JP2007063069A - Light-transmissive yttria sintered compact and its manufacturing method - Google Patents

Light-transmissive yttria sintered compact and its manufacturing method Download PDF

Info

Publication number
JP2007063069A
JP2007063069A JP2005251086A JP2005251086A JP2007063069A JP 2007063069 A JP2007063069 A JP 2007063069A JP 2005251086 A JP2005251086 A JP 2005251086A JP 2005251086 A JP2005251086 A JP 2005251086A JP 2007063069 A JP2007063069 A JP 2007063069A
Authority
JP
Japan
Prior art keywords
yttria
yttria sintered
sintered body
light
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005251086A
Other languages
Japanese (ja)
Inventor
Masataka Murata
征隆 村田
Takashi Morita
敬司 森田
Sachiyuki Nagasaka
幸行 永坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2005251086A priority Critical patent/JP2007063069A/en
Publication of JP2007063069A publication Critical patent/JP2007063069A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an yttria sintered compact which is excellent in plasma resistance, corrosion resistance and light transmissivity and is usable suitably in a member for a semiconductor manufacturing apparatus or an optical member, particularly, in a light-transmissive member for an observation window, a lens, a discharge tube or the like to be exposed to corrosive gas in members for a plasma treatment apparatus and to provide a method for manufacturing the yttria sintered compact. <P>SOLUTION: The light-transmissive yttria sintered compact, which contains 0.02-5 wt.% zirconia and has 1-100 μm average crystal grain size and ≥70% linear transmissivity of visible light in 1 mm thickness, is obtained by adding zirconia to yttria raw material powder, which has ≥99% purity and the particle size of whose primary particle is ≤1.5 μm at D<SB>90</SB>, and sintering the zirconia-added powder in a reducing atmosphere or in vacuum at 1,700-2,000°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、透光性、耐プラズマ性、耐食性等に優れ、半導体製造装置や光学用部材、特に、プラズマ処理装置用部材において腐食性ガスに曝されるのぞき窓、レンズ、放電管等の透光性部材に好適に用いることができるイットリア焼結体およびその製造方法に関する。   The present invention is excellent in translucency, plasma resistance, corrosion resistance, and the like, and is used for semiconductor manufacturing equipment and optical members, particularly in plasma processing equipment members such as observation windows, lenses, and discharge tubes that are exposed to corrosive gas. The present invention relates to a yttria sintered body that can be suitably used for an optical member and a method for producing the same.

半導体製造工程においては、ウエハエッチング処理に代表されるような腐食性ガスやプラズマ環境下での処理が行われる。このようなプラズマ処理装置において、プラズマや腐食性ガスに曝され、かつ、透光性が求められるのぞき窓、レンズ、放電管等には、石英ガラス、高純度アルミナ等の耐食性に優れたセラミックスが多用されている。   In the semiconductor manufacturing process, processing in a corrosive gas or plasma environment such as a wafer etching process is performed. In such a plasma processing apparatus, ceramics having excellent corrosion resistance such as quartz glass and high-purity alumina are used for peep windows, lenses, and discharge tubes that are exposed to plasma and corrosive gas and are required to have translucency. It is used a lot.

しかしながら、上記のような石英ガラス、セラミックス等からなる部材を用いた場合であっても、エッチング処理、特に、プラズマエッチング処理においては、過酷なプラズマ環境下に曝されることから、繰り返し操業によって、部材自体がエッチングされることは逃れられず、部材の損傷、劣化、さらに、これらに伴うパーティクルの発生によるウエハの汚染等を招いていた。   However, even when using a member made of quartz glass, ceramics, or the like as described above, in the etching process, particularly in the plasma etching process, it is exposed to a harsh plasma environment. Etching of the member itself cannot be escaped, causing damage and deterioration of the member, and contamination of the wafer due to generation of particles accompanying these.

このような問題に対して、最近では、耐プラズマ性に優れた材料であるイットリアを半導体製造装置用部材に適用することが検討されている。
イットリア焼結体は、従来は、大気中において、2200℃以上の高温下で焼成する、いわゆる大気焼成により製造されていた。
また、例えば、特許文献1には、イットリア粉末に、酸化カルシウムやジルコニア粉末を添加して、透光性に優れたイットリア焼結体を得る方法が開示されている。
特開平10−273364号公報
Recently, it has been studied to apply yttria, which is a material excellent in plasma resistance, to a member for a semiconductor manufacturing apparatus.
Conventionally, yttria sintered bodies have been manufactured by so-called atmospheric firing in which firing is performed at a high temperature of 2200 ° C. or higher in the atmosphere.
Further, for example, Patent Document 1 discloses a method of obtaining a yttria sintered body having excellent translucency by adding calcium oxide or zirconia powder to yttria powder.
JP-A-10-273364

しかしながら、従来の大気焼成により得られるイットリア焼結体は、着色していたり、1μm程度の微小な気孔が残存し、十分な透光性が得られていなかった。
また、上記特許文献1に記載された製造方法によっても、可視光の直線透過率が1mm厚で70%以上と非常に透光性に優れたイットリア焼結体を得ることは困難であった。
However, the yttria sintered body obtained by the conventional atmospheric firing is colored or has minute pores of about 1 μm, and sufficient translucency is not obtained.
In addition, even with the manufacturing method described in Patent Document 1, it has been difficult to obtain a yttria sintered body with a visible light linear transmittance of 70% or more with a thickness of 1 mm and excellent in translucency.

したがって、イットリア焼結体を、プラズマ処理装置用部材において腐食性ガスに曝されるのぞき窓、レンズ、放電管等の部材に供するために、優れた耐プラズマ性、耐食性に加えて、さらに、優れた透光性を備えているものが求めらていた。   Therefore, in addition to excellent plasma resistance and corrosion resistance, the yttria sintered body is excellent in addition to excellent plasma resistance and corrosion resistance in order to be used for members such as a viewing window, a lens, and a discharge tube exposed to a corrosive gas in a member for a plasma processing apparatus. What was required to have translucency was demanded.

本発明は、上記技術的課題を解決するためになされたものであり、耐プラズマ性、耐食性に優れ、しかも、透光性にも優れており、半導体製造装置や光学用部材、特に、プラズマ処理装置用部材において腐食性ガスに曝されるのぞき窓、レンズ、放電管等の透光性部材に好適に用いることができるイットリア焼結体およびその製造方法を提供することを目的とするものである。   The present invention has been made in order to solve the above technical problem, and is excellent in plasma resistance and corrosion resistance, and also has excellent translucency, and is a semiconductor manufacturing apparatus and optical member, particularly plasma processing. An object of the present invention is to provide a yttria sintered body that can be suitably used for a light-transmitting member such as a viewing window, a lens, and a discharge tube that is exposed to a corrosive gas in a device member, and a method for manufacturing the same. .

本発明に係る透光性イットリア焼結体は、0.02重量%以上5%重量以下のジルコニアを含有し、平均結晶粒径が1μm以上100μm以下であり、可視光の直線透過率が1mm厚で70%以上であることを特徴とする。
このような構成からなるイットリア焼結体は、イットリア自体が有する腐食性ガス、プラズマ等に対する優れた耐食性に加えて、優れた透光性をも備えているものである。
The translucent yttria sintered body according to the present invention contains 0.02% by weight or more and 5% by weight or less zirconia, has an average crystal grain size of 1 μm or more and 100 μm or less, and a visible light linear transmittance of 1 mm thick. 70% or more.
The yttria sintered body having such a structure has excellent translucency in addition to the excellent corrosion resistance against the corrosive gas, plasma and the like that the yttria itself has.

また、本発明に係る透光性イットリア焼結体の製造方法は、前記透光性イットリア焼結体の製造方法であって、純度99%以上であり、一次粒子の粒径がD90で1.5μm以下であるイットリア原料粉末に、ジルコニアを添加し、還元雰囲気または真空中で1700℃以上2000℃以下で焼成することを特徴とする。
ここで、D90とは、粒径累積90%における粒径を意味する。
前記イットリア原料粉末は、一次粒子の粒径がD90で1.0μm以下であることが好ましい。
上記製造方法によれば、上述したような透光性が求められる半導体製造装置やレンズ等の光学用部材として用いるのに十分な透光性を有するイットリア焼結体を容易に得ることができる。
The method for producing a translucent yttria sintered body according to the present invention is a method for producing the translucent yttria sintered body, wherein the purity is 99% or more, and the particle size of the primary particles is 1 in D90 . It is characterized in that zirconia is added to yttria raw material powder having a thickness of 0.5 μm or less and fired at 1700 ° C. or higher and 2000 ° C. or lower in a reducing atmosphere or vacuum.
Here, D 90 means the particle size at 90% cumulative particle size.
The yttria raw material powder preferably has a primary particle diameter of D 90 of 1.0 μm or less.
According to the above manufacturing method, it is possible to easily obtain a yttria sintered body having sufficient translucency to be used as an optical member such as a semiconductor manufacturing apparatus or a lens that requires translucency as described above.

上述したとおり、本発明に係る透光性イットリア焼結体は、腐食性ガス、プラズマ等に対する耐食性に優れ、かつ、透光性にも優れているため、半導体製造装置や光学用部材、特に、プラズマ処理装置用部材において腐食性ガスに曝されるのぞき窓、レンズ、放電管等の透光性部材に好適に用いることができる。
また、本発明に係る製造方法によれば、上記のような透光性に優れたイットリア焼結体を好適に得ることができる。
As described above, the translucent yttria sintered body according to the present invention is excellent in corrosion resistance against corrosive gas, plasma, etc., and is also excellent in translucency. It can use suitably for translucent members, such as a sight glass, a lens, and a discharge tube, exposed to corrosive gas in the member for plasma processing apparatuses.
Moreover, according to the manufacturing method which concerns on this invention, the yttria sintered compact excellent in the above translucency can be obtained suitably.

以下、本発明について、より詳細に説明する。
本発明に係る透光性イットリア焼結体は、0.02重量%以上5%重量以下のジルコニアを含有し、平均結晶粒径が1μm以上100μm以下であり、可視光の直線透過率が1mm厚で70%以上であることを特徴とするものである。
このような構成からなるイットリア焼結体は、イットリア自体が有する腐食性ガス、プラズマ等に対する優れた耐食性に加え、所定量のジルコニアの添加により、優れた透光性が得られ、プラズマ処理装置用部材において腐食性ガスに曝されるのぞき窓、レンズ、放電管等の透光性部材に好適に用いることができる。
可視光の直線透過率が1mm厚で70%未満である場合は、該イットリア焼結体を透光性が求められる半導体製造装置やレンズ等の光学用部材として用いるには、透光性が不十分である。
Hereinafter, the present invention will be described in more detail.
The translucent yttria sintered body according to the present invention contains 0.02% by weight or more and 5% by weight or less zirconia, has an average crystal grain size of 1 μm or more and 100 μm or less, and a visible light linear transmittance of 1 mm thick. It is characterized by being 70% or more.
The yttria sintered body having such a structure has excellent translucency by adding a predetermined amount of zirconia in addition to the excellent corrosion resistance against the corrosive gas, plasma, etc. of yttria itself, and is used for a plasma processing apparatus. The member can be suitably used for a light-transmitting member such as a viewing window, a lens, or a discharge tube that is exposed to a corrosive gas.
When the linear transmittance of visible light is 1 mm thick and less than 70%, the yttria sintered body is not translucent to be used as an optical member such as a semiconductor manufacturing apparatus or a lens that requires translucency. It is enough.

上記のように、本発明に係るイットリア焼結体の結晶平均粒径は、1μm以上100μm以下である。
前記平均粒径が1μm未満である場合は、上記のような優れた透光性を得ることは困難である。
一方、前記平均粒径が、100μmを超える場合は、プラズマ処理装置用部材等として十分に使用に耐え得る強度を得ることが困難である。
As described above, the average crystal grain size of the yttria sintered body according to the present invention is 1 μm or more and 100 μm or less.
When the average particle diameter is less than 1 μm, it is difficult to obtain the above excellent translucency.
On the other hand, when the average particle diameter exceeds 100 μm, it is difficult to obtain a strength sufficient to withstand use as a member for a plasma processing apparatus.

また、前記イットリア焼結体中のジルコニアの含有量は、0.02重量%以上5%重量以下とする。
前記含有量が0.02重量%未満である場合は、ジルコニア添加による透光性の向上効果は得られない。
また、前記含有量が5重量%を超える場合も、透光性を向上させるジルコニア添加効果は低減する。
In addition, the content of zirconia in the yttria sintered body is set to 0.02 wt% or more and 5 wt% or less.
When the content is less than 0.02% by weight, the effect of improving translucency by adding zirconia cannot be obtained.
Moreover, also when the said content exceeds 5 weight%, the zirconia addition effect which improves translucency reduces.

上記のような本発明に係る透光性イットリア焼結体は、純度99%以上であり、一次粒子の粒径がD90で1.5μm以下であるイットリア原料粉末に、ジルコニアを添加し、還元雰囲気または真空中で1700℃以上2000℃以下で焼成することにより、容易に得ることができる。 Translucent yttria sintered body according to the present invention as described above is at least 99% pure, yttria material powder the particle size of the primary particles is 1.5μm or less at D 90, the addition of zirconia, reduction It can be easily obtained by firing at 1700 ° C. or higher and 2000 ° C. or lower in an atmosphere or vacuum.

前記製造方法においては、イットリア原料粉末としては、純度99%以上の高純度のものを用いる。
前記純度が99%未満である場合、得られる焼結体の耐プラズマ性および透光性が低下する。
In the said manufacturing method, as a yttria raw material powder, a highly purified thing with a purity of 99% or more is used.
When the said purity is less than 99%, the plasma resistance and translucency of the sintered compact obtained will fall.

また、前記イットリア原料粉末としては、一次粒子の粒径がD90で1.5μm以下のものを用いる。
前記一次粒子の粒径がD90で1.5μmを超える場合は、上記のような透光性が求められる半導体製造装置やレンズ等の光学用部材として用いるのに十分な透光性を得ることは困難である。
前記一次粒子の粒径はD90で1.0μm以下であることが好ましい。さらに、D50で0.5μm以下であることがより好ましい。
なお、D50とは、粒径累積50%における粒径を意味する。
Further, as the yttria material powder, the particle size of the primary particles used as a 1.5μm or less at D 90.
When the particle size of the primary particles is greater than 1.5 μm at D 90 , sufficient translucency is obtained for use as an optical member such as a semiconductor manufacturing apparatus or a lens that requires the above translucency. It is difficult.
The primary particles preferably have a D 90 of 1.0 μm or less. Further, more preferably 0.5μm or less at D 50.
D 50 means the particle size at a particle size accumulation of 50%.

前記イットリア原料粉末には、所定量のジルコニア粉末を添加混合し、所定の形状に成形加工された後、水素雰囲気下で焼成する。
焼成雰囲気が、水素以外、例えば、大気等の場合は、得られる焼結体基材のイットリア純度が低下し、所望の透光性が得られ難い。
なお、原料粉末の成形方法は、特に限定されるものではなく、通常用いられる方法、例えば、スリップキャスト、CIP等の加圧成形法等により行うことができる。
A predetermined amount of zirconia powder is added to and mixed with the yttria raw material powder, molded into a predetermined shape, and then fired in a hydrogen atmosphere.
When the firing atmosphere is other than hydrogen, for example, the atmosphere or the like, the yttria purity of the obtained sintered base material is lowered, and it is difficult to obtain desired translucency.
In addition, the shaping | molding method of raw material powder is not specifically limited, For example, it can carry out by the pressure molding methods, such as a slip casting and CIP, etc. normally used.

また、焼成温度は、1700℃以上2000℃以下とする。
焼成温度が1700℃未満である場合、イットリア焼結体中に気孔が多く残留し、所望の透光性を得ることが困難となり、また、プラズマ処理装置用の部材として使用した場合、気孔周辺部分が集中的に腐食しやすくなる。
一方、焼成温度が2000℃を超える場合、異常粒成長が生じ、焼結体の強度が著しく低下する。
The firing temperature is 1700 ° C. or higher and 2000 ° C. or lower.
When the firing temperature is less than 1700 ° C., many pores remain in the yttria sintered body, making it difficult to obtain the desired translucency, and when used as a member for a plasma processing apparatus, It becomes easy to corrode intensively.
On the other hand, when the firing temperature exceeds 2000 ° C., abnormal grain growth occurs and the strength of the sintered body is significantly reduced.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。
[実施例1]
純度99.5%のイットリア原料粉末100gを水200gに加えて撹拌し、これに、3重量%のジルコニア粉末添加混合して、スリップを調製した。
得られたスリップを注型し、乾燥させた後、水素雰囲気下、1800℃で焼成し、イットリア焼結体を得た。
得られた焼結体について、平均結晶粒径および1mm厚での可視光の直線透過率を測定した。
これらの結果を表1に示す。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.
[Example 1]
100 g of yttria raw material powder having a purity of 99.5% was added to 200 g of water and stirred, and 3% by weight of zirconia powder was added and mixed therewith to prepare a slip.
The obtained slip was cast and dried, and then fired at 1800 ° C. in a hydrogen atmosphere to obtain a yttria sintered body.
With respect to the obtained sintered body, the average crystal grain size and the linear transmittance of visible light at a thickness of 1 mm were measured.
These results are shown in Table 1.

[実施例2]
純度99.5%のイットリア原料粉末に、3重量%のジルコニア粉末添加混合し、スプレードライヤにて造粒した後、CIPにて1.5t/cm2で加圧成形し、得られた成形体を水素雰囲気下、1800℃で焼成し、イットリア焼結体を得た。
得られた焼結体について、平均結晶粒径および1mm厚での可視光の直線透過率を測定した。
これらの結果を表1に示す。
[Example 2]
3% by weight zirconia powder added to 99.5% pure yttria raw material powder, granulated with a spray dryer, and then pressure molded at 1.5 t / cm 2 with CIP Was fired at 1800 ° C. in a hydrogen atmosphere to obtain a yttria sintered body.
With respect to the obtained sintered body, the average crystal grain size and the linear transmittance of visible light at a thickness of 1 mm were measured.
These results are shown in Table 1.

[実施例3および比較例1〜5]
表1の実施例3および比較例1〜5に示す製造条件とし、それ以外については、実施例1と同様にして、イットリア焼結体を作製し、該焼結体について、平均結晶粒径および1mm厚での可視光の直線透過率を測定した。
これらの結果をまとめて表1に示す。
[Example 3 and Comparative Examples 1 to 5]
The production conditions shown in Example 3 of Table 1 and Comparative Examples 1 to 5 were the same as in Example 1, except that the yttria sintered body was produced. The linear transmittance of visible light at 1 mm thickness was measured.
These results are summarized in Table 1.

Figure 2007063069
Figure 2007063069

表1に示したように、本発明に係る製造方法により得られたイットリア焼結体(実施例1〜3)は、1mm厚での可視光の直線透過率が70%以上と優れた透光性を示すことが認められた。   As shown in Table 1, the yttria sintered bodies (Examples 1 to 3) obtained by the production method according to the present invention have an excellent light transmission with a visible light linear transmittance of 70% or more at a thickness of 1 mm. It was found to show sex.

Claims (3)

0.02重量%以上5%重量以下のジルコニアを含有し、平均結晶粒径が1μm以上100μm以下であり、可視光の直線透過率が1mm厚で70%以上であることを特徴とする透光性イットリア焼結体。   Translucent characterized by containing zirconia in an amount of 0.02 wt% or more and 5 wt% or less, an average crystal grain size of 1 μm or more and 100 μm or less, and a linear transmittance of visible light of 1 mm thickness and 70% or more. Yttria sintered body. 請求項1記載の透光性イットリア焼結体の製造方法であって、純度99%以上であり、一次粒子の粒径がD90で1.5μm以下であるイットリア原料粉末に、ジルコニアを添加し、還元雰囲気または真空中で1700℃以上2000℃以下で焼成することを特徴とする透光性イットリア焼結体の製造方法。 A method of manufacturing a light-transmitting yttria sintered body according to claim 1, wherein, and at least 99% pure, yttria material powder the particle size of the primary particles is 1.5μm or less at D 90, the addition of zirconia The method for producing a translucent yttria sintered body, comprising firing at 1700 ° C. or more and 2000 ° C. or less in a reducing atmosphere or in a vacuum. 前記イットリア原料粉末は、一次粒子の粒径がD90で1.0μm以下であることを特徴とする請求項2記載の透光性イットリア焼結体の製造方法。 3. The method for producing a translucent yttria sintered body according to claim 2, wherein the yttria raw material powder has a primary particle diameter of D 90 of 1.0 μm or less.
JP2005251086A 2005-08-31 2005-08-31 Light-transmissive yttria sintered compact and its manufacturing method Pending JP2007063069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005251086A JP2007063069A (en) 2005-08-31 2005-08-31 Light-transmissive yttria sintered compact and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005251086A JP2007063069A (en) 2005-08-31 2005-08-31 Light-transmissive yttria sintered compact and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007063069A true JP2007063069A (en) 2007-03-15

Family

ID=37925675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005251086A Pending JP2007063069A (en) 2005-08-31 2005-08-31 Light-transmissive yttria sintered compact and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007063069A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239385A (en) * 2007-03-27 2008-10-09 Ngk Insulators Ltd Composite material and its manufacturing method
JP2010095393A (en) * 2008-10-14 2010-04-30 Nikkato:Kk Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
US7742663B2 (en) 2007-10-30 2010-06-22 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Wave energy transmission apparatus for high-temperature environments

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330913A (en) * 1992-05-29 1993-12-14 Kurosaki Refract Co Ltd Polycrystalline transparent y2o3 ceramics for laser
JPH06211573A (en) * 1993-01-18 1994-08-02 Kurosaki Refract Co Ltd Production of transparent y2o3 sintered compact
JPH09315816A (en) * 1996-05-27 1997-12-09 Natl Inst For Res In Inorg Mater Production of yttrium oxide fine powder
JPH10273364A (en) * 1997-03-28 1998-10-13 Natl Inst For Res In Inorg Mater Production of transparent yttrium oxide sintered body
JP2000001362A (en) * 1998-06-10 2000-01-07 Nippon Seratekku:Kk Corrosion resistant ceramic material
JP2002029742A (en) * 2000-07-21 2002-01-29 Daiichi Kigensokagaku Kogyo Co Ltd Rare earth oxide powder and method for manufacturing the same
JP2002121021A (en) * 2000-08-10 2002-04-23 Shin Etsu Chem Co Ltd Rare earth hydroxide, method for producing the same and rare earth hydroxide added sintered compact
JP2002326862A (en) * 2001-05-02 2002-11-12 Kohan Kogyo Kk Light transmitting ceramic and method for producing the same
JP2003089578A (en) * 2001-07-05 2003-03-28 Konoshima Chemical Co Ltd Light transmittable rare earth oxide sintered compact, and production method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330913A (en) * 1992-05-29 1993-12-14 Kurosaki Refract Co Ltd Polycrystalline transparent y2o3 ceramics for laser
JPH06211573A (en) * 1993-01-18 1994-08-02 Kurosaki Refract Co Ltd Production of transparent y2o3 sintered compact
JPH09315816A (en) * 1996-05-27 1997-12-09 Natl Inst For Res In Inorg Mater Production of yttrium oxide fine powder
JPH10273364A (en) * 1997-03-28 1998-10-13 Natl Inst For Res In Inorg Mater Production of transparent yttrium oxide sintered body
JP2000001362A (en) * 1998-06-10 2000-01-07 Nippon Seratekku:Kk Corrosion resistant ceramic material
JP2002029742A (en) * 2000-07-21 2002-01-29 Daiichi Kigensokagaku Kogyo Co Ltd Rare earth oxide powder and method for manufacturing the same
JP2002121021A (en) * 2000-08-10 2002-04-23 Shin Etsu Chem Co Ltd Rare earth hydroxide, method for producing the same and rare earth hydroxide added sintered compact
JP2002326862A (en) * 2001-05-02 2002-11-12 Kohan Kogyo Kk Light transmitting ceramic and method for producing the same
JP2003089578A (en) * 2001-07-05 2003-03-28 Konoshima Chemical Co Ltd Light transmittable rare earth oxide sintered compact, and production method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239385A (en) * 2007-03-27 2008-10-09 Ngk Insulators Ltd Composite material and its manufacturing method
US7742663B2 (en) 2007-10-30 2010-06-22 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Wave energy transmission apparatus for high-temperature environments
JP2010095393A (en) * 2008-10-14 2010-04-30 Nikkato:Kk Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same

Similar Documents

Publication Publication Date Title
JP2000001362A (en) Corrosion resistant ceramic material
JP2009173502A (en) POLYCRYSTAL MgO SINTERED COMPACT, METHOD FOR PRODUCING THE SAME, AND MgO TARGET FOR SPUTTERING
JP2009068067A (en) Plasma resistant ceramics sprayed coating
JP2008195581A (en) Translucent alumina sintered compact and its manufacturing method
JP2006315878A (en) Translucent ceramic and method for producing the same
JP2007145702A (en) Transparent yttrium oxide sintered body and manufacturing method thereof
JP2007063069A (en) Light-transmissive yttria sintered compact and its manufacturing method
JP5949760B2 (en) CaF2 polycrystal, focus ring, plasma processing apparatus, and method for producing CaF2 polycrystal
JP4798693B2 (en) Yttria ceramic parts for plasma processing apparatus and method for manufacturing the same
JP3093897B2 (en) High purity alumina ceramics and method for producing the same
JP2006199562A (en) Corrosion-resistant member, and semiconductor or member for liquid crystal manufacturing apparatus using the same
JP3623054B2 (en) Components for plasma process equipment
JP2005272293A (en) Aluminum oxide sintered body and members using the same for manufacturing semiconductor and liquid crystal manufacturing apparatuses
JP2007277034A (en) POLYCRYSTALLINE Al2O3 SINTERED COMPACT AND METHOD OF MANUFACTURING THE SAME
JP2010064937A (en) Ceramic for plasma treatment apparatuses
JP5458053B2 (en) Translucent ceramics and method for producing the same
JP2009234877A (en) Member used for plasma processing apparatus
JP4126461B2 (en) Components for plasma process equipment
WO2008088071A1 (en) Ceramic member and corrosion-resistant member
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP3793553B2 (en) Black SiO2 corrosion-resistant member and method for producing the same
JP2018002548A (en) Method of manufacturing quartz glass member for ultraviolet led
JP2001199761A (en) High purity alumina ceramic and method of producing the same
WO2020228115A1 (en) Quartz powder and preparation method therefor
JP2007223828A (en) Yttria ceramic sintered compact and method of manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120112