JPH10273364A - Production of transparent yttrium oxide sintered body - Google Patents

Production of transparent yttrium oxide sintered body

Info

Publication number
JPH10273364A
JPH10273364A JP9094670A JP9467097A JPH10273364A JP H10273364 A JPH10273364 A JP H10273364A JP 9094670 A JP9094670 A JP 9094670A JP 9467097 A JP9467097 A JP 9467097A JP H10273364 A JPH10273364 A JP H10273364A
Authority
JP
Japan
Prior art keywords
yttrium oxide
yttrium
sintered body
compound
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9094670A
Other languages
Japanese (ja)
Other versions
JP2939535B2 (en
Inventor
Takayasu Ikegami
隆康 池上
Noriko Saito
紀子 斎藤
Baranashi Surikansu
バラナシ スリカンス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP9094670A priority Critical patent/JP2939535B2/en
Publication of JPH10273364A publication Critical patent/JPH10273364A/en
Application granted granted Critical
Publication of JP2939535B2 publication Critical patent/JP2939535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of producing a transparent yttrium oxide sintered body at a lower cost than a conventional method and free from the necessity for severely controlling production conditions. SOLUTION: An yttrium compound which becomes yttrium oxide powder by pyrolysis or yttrium oxide powder of <=0.5 μm in an average particle size of primary particles is mixed with a calcium compound which becomes calcium oxide by pyrolysis or calcium oxide powder in a range of 100 ppm or 4% based on the yttrium oxide, and the resultant powdery mixture is processed into a formed body. The obtained formed body is baked at a temperature in the range of 1400-2000 deg.C under an atmosphere whose nitrogen partial pressure is controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種放電灯用発光
管、超高温用透明炉心管、レーザーホスト材料等に利用
が期待されている酸化イットリウム透明焼結体の製造法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a transparent sintered body of yttrium oxide which is expected to be used for various arc tubes for discharge lamps, transparent furnace tubes for ultra-high temperatures, laser host materials, and the like.

【0002】[0002]

【従来技術】酸化イットリウムの結晶構造は、光学的に
等方的で複屈折がない立方晶であるので、粒界における
光の散乱は原理的に無視できる。このため、焼結体のよ
うな多結晶体でも、気孔や介在物を完全に取り除くこと
ができると、単結晶と同等の透明性を有する光学材料に
なりうる。また、融点が約2400℃と高いので、高温
材料としても期待されている。しかしながら、融点が高
いことは一般に高い温度で焼結するか、焼成と同時に加
圧する必要があることを意味する。このため、従来の普
通焼結法では、2200℃以上という非常に高い温度で
焼成して酸化イットリウム透明焼結体を製造していた。
また、焼成中に加圧するホットプレスやHIPの場合、
1500℃でも透明化できるが、作業性が悪く大量生産
に不向きで、生産コストが非常に高くなるという欠点が
あった。
2. Description of the Related Art Since the crystal structure of yttrium oxide is cubic, which is optically isotropic and has no birefringence, scattering of light at grain boundaries can be ignored in principle. Therefore, even if the pores and inclusions can be completely removed from a polycrystalline material such as a sintered body, the optical material can have the same transparency as a single crystal. Further, since its melting point is as high as about 2400 ° C., it is expected as a high-temperature material. However, a high melting point generally means that it is necessary to sinter at a high temperature or to apply pressure simultaneously with firing. For this reason, in the conventional ordinary sintering method, firing was performed at a very high temperature of 2200 ° C. or more to produce a yttrium oxide transparent sintered body.
In the case of hot pressing or HIP, which pressurizes during firing,
Although it can be made transparent even at 1500 ° C., there is a drawback that the workability is poor and it is not suitable for mass production, and the production cost becomes extremely high.

【0003】勿論、添加物の緻密化促進効果を利用した
透明焼結体の製造法も検討されてきた。この場合、添加
物として次の2つの条件を満足する必要がある。第1の
条件は、焼成後でも酸化イットリウムに完全に固溶し、
かつ光を吸収しない物質であるか、添加物で第2相を形
成する場合は、光学的に酸化イットリウムに近い物性を
有する物質であること。第2の条件として、焼結の後期
段階の緻密化を促進する物質であること。これらの条件
を満足する物質として、酸化トリウムが報告されてい
る。しかしながら、この場合でも、透明焼結体を得るた
めに2000℃以上という高温で焼成する必要があっ
た。また、酸化トリウムは僅かではあるが放射性のある
物質で、取扱いや使用できる分野が限られるという欠点
があった。これらの従来技術の欠点は、市販の酸化イッ
トリウム粉末を利用したことに由来する。すなわち、酸
化イットリウム粉末は微細であるとその吸湿性が無視で
きなくなるので、市販の酸化イットリウム粉末は、流通
の間に進行する吸湿を防止するために一般的に大きい。
その結果、市販の酸化イットリウム粉末は焼結性が悪
く、該粉末を用いて透明焼結体を製造するには、焼結温
度を高くする必要があった。
[0003] Needless to say, a method of producing a transparent sintered body utilizing the effect of additives to promote densification has also been studied. In this case, it is necessary to satisfy the following two conditions as an additive. The first condition is that even after firing, it completely dissolves in yttrium oxide,
In addition, when the substance does not absorb light or forms a second phase with an additive, the substance must have optical properties close to those of yttrium oxide. The second condition is that the material promotes densification in the latter stage of sintering. Thorium oxide has been reported as a substance satisfying these conditions. However, even in this case, firing at a high temperature of 2000 ° C. or more was required to obtain a transparent sintered body. Further, thorium oxide is a radioactive substance, albeit slightly, and has a drawback that its handling and usable fields are limited. These disadvantages of the prior art stem from the use of commercially available yttrium oxide powder. That is, since the hygroscopicity of yttrium oxide powder cannot be ignored if it is fine, commercially available yttrium oxide powder is generally large in order to prevent moisture absorption that proceeds during distribution.
As a result, commercially available yttrium oxide powder has poor sinterability, and it was necessary to increase the sintering temperature in order to produce a transparent sintered body using the powder.

【0004】最近、本発明者らは適切に調製した炭酸イ
ットリウムを仮焼して得た酸化イットリウム粉末は極め
て焼結性が良いことを発見した。この発見を基に、添加
物を利用することなく焼成温度が1600℃でも透明化
できる酸化イットリウム焼結体製造プロセスを開発し、
特許として出願(整理番号 9652701)した。こ
の方法は、実験室規模の少量生産では透明性に優れた焼
結体を得ることができる。しかしながら、工業的規模で
大量生産する場合、良好な透明性の焼結体を製造するに
は炭酸イットリウムの熟成を厳密に制御する必要があ
る。実際にはそのような厳密な制御は難しく、透明焼結
体製造の歩留まりが悪いという欠点があった。
Recently, the present inventors have found that yttrium oxide powder obtained by calcining appropriately prepared yttrium carbonate has extremely good sinterability. Based on this discovery, we have developed a process for manufacturing yttrium oxide sintered bodies that can be made transparent even at a sintering temperature of 1600 ° C without using additives.
An application was filed as a patent (reference number 9652701). In this method, a sintered body having excellent transparency can be obtained in a small-scale production on a laboratory scale. However, when mass-producing on an industrial scale, it is necessary to strictly control the aging of yttrium carbonate in order to produce a sintered body having good transparency. Actually, such precise control is difficult, and there is a disadvantage that the yield of the production of the transparent sintered body is poor.

【0005】[0005]

【発明が解決しようとする課題】上記の如き従来技術の
問題点に鑑み、本発明者は、市販の通常の粉末よりも微
細な易焼結性イットリウム酸化物粉末の焼結性をさらに
添加物で促進することで歩留まりよく透明な焼結体を得
るべく種々検討した結果、本発明を完成したもので、本
発明の目的は、従来の製造方法よりも低コストで、しか
も製造条件の厳密な制御が要求されることなく酸化イッ
トリウム透明焼結体を製造する方法を提供する。
SUMMARY OF THE INVENTION In view of the above problems of the prior art, the present inventor has made it possible to further improve the sinterability of an easily sinterable yttrium oxide powder which is finer than a commercially available ordinary powder. As a result of various studies to obtain a transparent sintered body with a good yield by promoting the present invention, the present invention has been completed, the object of the present invention is a lower cost than the conventional manufacturing method, and strict production conditions Provided is a method for producing a yttrium oxide transparent sintered body without requiring control.

【0006】[0006]

【課題を解決するための手段】本願請求項1の発明の要
旨は、熱分解で酸化イットリウム粉末となるイットリウ
ム化合物あるいは一次粒子の平均粒径が0.5μm以下
の酸化イットリウム粉末と、酸化イットリウムに対して
100ppmから4%の範囲の熱分解で酸化カルシウム
になるカルシウム化合物あるいは酸化カルシウム粉末を
混合し、得られた粉末状混合物から成形体を作成し、該
成形体を1400℃から2000℃の範囲で、窒素ガス
の分圧を制限した雰囲気で焼成することを特徴とする透
明酸化イットリウム焼結体の製造法であり、請求項2の
発明の要旨は、熱分解で酸化イットリウム粉末となるイ
ットリウム化合物あるいは一次粒子の平均粒径が0.5
μm以下の酸化イットリウム粉末と、酸化イットリウム
に対して200ppmから10%の範囲の熱分解で酸化
ジルコニウムとなるジルコニウム化合物あるいは一次粒
子の粒径が1μm以下の酸化ジルコニウム粉末を混合
し、得られた粉末状混合物から成形体を作成し、該成形
体を1400℃から2000℃の範囲で、窒素ガスの分
圧を制限した雰囲気で焼成することを特徴とする透明酸
化イットリウム焼結体の製造法である。そして、これら
の発明において、酸化カルシウムまたは酸化ジルコニウ
ムと化合して低融点物質となる化合物を添加することに
よって焼結体の透明性をさらに向上させることができ
た。
The gist of the invention of claim 1 of the present application is that an yttrium compound which becomes yttrium oxide powder by thermal decomposition or yttrium oxide powder having an average primary particle size of 0.5 μm or less, and yttrium oxide On the other hand, a calcium compound or a calcium oxide powder which is converted into calcium oxide by pyrolysis in the range of 100 ppm to 4% is mixed, and a molded body is formed from the obtained powdery mixture. A method for producing a transparent yttrium oxide sintered body characterized by firing in an atmosphere with a limited partial pressure of nitrogen gas. The gist of the invention of claim 2 is that the yttrium compound which becomes yttrium oxide powder by thermal decomposition Alternatively, the average primary particle size is 0.5
A powder obtained by mixing a yttrium oxide powder having a particle size of 1 μm or less with a yttrium oxide powder having a particle size of 1 μm or less or a zirconium compound which becomes zirconium oxide by thermal decomposition in a range of 200 ppm to 10% with respect to the yttrium oxide. A method for producing a transparent yttrium oxide sintered body, characterized in that a molded body is prepared from a mixture in the form of a mixture, and the molded body is fired in a range of 1400 ° C. to 2000 ° C. in an atmosphere with a limited partial pressure of nitrogen gas. . In these inventions, the transparency of the sintered body could be further improved by adding a compound which becomes a low-melting substance by combining with calcium oxide or zirconium oxide.

【0007】[0007]

【発明の実施の形態】以下、本発明について詳細に説明
する。 (A)酸化イットリウム粉末の製造 この発明に用いる酸化イットリウムを生成するイットリ
ウム化合物は、水酸化イットリウム、炭酸イットリウ
ム、蓚酸イットリウム、塩化イットリウム、硝酸イット
リウム、硫酸イットリウム等が例示される。仮焼後に酸
化イットリウム粉末となるイットリウム化合物であるな
らば、特にその種類に制限はない。これらの中で、水酸
化イットリウム、炭酸イットリウム、蓚酸イットリウム
を仮焼して得た酸化イットリウム粉末の凝集粒子は非常
に脆弱で、成形の際に粒子を均一に充填できるので特に
好ましい。それ以外の化合物であっても、仮焼後に酸化
イットリウム粉末の一次粒子の粒径が0.5μm以下で
あれば、塩の種類や仮焼温度等に特に限定されない。一
般に、強固な凝集粒子は実質上一次粒子として振るま
う。例えば、硫酸イットリウムや硝酸イットリウム等を
通常の方法で仮焼すると、大きくて強固な凝集粒子を生
成する。この場合、仮焼して得た粉末の凝集粒子をボー
ルミル等で粉砕する必要がある。この発明に用いる酸化
イットリウム粉末は、粒径が0.5μm以下であれば、
市販の粉末でよい。また、上で例示した各種イットリウ
ム化合物を仮焼して得ても良い。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. (A) Production of Yttrium Oxide Powder Examples of the yttrium compound that produces yttrium oxide used in the present invention include yttrium hydroxide, yttrium carbonate, yttrium oxalate, yttrium chloride, yttrium nitrate, and yttrium sulfate. There is no particular limitation on the type of yttrium compound as long as it is an yttrium compound that becomes yttrium oxide powder after calcination. Among these, agglomerated particles of yttrium oxide powder obtained by calcining yttrium hydroxide, yttrium carbonate, and yttrium oxalate are very fragile and are particularly preferable because they can be uniformly filled during molding. Other compounds are not particularly limited to the kind of salt, the calcination temperature, and the like, as long as the primary particles of the yttrium oxide powder have a particle size of 0.5 μm or less after calcination. Generally, strong agglomerated particles behave substantially as primary particles. For example, when yttrium sulfate or yttrium nitrate is calcined by a usual method, large and strong aggregated particles are generated. In this case, it is necessary to grind the aggregated particles of the powder obtained by calcining with a ball mill or the like. Yttrium oxide powder used in the present invention, if the particle size is 0.5μm or less,
A commercially available powder may be used. Moreover, you may obtain by calcining the various yttrium compounds illustrated above.

【0008】(B)添加物の効果 この発明に用いる熱分解で酸化カルシウムとなるカルシ
ウムの化合物として、水酸化カルシウムや炭酸カルシウ
ムが例示される。仮焼後に酸化カルシウムに変化する化
合物であるならば、その種類に特に制限はない。酸化イ
ットリウムに対して100ppm以上の酸化カルシウム
となるカルシウム化合物を添加すると酸化イットリウム
は透光性を発現する。1000ppmから2%の範囲の
添加で極めて透光性の良い焼結体を得ることができるの
で特に好ましい。添加量が2%を越えると添加効果は低
下し4%以上を添加すると該添加効果は消失する。この
発明で使用する酸化カルシウム粉末は、金属カルシウム
を燃焼して得てもよい。また、カルシウム化合物を熱分
解・仮焼して酸化カルシウム粉末を得てもよい。酸化カ
ルシウムは大気中の水蒸気と容易に反応して水酸化カル
シウムになる。該水酸化物は仮焼あるいは焼成時に熱分
解して微細な酸化カルシウムに変化するので、添加時の
酸化カルシウムは比較的大きくてもよい。この発明で用
いる熱分解により酸化ジルコニウム粉末を生成するジル
コニウム化合物としてオキシ硝酸ジルコニウム、オキシ
塩化ジルコニウム、水酸化ジルコニウム等が例示され
る。仮焼により酸化ジルコニウムに変化する化合物であ
るならば、その種類に特に制限はない。
(B) Effect of Additives Examples of the calcium compound which becomes calcium oxide by thermal decomposition used in the present invention include calcium hydroxide and calcium carbonate. There is no particular limitation on the type of the compound as long as it is a compound that changes to calcium oxide after calcination. When a calcium compound which becomes 100 ppm or more of calcium oxide is added to yttrium oxide, yttrium oxide develops light-transmitting properties. It is particularly preferable that the addition in the range of 1000 ppm to 2% can provide a sintered body having extremely high translucency. When the amount exceeds 2%, the effect of addition decreases, and when 4% or more is added, the effect disappears. The calcium oxide powder used in the present invention may be obtained by burning metallic calcium. Further, a calcium compound may be pyrolyzed and calcined to obtain a calcium oxide powder. Calcium oxide readily reacts with atmospheric water vapor to form calcium hydroxide. Since the hydroxide is thermally decomposed during calcination or firing to change into fine calcium oxide, the calcium oxide when added may be relatively large. Examples of the zirconium compound which generates zirconium oxide powder by thermal decomposition used in the present invention include zirconium oxynitrate, zirconium oxychloride, zirconium hydroxide and the like. There is no particular limitation on the type of the compound as long as it is a compound that changes to zirconium oxide by calcination.

【0009】本発明で使用する酸化ジルコニウム粉末
は、上記のジルコニウム化合物を仮焼して得る。酸化イ
ットリウム中のジルコニウムイオンの拡散係数は小さい
ので、使用する酸化ジルコニウム粉末の粒径が1μm以
上になると、焼結後でも未反応の酸化ジルコニウム粒子
が残る。これは光の散乱源となるので好ましくない。酸
化イットリウムへの酸化ジルコニウムの固溶量は非常に
大きい。そのため、酸化イットリウムの焼結を促進する
には、酸化カルシウムに比べて多量の酸化ジルコニウム
を添加する必要がある。透明な酸化イットリウム焼結体
を得るには、酸化イットリウムに対して200ppm以
上の酸化ジルコニウム粉末あるいは酸化ジルコニウムと
なるジルコニウム化合物を添加する必要がある。500
ppmから3%の範囲の酸化ジルコニウムに相当するジ
ルコニウム化合物を添加すると極めて透光性の良い焼結
体を得ることができる。該添加量が3%を越えると添加
効果は次第に低下し、10%以上になると添加効果は消
失する。この発明において、請求項1と請求項2で限定
される量の酸化カルシウムや酸化ジルコニウムは予め不
純物として存在していても、最終的に存在するそれらの
量が請求項の条件を満足するならば、好ましい結果が得
られる。また、それらが請求項1や請求項2で限定され
る範囲内の量であれば、共存していてもよい。
The zirconium oxide powder used in the present invention is obtained by calcining the above zirconium compound. Since the diffusion coefficient of zirconium ions in yttrium oxide is small, unreacted zirconium oxide particles remain even after sintering if the particle size of the zirconium oxide powder used is 1 μm or more. This is not preferable because it becomes a light scattering source. The amount of zirconium oxide dissolved in yttrium oxide is very large. Therefore, in order to promote sintering of yttrium oxide, it is necessary to add a larger amount of zirconium oxide than calcium oxide. In order to obtain a transparent yttrium oxide sintered body, it is necessary to add a zirconium oxide powder or a zirconium compound which becomes zirconium oxide in an amount of 200 ppm or more based on yttrium oxide. 500
When a zirconium compound corresponding to zirconium oxide in the range of ppm to 3% is added, a sintered body having extremely high translucency can be obtained. When the amount exceeds 3%, the effect gradually decreases, and when it exceeds 10%, the effect disappears. In the present invention, the amount of calcium oxide or zirconium oxide defined in claims 1 and 2 may be present in advance as an impurity, provided that the amount finally present satisfies the conditions of the claims. A favorable result is obtained. In addition, they may coexist as long as they are within the range defined in claims 1 and 2.

【0010】本発明の酸化カルシウムや酸化ジルコニウ
ムと化合して低融点物質となる化合物とは、酸化珪素や
酸化硼素、酸化ナトリウム等のアルカリ金属の酸化物ま
たは仮焼して酸化珪素や酸化硼素、アルカリ金属の酸化
物になる化合物で代表される化合物をいう。これらの物
質が存在すると、酸化カルシウムや酸化ジルコニウムと
反応してガラスなどの低融点物質を生成し酸化イットリ
ウムの焼結性を促進する。結果として透明性は向上す
る。該化合物が透明性を向上させる効果は、該化合物と
酸化カルシウムや酸化ジルコニウムと共存する場合に発
現する。これらの化合物は酸化イットリウムに対して1
0ppmでも十分に酸化イットリウムの焼結性を促進す
る。しかしながら、その焼結体の高温強度を低下させる
原因となるので、実用的には、該化合物は重量%として
1%以下に制限する必要がある。これらの化合物は、添
加物として新たに加えるものばかりでなく、不純物とし
てあらかじめ酸化イットリウムやカルシウム化合物、ジ
ルコニウム化合物などに存在していたものでも、本発明
の効果を発揮する。本発明では、酸化カルシウム粉末や
酸化ジルコニウム粉末、酸化珪素粉末等を混合したあと
や、あるいは、イットリウム化合物やカルシウム化合
物、ジルコニウム化合物、珪素化合物等を混合し仮焼し
たあとで、ボールミル等で十分に混合すると、酸化イッ
トリウム粉末と添加粉末が均一に混合するので好まし
い。
The compound of the present invention which becomes a low-melting substance by combining with calcium oxide or zirconium oxide is an oxide of an alkali metal such as silicon oxide, boron oxide or sodium oxide, or calcined silicon oxide or boron oxide; It refers to a compound represented by a compound that becomes an oxide of an alkali metal. When these substances are present, they react with calcium oxide and zirconium oxide to form a low-melting substance such as glass and promote sinterability of yttrium oxide. As a result, the transparency is improved. The effect of improving the transparency of the compound is exhibited when the compound and calcium oxide or zirconium oxide coexist. These compounds are one-to-one with yttrium oxide.
Even 0 ppm sufficiently promotes the sinterability of yttrium oxide. However, it is necessary to limit the content of the compound to 1% or less in terms of weight% because it causes a reduction in the high-temperature strength of the sintered body. These compounds can exert the effects of the present invention not only when they are newly added as additives but also when they are present as impurities in yttrium oxide, calcium compounds, zirconium compounds, or the like in advance. In the present invention, after mixing calcium oxide powder, zirconium oxide powder, silicon oxide powder, or the like, or after mixing and calcining an yttrium compound, a calcium compound, a zirconium compound, a silicon compound, and the like, a ball mill or the like is used. Mixing is preferable because the yttrium oxide powder and the added powder are uniformly mixed.

【0011】(C)仮焼 本発明では粉末状混合物より成形体を得る前に、予め粉
末状混合物を必要に応じて仮焼する。即ち、酸化物粉末
のみの組み合わせ以外の方法で原料を調合する場合、適
当な温度で仮焼して予め酸化物粉末にする必要がある。
仮焼温度が低いと、熱分解により生成した酸化物粉末の
結晶子は極めて微細で、酸化物粉末の充填性が悪い。そ
のような粉末を成形して得た圧粉体中の密度は微細領域
毎に異なる。充填密度の疎らなところは、焼結途中で大
きな空孔となる。そのような空孔は実質上焼結で取り除
くことはできない。検討の結果、700℃以上で仮焼す
ると、充填で問題となる微細な粉末は実質上無くなる。
該化合物の酸化物への熱分解温度が700℃よりも高い
場合、該化合物の熱分解温度以上で仮焼すると、熱分解
直後に発生する極めて微細な酸化物の核は仮焼中に成長
して、充填を阻害する微細粒子は消失する。一方、仮焼
温度が1300℃以上になると、仮焼段階で酸化物粉末
の粒成長が進み、焼結性が低下するので好ましくない。
酸化物粉末のみを用いる場合、酸化物粉末を混合したの
ちに仮焼することは必ずしも必要でない。しかしなが
ら、酸化物粉末の製造履歴によっては仮焼する方が好ま
しいことがある。仮焼は、単に焼結性の良い酸化物粉末
を得るために行う。このため、焼成時のように雰囲気ガ
スが焼結体に残ることはないので、仮焼雰囲気は特に制
限されない。
(C) Calcination In the present invention, the powdery mixture is preliminarily calcined, if necessary, before obtaining a compact from the powdery mixture. That is, when the raw materials are prepared by a method other than the combination of the oxide powder alone, it is necessary to calcine at an appropriate temperature to obtain the oxide powder in advance.
When the calcination temperature is low, the crystallite of the oxide powder generated by thermal decomposition is extremely fine, and the filling property of the oxide powder is poor. The density in a green compact obtained by molding such a powder differs for each fine region. Where the packing density is low, large holes are formed during sintering. Such voids cannot be substantially removed by sintering. As a result of the study, when calcined at 700 ° C. or higher, fine powders that cause problems in filling substantially disappear.
When the thermal decomposition temperature of the compound to an oxide is higher than 700 ° C., if the compound is calcined at a temperature equal to or higher than the thermal decomposition temperature, extremely fine oxide nuclei generated immediately after the thermal decomposition grow during the calcining. Thus, the fine particles that hinder filling disappear. On the other hand, if the calcination temperature is 1300 ° C. or higher, the grain growth of the oxide powder proceeds in the calcination stage, and the sinterability decreases, which is not preferable.
When only oxide powder is used, calcining after mixing the oxide powder is not always necessary. However, depending on the production history of the oxide powder, calcining may be preferable. The calcination is simply performed to obtain an oxide powder having good sinterability. For this reason, since the atmosphere gas does not remain in the sintered body as in the case of firing, the calcining atmosphere is not particularly limited.

【0012】(D)成形 成型法として、乾式成形や鋳込み成形、押し出し成形な
どがある。成形体の密度分布が広くない限り、この発明
の効果が成形方法により制限を受けることはない。 (E)焼成 非常に焼結性の良い酸化イットリウム粉末に酸化カルシ
ウムや酸化ジルコニウムを添加してさらに焼結性を改善
すると、焼結温度が1400℃以下でもほぼ理論密度ま
で緻密化した焼結体を製造できる。しかしながら焼結温
度がそのように低いと粒成長が不十分で、実際の焼結体
の透光性は低い。このため本課題を解決するためには1
400℃以上で焼結する必要がある。勿論、焼成温度が
高くなるほど粒成長は進み、透光性は増す。しかしなが
ら、1600℃以上になると焼成温度の上昇の割には、
透光性が改善される割合は小さくなる。以上の理由で、
ここでの発明は1600℃以上で焼成することが好まし
い。一方、焼成温度が2000℃以上になると、焼結温
度に関して従来法との有為差が無くなる。
(D) Molding Molding methods include dry molding, cast molding, and extrusion molding. As long as the density distribution of the molded body is not wide, the effect of the present invention is not limited by the molding method. (E) Sintering If calcium oxide or zirconium oxide is added to yttrium oxide powder with very good sinterability to further improve the sinterability, the sintered body is densified to almost the theoretical density even at a sintering temperature of 1400 ° C or less. Can be manufactured. However, when the sintering temperature is so low, the grain growth is insufficient, and the light transmittance of the actual sintered body is low. Therefore, in order to solve this problem, 1
It is necessary to sinter at 400 ° C. or higher. Of course, as the firing temperature increases, the grain growth progresses, and the translucency increases. However, when the temperature exceeds 1600 ° C, the firing temperature rises,
The rate at which the translucency is improved decreases. For the above reasons,
In the present invention, it is preferable to fire at 1600 ° C. or higher. On the other hand, when the firing temperature is 2000 ° C. or higher, there is no significant difference in the sintering temperature from the conventional method.

【0013】(F)焼成雰囲気 酸化イットリウム中を実質的に拡散しない窒素原子やア
ルゴン原子などの原子半径の大きい不活性ガスを多量に
含む雰囲気で焼成すると、それらのガスは焼結体中に気
泡として残るので好ましくない。これらのガスの中で、
窒素ガス以外のガスは大気中に殆ど含まれていないの
で、工業的に問題になることはない。窒素ガスは大気中
の8割を占めるので、雰囲気中の窒素ガス量を減らす工
夫が必要である。勿論、雰囲気中の窒素ガス量が少ない
ほど緻密化には好ましい。それ故、大気を水素ガスある
いは酸素ガスで置換するか、大気を追い出して真空雰囲
気にすることが好ましい。しかしながら、透明焼結体を
製造する実際のプロセスでは、緻密化を阻害するガスを
雰囲気ガスから完全に除去する必要はなく、約1/3気
圧以下に制限すれば好ましい結果を得ることができる。
(F) Firing atmosphere When firing is performed in an atmosphere containing a large amount of an inert gas having a large atomic radius, such as nitrogen atom or argon atom, which does not substantially diffuse in yttrium oxide, those gases become bubbles in the sintered body. It is not preferable because it remains as. Among these gases,
Since gases other than nitrogen gas are hardly contained in the atmosphere, there is no industrial problem. Since nitrogen gas occupies 80% of the atmosphere, it is necessary to take measures to reduce the amount of nitrogen gas in the atmosphere. Needless to say, the smaller the amount of nitrogen gas in the atmosphere, the better the density. Therefore, it is preferable to replace the atmosphere with hydrogen gas or oxygen gas, or to drive out the atmosphere to form a vacuum atmosphere. However, in the actual process of manufacturing the transparent sintered body, it is not necessary to completely remove the gas that inhibits densification from the atmospheric gas, and a preferable result can be obtained by limiting the gas to about 1/3 atmosphere or less.

【0014】[0014]

【実施例及び比較例】以下に本発明の実施例を示すが、
本発明の効果はこれらに制限されることはない。 実施例1 市販の微細酸化イットリウム粉末(比表面積が14M2
/g)10gをエチルアルコールに分散する。マグネチ
ックスターラーで撹拌しているこの分散液に、エチルア
ルコールに分散した平均粒径が0.5μmの酸化カルシ
ウム粉末を酸化イットリウムに対して0.3%加える。
撹拌しながら加熱してエチルアルコールを蒸発させる。
乾燥体をアルミナ乳鉢で軽くほぐして、金型を用いて3
0MPaで一次成形してから、200MPaで静水圧プ
レスし、成形体を作成する。該成形体を真空電気炉に入
れて、10-5トール以上の高真空になったのち、170
0℃まで10℃/minの速度で昇温し、その温度に1
時間保持する。その後、15℃/minの速度で冷却
し、炉内が室温近くになってから試料を取り出す。水を
用いたアルキメデス法で焼結体の密度を測定したとこ
ろ、理論密度に非常に近い値を得た。また、波長が50
0nmの光に対する厚さが1mmの焼結体の直線透過率
は約40%であった。 比較例1 酸化カルシウム粉末を加えることなく実施例1の手順に
したがい無添加酸化イットリウム粉末の圧粉体を作成
し、焼結する。得られた試料の相対密度は理論密度の9
8%で、焼結体は乳白色であった。
Examples and Comparative Examples Examples of the present invention are shown below.
The effects of the present invention are not limited to these. Example 1 Commercially available fine yttrium oxide powder (having a specific surface area of 14 M 2
/ G) Disperse 10 g in ethyl alcohol. To this dispersion stirred with a magnetic stirrer, 0.3% of a calcium oxide powder dispersed in ethyl alcohol and having an average particle size of 0.5 μm is added to yttrium oxide.
Heat with stirring to evaporate the ethyl alcohol.
The dried product is lightly loosened in an alumina mortar, and 3
After primary molding at 0 MPa, isostatic pressing is performed at 200 MPa to form a molded body. The molded body was placed in a vacuum electric furnace and a high vacuum of 10 −5 Torr or more was obtained.
The temperature was raised to 0 ° C at a rate of 10 ° C / min.
Hold for hours. After that, the sample is cooled at a rate of 15 ° C./min. When the density of the sintered body was measured by the Archimedes method using water, a value very close to the theoretical density was obtained. When the wavelength is 50
The linear transmittance of the sintered body having a thickness of 1 mm with respect to light of 0 nm was about 40%. Comparative Example 1 A green compact of an additive-free yttrium oxide powder was prepared and sintered according to the procedure of Example 1 without adding the calcium oxide powder. The relative density of the obtained sample was 9 of theoretical density.
At 8%, the sintered body was milky white.

【0015】実施例2 20gの硝酸イットリウムを300mlの蒸留水に溶解
したのち、ヒーター付きのマグネチックスターラーで撹
拌しながら約90℃に加熱する。この溶液に1規定のア
ンモニア水をpHが8になるまで滴下して3時間保持す
る。ろ過、洗浄後、室温で乾燥する。アルミナ乳鉢で軽
くほぐして、その粉末の5gをエチルアルコールに分散
する。マグネチックスターラーで撹拌しているこの分散
液に、エチルアルコールに分散した平均粒径が0.5μ
mの酸化カルシウム粉末を酸化イットリウムに対して
0.3%加える。撹拌しながら加熱してエチルアルコー
ルを蒸発させる。乾燥体をアルミナ乳鉢で軽くほぐし
て、アルミナボートに入れ管状電気炉で酸素気流中、1
100℃、4時間仮焼する。そののち仮焼粉をアルミナ
乳鉢で軽くほぐしたのち、金型を用いて30MPaで一
次成形してから、200MPaで静水圧プレスし、成形
体を作成する。該成形体を真空電気炉に入れて、10-5
トール以上の高真空になったのち、1700℃まで10
℃/minの速度で昇温し、その温度に1時間保持す
る。その後、15℃/minの速度で冷却し、炉内が室
温近くになってから試料を取り出す。水を用いたアルキ
メデス法で焼結体の密度を測定したところ、非常に理論
密度に近い値を得た。また、波長が500nmの光に対
する厚さが1mmの焼結体の直線透過率は約40%であ
った。
Example 2 After dissolving 20 g of yttrium nitrate in 300 ml of distilled water, the mixture is heated to about 90 ° C. while stirring with a magnetic stirrer equipped with a heater. 1N aqueous ammonia is dropped into the solution until the pH becomes 8, and the solution is maintained for 3 hours. After filtration and washing, it is dried at room temperature. Disperse lightly in an alumina mortar and disperse 5 g of the powder in ethyl alcohol. To this dispersion stirred with a magnetic stirrer, the average particle size dispersed in ethyl alcohol was 0.5 μm.
m of calcium oxide powder is added to yttrium oxide at 0.3%. Heat with stirring to evaporate the ethyl alcohol. The dried product is lightly loosened in an alumina mortar, placed in an alumina boat, and placed in a tubular electric furnace in an oxygen stream.
Calcinate at 100 ° C for 4 hours. Thereafter, the calcined powder is lightly loosened in an alumina mortar, and then primary molded at 30 MPa using a mold, and then subjected to isostatic pressing at 200 MPa to form a molded body. The molded body is placed in a vacuum electric furnace, and 10 −5
After a high vacuum of more than Torr, 10 to 1700 ° C
The temperature is raised at a rate of ° C./min and maintained at that temperature for one hour. After that, the sample is cooled at a rate of 15 ° C./min. When the density of the sintered body was measured by the Archimedes method using water, a value very close to the theoretical density was obtained. The linear transmittance of the sintered body having a thickness of 1 mm with respect to light having a wavelength of 500 nm was about 40%.

【0016】実施例3 15gの硝酸イットリウムと0.1gの硝酸カルシウム
を100mlの蒸留水に溶解したのち、2モル/lの炭
酸水素アンモニウム水溶液を加えてpHを5に調製し沈
澱を生成させる。得られた沈澱を良く撹拌しながら1日
養生したのち、ろ過する。ろ過した沈澱を蒸留水に分散
してからろ過することを4回繰り返して洗浄したのち、
室温で乾燥する。乾燥体をアルミナ乳鉢で軽くほぐした
のち、アルミナボートに入れて管状電気炉で1100
℃、4時間酸素気流中で仮焼する。仮焼粉を実施例1の
方法で成形し、焼結する。得られた焼結体の嵩密度はほ
ぼ理論密度に近く、波長が500nmの光に対する厚さ
が1mmの焼結体の直線透過率は約60%であった。 比較例2 硝酸カルシウムを加えることなく実施例2の方法で酸化
イットリウム焼結体を製造した。波長が500nmの光
に対する厚さが1mmのこの焼結体の直線透過率は20
%であった。
Example 3 15 g of yttrium nitrate and 0.1 g of calcium nitrate are dissolved in 100 ml of distilled water, and the pH is adjusted to 5 by adding a 2 mol / l aqueous solution of ammonium hydrogen carbonate to form a precipitate. The resulting precipitate is cured for 1 day with good stirring and then filtered. The precipitate obtained by dispersing the filtered precipitate in distilled water and then filtering is repeatedly washed four times, and then washed.
Dry at room temperature. After the dried body is lightly loosened with an alumina mortar, it is put into an alumina boat and 1100 with a tubular electric furnace.
Calcination is performed in an oxygen stream at 4 ° C. for 4 hours. The calcined powder is molded by the method of Example 1 and sintered. The bulk density of the obtained sintered body was almost close to the theoretical density, and the linear transmittance of the sintered body having a thickness of 1 mm with respect to light having a wavelength of 500 nm was about 60%. Comparative Example 2 A yttrium oxide sintered body was produced by the method of Example 2 without adding calcium nitrate. The linear transmittance of this sintered body having a thickness of 1 mm for light having a wavelength of 500 nm is 20.
%Met.

【0017】実施例4 実施例1や実施例2の方法で、酸化カルシウム粉末の代
わりに粒径が27nmの市販の酸化ジルコニウム粉末を
酸化イットリウム粉末に対して1%を加えて処理する。
水を用いてアルキメデス法で焼結体の密度を測定したと
ころ、非常に理論密度に近い値を得た。波長が500n
mの光に対する厚さが1mmの焼結体の直線透過率はそ
れぞれ40%と50%であった。
Example 4 Instead of calcium oxide powder, a commercially available zirconium oxide powder having a particle size of 27 nm is treated in the same manner as in Examples 1 and 2 by adding 1% to yttrium oxide powder.
When the density of the sintered body was measured by the Archimedes method using water, a value very close to the theoretical density was obtained. Wavelength is 500n
The linear transmittance of the sintered body having a thickness of 1 mm with respect to light of m was 40% and 50%, respectively.

【0018】実施例5 実施例3の方法で、0.1gの硝酸カルシウムの代わり
に0.2gのオキシ塩化ジルコニウムを用いて硝酸イッ
トリウムとの混合水溶液から炭酸塩を生成し、熟成し、
ろ過し、仮焼し、成形する。該成形体を酸素気流中で1
650℃、4時間焼成する。得られた焼結体の嵩密度は
理論密度に近く、波長が500nmの光に対する厚さが
1mmの焼結体の直線透過率は約45%であった。
Example 5 In the same manner as in Example 3, except that 0.2 g of zirconium oxychloride was used instead of 0.1 g of calcium nitrate, a carbonate was produced from a mixed aqueous solution with yttrium nitrate, which was then aged.
Filter, calcine and mold. The molded body is placed in an oxygen stream for 1 hour.
Bake at 650 ° C. for 4 hours. The bulk density of the obtained sintered body was close to the theoretical density, and the linear transmittance of the sintered body having a thickness of 1 mm with respect to light having a wavelength of 500 nm was about 45%.

【0019】実施例6 0.3%の酸化カルシウムばかりでなく100ppmの
酸化珪素を同時に添加して実施例1の方法で透明焼結体
を作成する。厚さが1mmの焼結体の波長が500nm
の光に対する直線透過率は約50%で、実施例1の方法
で製造した透明焼結体よりも透光度はよかった。
Example 6 Not only 0.3% of calcium oxide but also 100 ppm of silicon oxide are simultaneously added to produce a transparent sintered body according to the method of Example 1. The wavelength of a 1mm thick sintered body is 500nm
Was about 50%, and the light transmittance was better than that of the transparent sintered body manufactured by the method of Example 1.

【0020】[0020]

【発明の効果】以上述べたように、本発明の方法は従来
方法のような厳密な条件を必要とすることなく透明酸化
イットリウム焼結体がえられ、また、この焼結体は上記
実施例に示されているように、酸化カルシウム或いは酸
化ジルコニウムを添加しない場合に比して優れた光透過
性を有する。
As described above, according to the method of the present invention, a transparent yttrium oxide sintered body can be obtained without requiring strict conditions as in the conventional method. As shown in the above, it has excellent light transmittance as compared with the case where calcium oxide or zirconium oxide is not added.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱分解で酸化イットリウム粉末となるイ
ットリウム化合物あるいは一次粒子の平均粒径が0.5
μm以下の酸化イットリウム粉末と、酸化イットリウム
に対して100ppmから4%の範囲の熱分解で酸化カ
ルシウムになるカルシウム化合物あるいは酸化カルシウ
ム粉末を混合し、得られた粉末状混合物から成形体を作
成し、該成形体を1400℃から2000℃の範囲で、
窒素ガスの分圧を制限した雰囲気で焼成することを特徴
とする透明酸化イットリウム焼結体の製造法。
An average particle diameter of an yttrium compound or a primary particle which becomes yttrium oxide powder by thermal decomposition is 0.5.
μm or less yttrium oxide powder, and a calcium compound or calcium oxide powder that becomes calcium oxide by pyrolysis in the range of 100 ppm to 4% of yttrium oxide are mixed, and a molded body is formed from the obtained powdery mixture; The molded body is in the range of 1400 ° C to 2000 ° C,
A method for producing a transparent yttrium oxide sintered body, characterized by firing in an atmosphere with a limited partial pressure of nitrogen gas.
【請求項2】 熱分解で酸化イットリウム粉末となるイ
ットリウム化合物あるいは一次粒子の平均粒径が0.5
μm以下の酸化イットリウム粉末と、酸化イットリウム
に対して200ppmから10%の範囲の熱分解で酸化
ジルコニウムとなるジルコニウム化合物あるいは一次粒
子の粒径が1μm以下の酸化ジルコニウム粉末を混合
し、得られた粉末状混合物から成形体を作成し、該成形
体を1400℃から2000℃の範囲で、窒素ガスの分
圧を制限した雰囲気で焼成することを特徴とする透明酸
化イットリウム焼結体の製造法。
2. The average particle diameter of an yttrium compound or primary particles which becomes yttrium oxide powder by thermal decomposition is 0.5.
A powder obtained by mixing a yttrium oxide powder having a particle size of 1 μm or less with a yttrium oxide powder having a particle size of 1 μm or less or a zirconium compound which becomes zirconium oxide by thermal decomposition in a range of 200 ppm to 10% with respect to the yttrium oxide. A method for producing a transparent yttrium oxide sintered body, characterized in that a molded body is prepared from a mixture in the form of a mixture, and the molded body is fired in a temperature range of 1400 ° C. to 2000 ° C. in an atmosphere with a limited partial pressure of nitrogen gas.
【請求項3】 酸化カルシウムまたは酸化ジルコニウム
と化合して低融点物質となる化合物を添加する請求項1
又は請求項2記載の透明酸化イットリウム焼結体の製造
法。
3. A compound which is combined with calcium oxide or zirconium oxide to form a substance having a low melting point.
A method for producing a transparent yttrium oxide sintered body according to claim 2.
JP9094670A 1997-03-28 1997-03-28 Manufacturing method of transparent yttrium oxide sintered body Expired - Lifetime JP2939535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9094670A JP2939535B2 (en) 1997-03-28 1997-03-28 Manufacturing method of transparent yttrium oxide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9094670A JP2939535B2 (en) 1997-03-28 1997-03-28 Manufacturing method of transparent yttrium oxide sintered body

Publications (2)

Publication Number Publication Date
JPH10273364A true JPH10273364A (en) 1998-10-13
JP2939535B2 JP2939535B2 (en) 1999-08-25

Family

ID=14116684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9094670A Expired - Lifetime JP2939535B2 (en) 1997-03-28 1997-03-28 Manufacturing method of transparent yttrium oxide sintered body

Country Status (1)

Country Link
JP (1) JP2939535B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003004437A1 (en) * 2001-07-05 2003-01-16 Konoshima Chemical Co., Ltd. Translucent rare earth oxide sintered article and method for production thereof
WO2007010831A1 (en) * 2005-07-15 2007-01-25 Toto Ltd. Sintered yttria, anticorrosion member and process for producing the same
JP2007063069A (en) * 2005-08-31 2007-03-15 Toshiba Ceramics Co Ltd Light-transmissive yttria sintered compact and its manufacturing method
JP2008143726A (en) * 2006-12-06 2008-06-26 Japan Fine Ceramics Center Polycrystalline transparent y2o3 ceramics and its production method
JP2008239385A (en) * 2007-03-27 2008-10-09 Ngk Insulators Ltd Composite material and its manufacturing method
US7691765B2 (en) 2005-03-31 2010-04-06 Fujifilm Corporation Translucent material and manufacturing method of the same
JP2010095393A (en) * 2008-10-14 2010-04-30 Nikkato:Kk Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
US7799719B2 (en) 2007-01-17 2010-09-21 Toto Ltd. Ceramic member and corrosion-resisting member
KR101338090B1 (en) * 2012-07-27 2014-01-20 경상대학교산학협력단 Full density yttria ceramic sintered by using for conventional sintering method with fused yttria as starting materials
JP2017095350A (en) * 2007-04-27 2017-06-01 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Apparatus and method for reducing erosion rate of surface exposed to halogen-containing plasmas
KR101951799B1 (en) * 2017-11-30 2019-05-17 한양대학교 산학협력단 Method and apparatus to fabricate polycrystal transparent yttrium oxide ceramic
KR102609182B1 (en) * 2023-06-14 2023-12-01 백승욱 Method for manufacturing sintered body for semiconductor processing equipment having plasma resistance

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100910261B1 (en) * 2005-10-31 2009-07-31 코바렌트 마테리얼 가부시키가이샤 Transparent rare-earth oxide sintered body manufacturing method thereof
KR101371640B1 (en) 2010-03-30 2014-03-06 엔지케이 인슐레이터 엘티디 Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6825144B2 (en) 2001-07-05 2004-11-30 Konoshima Chemical Co., Ltd. Translucent rare earth oxide sintered article and method for production thereof
WO2003004437A1 (en) * 2001-07-05 2003-01-16 Konoshima Chemical Co., Ltd. Translucent rare earth oxide sintered article and method for production thereof
US7691765B2 (en) 2005-03-31 2010-04-06 Fujifilm Corporation Translucent material and manufacturing method of the same
WO2007010831A1 (en) * 2005-07-15 2007-01-25 Toto Ltd. Sintered yttria, anticorrosion member and process for producing the same
US7407904B2 (en) 2005-07-15 2008-08-05 Toto Ltd. Yttria sintered body and corrosion-resistant material, and manufacturing method
US7566675B2 (en) 2005-07-15 2009-07-28 Toto Ltd. Corrosion-resistant material manufacturing method
JP2007063069A (en) * 2005-08-31 2007-03-15 Toshiba Ceramics Co Ltd Light-transmissive yttria sintered compact and its manufacturing method
JP2008143726A (en) * 2006-12-06 2008-06-26 Japan Fine Ceramics Center Polycrystalline transparent y2o3 ceramics and its production method
US7799719B2 (en) 2007-01-17 2010-09-21 Toto Ltd. Ceramic member and corrosion-resisting member
JP2008239385A (en) * 2007-03-27 2008-10-09 Ngk Insulators Ltd Composite material and its manufacturing method
JP2017095350A (en) * 2007-04-27 2017-06-01 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Apparatus and method for reducing erosion rate of surface exposed to halogen-containing plasmas
JP2010095393A (en) * 2008-10-14 2010-04-30 Nikkato:Kk Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
KR101338090B1 (en) * 2012-07-27 2014-01-20 경상대학교산학협력단 Full density yttria ceramic sintered by using for conventional sintering method with fused yttria as starting materials
KR101951799B1 (en) * 2017-11-30 2019-05-17 한양대학교 산학협력단 Method and apparatus to fabricate polycrystal transparent yttrium oxide ceramic
KR102609182B1 (en) * 2023-06-14 2023-12-01 백승욱 Method for manufacturing sintered body for semiconductor processing equipment having plasma resistance

Also Published As

Publication number Publication date
JP2939535B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
KR100885199B1 (en) Translucent rare earth oxide sintered article and method for production thereof
JP2939535B2 (en) Manufacturing method of transparent yttrium oxide sintered body
KR20120098118A (en) Manufacturing method of polycrystalline aluminum oxynitride with improved transparency
EP2148837A1 (en) Sintered polycrystalline yttrium aluminum garnet and use thereof in optical devices
JP4033451B2 (en) Translucent rare earth oxide sintered body and method for producing the same
JP3285620B2 (en) Method for producing translucent yttrium-aluminum-garnet sintered body
Standard et al. Densification of zirconia-conventional methods
JP4251649B2 (en) Translucent lutetium oxide sintered body and method for producing the same
US4769353A (en) Strontium-containing yttrium oxide ceramic body
CN109811415B (en) Method for preparing mullite whiskers from kaolin at low temperature
JP3883106B2 (en) Translucent scandium oxide sintered body and method for producing the same
JP3401553B2 (en) Manufacturing method of transparent yttrium aluminum garnet sintered body by dry mixing method
JP2010126430A (en) Translucent yag polycrystal body and method of manufacturing the same
JP2009184898A (en) Translucent ceramics
US5177033A (en) Sintered body of light transmitting cordierite and a method of preparing the same
JP3563464B2 (en) Method for producing yttrium-aluminum-garnet powder and yttrium-aluminum-garnet sintered body using the same
JP3357910B2 (en) Manufacturing method of transparent magnesia sintered body
JP2005170703A (en) Method of manufacturing translucent ceramic and translucent ceramic
JP4051449B2 (en) Method for producing transparent scandium oxide sintered body using sulfate as precursor
JP4666640B2 (en) Translucent magnesium oxide sintered body and method for producing the same
JP3245234B2 (en) Method for producing translucent yttrium-aluminum-garnet sintered body
JP4452810B2 (en) Manufacturing method of transparent magnesia sintered body
JPH0436115B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term