンを変化させることによっ
て点火時の試料温度を少し高くする必要があるが得られ
る焼結体の相対密度はこの順番で高くなる。
Table 2 also shows experimental results for other samples. From this table, it can be seen that TiO
When only Ti203 is used, the volume shrinkage during reaction is slightly larger than when Ti203 or TiO is used as a raw material, so the relative density of the resulting composite sintered body is lower than that of other samples. You can see that it's a little low. and T 20 CI
Although it is necessary to slightly raise the sample temperature at the time of ignition by changing TiO and the monohydritanium acid used, the relative density of the obtained sintered body increases in this order.

表2の試料8はチタン源としてTiOと’rio2を同
時に用いた場合であり、試料9はチタン源としてTi 
203とTiO2を同時に用いた場合である。それで試
料8は試料6に比較して加熱温度が700℃から500
℃まで低下し、試料9は試料7に比較して加熱温度が5
00℃から350℃まで低下している。
Sample 8 in Table 2 is a case where TiO and 'rio2 are used simultaneously as a titanium source, and sample 9 is a case where TiO and 'rio2 are used as a titanium source.
This is a case where 203 and TiO2 are used simultaneously. Therefore, sample 8 has a heating temperature of 700℃ to 500℃ compared to sample 6.
℃, and the heating temperature of sample 9 was 5℃ compared to sample 7.
The temperature has decreased from 00℃ to 350℃.

発明の効果 本発明の製造方法によれば、還元金属の粉末と、炭素と
、それに三酸化二チタンおよび一酸化チタンのうちの少
なくとも一種とからからなる混合物の成形体に圧力をか
けた状態で、その成形体の一部を強熱点火して燃焼反応
を起こさせるだけで高密度炭化チタン−酸化物複合焼結
体が作製できる。従って、従来の炭化チタン粉末と酸化
物粉末を用いた製造方法に比較してはるかに低温のプロ
セスで、つまり、きわめて小さなエネルギーで炭化チタ
ン−酸化物複合焼結体が作製できる。しかも、得られた
焼結体は、従来の製造方法によって作製した焼結体と全
く変わらない特性を有している。
Effects of the Invention According to the manufacturing method of the present invention, a molded body of a mixture consisting of reduced metal powder, carbon, and at least one of dititanium trioxide and titanium monoxide is pressurized. A high-density titanium carbide-oxide composite sintered body can be produced simply by igniting a part of the molded body at high heat to cause a combustion reaction. Therefore, compared to the conventional manufacturing method using titanium carbide powder and oxide powder, a titanium carbide-oxide composite sintered body can be produced with a much lower temperature process, that is, with extremely less energy. Furthermore, the obtained sintered body has properties that are completely the same as those of sintered bodies produced by conventional manufacturing methods.

Claims (6)

【特許請求の範囲】[Claims] (1)還元用金属粉末と、炭素と、三酸化二チタンおよ
び一酸化チタンのうちの少なくとも一種とからなる成形
体を、加圧条件下でその成形体の一部に点火して燃焼過
程を開始させ、その後の金属粉末と酸化物粉末と炭素と
の反応及び生成した炭化チタンと酸化物の焼結を、燃焼
過程の結果発生する熱によって進行させる炭化チタンと
酸化物からなる複合焼結体の製造方法。
(1) A combustion process is initiated by igniting a part of the compact made of reducing metal powder, carbon, and at least one of dititanium trioxide and titanium monoxide under pressurized conditions. A composite sintered body made of titanium carbide and an oxide, in which the subsequent reaction between metal powder, oxide powder, and carbon and sintering of the generated titanium carbide and oxide proceed with heat generated as a result of the combustion process. manufacturing method.
(2)加圧・加熱の条件下で、還元用金属粉末と、炭素
と、三酸化二チタンおよび一酸化チタンのうちの少なく
とも一種とからなる成形体に点火して燃焼過程を開始さ
せることを特徴とする特許請求の範囲第1項記載の炭化
チタンと酸化物からなる複合焼結体の製造方法。
(2) Under pressurized and heated conditions, a compact consisting of reducing metal powder, carbon, and at least one of dititanium trioxide and titanium monoxide is ignited to start a combustion process. A method for producing a composite sintered body made of titanium carbide and an oxide according to claim 1.
(3)還元用金属粉末が、アルミニウム粉末およびジル
コニウム粉末のうちのいずれかである特許請求の範囲第
1項記載の炭化チタンと酸化物からなる複合焼結体の製
造方法。
(3) The method for producing a composite sintered body made of titanium carbide and an oxide according to claim 1, wherein the reducing metal powder is either aluminum powder or zirconium powder.
(4)還元用金属粉末と、炭素と、三酸化二チタンおよ
び一酸化チタンのうちの少なくとも一種と、二酸化チタ
ンとからなる成形体を、加圧条件下でその成形体の一部
に点火して燃焼過程を開始させ、その後の金属粉末と酸
化物粉末それに炭素との反応及び生成した炭化チタンと
酸化物の焼結を、燃焼過程の結果発生する熱によって進
行させる炭化チタンと酸化物からなる複合焼結体の製造
方法。
(4) Igniting a part of the molded body under pressure under a pressurized condition, the molded body consisting of reducing metal powder, carbon, at least one of dititanium trioxide and titanium monoxide, and titanium dioxide. The combustion process is initiated by the heat generated as a result of the combustion process, and the subsequent reaction between the metal powder, oxide powder, and carbon, and sintering of the resulting titanium carbide and oxide proceeds with the heat generated as a result of the combustion process. Method for manufacturing composite sintered body.
(5)加圧・加熱の条件下で、還元用金属粉末と、炭素
と、三酸化二チタンおよび一酸化バナジウムのうちの少
なくとも一種と、二酸化チタンとからなる成形体に点火
して燃焼過程を開始させることを特徴とする特許請求の
範囲第4項記載の炭化チタンと酸化物からなる複合焼結
体の製造方法。
(5) Under pressurized and heated conditions, a compact consisting of reducing metal powder, carbon, at least one of dititanium trioxide and vanadium monoxide, and titanium dioxide is ignited to initiate a combustion process. 5. A method for producing a composite sintered body made of titanium carbide and an oxide according to claim 4, characterized in that:
(6)還元用金属粉末が、アルミニウム粉末およびジル
コニウム粉末のうちのいずれかである特許請求の範囲第
4項記載の炭化チタンと酸化物からなる複合焼結体の製
造方法。
(6) The method for producing a composite sintered body made of titanium carbide and an oxide according to claim 4, wherein the reducing metal powder is either aluminum powder or zirconium powder.
JP61132277A 1986-06-06 1986-06-06 Method for producing composite sintered body composed of titanium carbide and oxide Expired - Lifetime JPH075368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61132277A JPH075368B2 (en) 1986-06-06 1986-06-06 Method for producing composite sintered body composed of titanium carbide and oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61132277A JPH075368B2 (en) 1986-06-06 1986-06-06 Method for producing composite sintered body composed of titanium carbide and oxide

Publications (2)

Publication Number Publication Date
JPS62288165A true JPS62288165A (en) 1987-12-15
JPH075368B2 JPH075368B2 (en) 1995-01-25

Family

ID=15077518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61132277A Expired - Lifetime JPH075368B2 (en) 1986-06-06 1986-06-06 Method for producing composite sintered body composed of titanium carbide and oxide

Country Status (1)

Country Link
JP (1) JPH075368B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212347A (en) * 1989-02-10 1990-08-23 Toyota Central Res & Dev Lab Inc Production of composite material and composition as starting material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212347A (en) * 1989-02-10 1990-08-23 Toyota Central Res & Dev Lab Inc Production of composite material and composition as starting material

Also Published As

Publication number Publication date
JPH075368B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
US4902457A (en) Method for manufacturing a porous material or a composite sintered product comprising zirconium oxide and a carbide
JPH10273364A (en) Production of transparent yttrium oxide sintered body
Abyzov Research on the development of high-quality aluminum oxide ceramic (review). Part 1. Sintering with additives, reactive sintering, production of reinforced composites
US4895814A (en) Process for producing alumina silica sintered ceramics having improved high-temperature strength
JPS62256767A (en) Manufacture of composite sintered body comprising carbonitride and oxide
JPS62288165A (en) Manufacture of titanium carbide-oxide composite sintered body
JPS62288166A (en) Manufacture of tungsten carbide-oxide composite sintered body
JPS62235258A (en) Manufacture of carbide oxide composite sintered body
JPS62256766A (en) Manufacture of composite sintered body comprising nitride and oxide
JPS62256773A (en) Manufacture of composite sintered body comprising carbide and composite oxide
JPS62235256A (en) Manufacture of zirconium oxide base composite sintered body
JPS62288164A (en) Manufacture of vanadium carbide-oxide composite sintered body
JPS6385048A (en) Manufacture of composite sintered body comprising carbide and more than two kinds of oxides
JPS62283874A (en) Manufacture of composite sintered body comprising molybdenum silicate and oxide
JPS6270210A (en) Production of aluminum nitride-silicon carbide composite fine powder
Abyzov Latest research on the development of high-quality aluminum-oxide ceramics (Review). Part 2. Synthesis and sintering of nanopowders, sol-gel and other methods of producing finely disperse and fibrous aluminum oxide
JPS63156069A (en) Manufacture of mixed powder comprising zirconium oxide, aluminum oxide and carbide
JPS6389457A (en) Manufacture of composite sintered body comprising carbon and composite oxide
JPH09183648A (en) Aluminous sintered compact
JPS63282165A (en) Powder mixture containing zirconium oxide and boride and production of composite sintered body containing said powder
JPS63156015A (en) Production of powdery mixture consisting of zirconium oxide and carbide
RU2058961C1 (en) Method for production of ceramics from titanium dioxide (tinpox)
JPH0623041B2 (en) Method for producing high-purity stabilized zirconia powder
JPH0478580B2 (en)
JPS6278110A (en) Production of stabilized zirconia fine powder