JPH09315816A - Production of yttrium oxide fine powder - Google Patents

Production of yttrium oxide fine powder

Info

Publication number
JPH09315816A
JPH09315816A JP8156006A JP15600696A JPH09315816A JP H09315816 A JPH09315816 A JP H09315816A JP 8156006 A JP8156006 A JP 8156006A JP 15600696 A JP15600696 A JP 15600696A JP H09315816 A JPH09315816 A JP H09315816A
Authority
JP
Japan
Prior art keywords
yttrium
carbonate
yttrium oxide
fine powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8156006A
Other languages
Japanese (ja)
Other versions
JP2843908B2 (en
Inventor
Noriko Saito
紀子 齋藤
Shinichi Matsuda
伸一 松田
Takayasu Ikegami
隆康 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP8156006A priority Critical patent/JP2843908B2/en
Publication of JPH09315816A publication Critical patent/JPH09315816A/en
Application granted granted Critical
Publication of JP2843908B2 publication Critical patent/JP2843908B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a yttrium fine powder excellent in sintering property, reactivity and dispersing property and suitable as a sintering raw material, a sintering assistant, a phosphor raw material, a catalyst or the like. SOLUTION: The yttrium oxide fine powder having 0.01-0.2μm primary particle diameter is produced by neutralizing an acidic base aq. solution of yttrium with a carbonate-containing basic salt aq. solution to >=pH4 and to equal to or below a value generating a plate like crystal to precipitate yttrium carbonate, aging for >=10hr while mixing at <=50 deg.C and firing the yttrium carbonate at 700-1300 deg.C. The yttrium oxide fine powder fine in primary particle diameter, free from aggregated particle and having high quality is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化イットリウム焼結
体原料,イットリウム−アルミニウムガーネット,酸化
物超伝導体等の複合酸化物焼結体原料や、ZrO2 焼結
体の安定化剤,窒化ケイ素や窒化アルミニウム等の焼結
助剤,蛍光体原料,触媒等として有用な酸化イットリウ
ム微粉末を製造する方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a composite oxide sintered material such as yttrium oxide sintered material, yttrium-aluminum garnet, and oxide superconductor, a stabilizer for ZrO 2 sintered material, and a nitriding agent. The present invention relates to a method for producing yttrium oxide fine powder useful as a sintering aid such as silicon or aluminum nitride, a phosphor raw material, a catalyst and the like.

【0002】[0002]

【従来の技術】酸化イットリウム粉末は、各種のセラミ
ックス原料として多用されているが、セラミックスの機
能を十分に発揮させるためには緻密な焼結体であるこ
と、更に多成分系の場合には組成変動がなく単相である
こと等が要求される。そのため、使用される酸化イット
リウム粉末は、焼結性,分散性,反応性等に優れている
ことが必要であり、一次粒子径が小さく且つ凝集粒子の
ない粉末であることが要求される。酸化イットリウム粉
末の製造には、一般に母塩として蓚酸塩が従来から使用
されてきている。しかし、細かな蓚酸塩沈澱物を得るこ
とが困難であるため、仮焼後に大きな形骸粒子が残り易
く、結果として数μm程度の大きな二次粒子が形成され
た。また、熱分解が発熱反応を伴うので、通常の仮焼法
では温度を厳格に制御し、均一な粉末を得ることが困難
であった。そのため、得られた粉末を粉砕する必要があ
り、コスト高や不純物混入の原因となっていた。また、
粉砕によって粒度分布が広くなるため分級を必要とする
が、歩留りが低下し、また均一な微粉末を得るには限界
がある。
2. Description of the Related Art Yttrium oxide powder is widely used as a raw material for various ceramics. However, in order to fully exert the function of ceramics, it must be a dense sintered body. It is required that there is no fluctuation and that it is a single phase. Therefore, the yttrium oxide powder used needs to be excellent in sinterability, dispersibility, reactivity, etc., and is required to be a powder having a small primary particle size and no agglomerated particles. Oxalate has conventionally been generally used as a mother salt in the production of yttrium oxide powder. However, since it is difficult to obtain a fine oxalate precipitate, large skeleton particles tend to remain after calcination, resulting in the formation of large secondary particles of about several μm. Further, since the thermal decomposition is accompanied by an exothermic reaction, it is difficult to control the temperature strictly and obtain a uniform powder by the usual calcination method. Therefore, it is necessary to pulverize the obtained powder, which causes high cost and contamination of impurities. Also,
Although pulverization increases the particle size distribution, classification is required, but the yield decreases and there is a limit to obtaining uniform fine powder.

【0003】[0003]

【発明が解決しようとする課題】そこで、微細で凝集粒
子のない粉末を得るため、更に適した母塩が求められて
おり、蓚酸塩以外の母塩から粉末を合成する方法が検討
されている。たとえば、アンモニアで中和し、水酸化物
を沈澱させる方法がある。この場合、硝酸イオンや塩素
イオン等の母液の成分を取り込んだ水酸化物Y2 (O
H)5NO3 やY2 (OH)5 Clが沈澱する。しか
し、これら沈澱物に含まれる陰イオンは、仮焼時に一次
粒子の成長を促進させたり、二次粒子を作る原因とな
る。そのため、細かい均一な粉末が得られ難く、焼結性
に問題があった。たとえば、通常焼結法では緻密な焼結
体ができても、空孔が残り、透明焼結体を得ることが困
難である。
Therefore, a more suitable mother salt is sought in order to obtain a powder which is fine and has no agglomerated particles, and a method for synthesizing the powder from a mother salt other than oxalate is being studied. . For example, there is a method of neutralizing with ammonia to precipitate hydroxide. In this case, the hydroxide Y 2 (O 2 ) incorporating the components of the mother liquor such as nitrate ions and chlorine ions
H) 5 NO 3 and Y 2 (OH) 5 Cl precipitate. However, the anions contained in these precipitates cause the growth of primary particles during calcination or cause the formation of secondary particles. Therefore, it is difficult to obtain a fine and uniform powder, and there is a problem in sinterability. For example, even if a dense sintered body is formed by the normal sintering method, voids remain and it is difficult to obtain a transparent sintered body.

【0004】尿素やトリクロロ酢酸を用いた均一沈澱法
では、均一な球状沈澱物が生成する。しかし、球状沈澱
物を仮焼すると、球状の形骸が残り、一次粒子が密に凝
集した集合体の二次粒子になる。この二次粒子は、粉砕
が困難な程ほど強固な粒子である。また、炭酸塩を母塩
に使用した粉末については、Ceramic Bull
etin 45(1966)1051に焼結性が報告さ
れているが、粒子内に空孔が残った焼結体しか得られて
いない。これは、母塩の合成条件が適正に調整されてい
ないため、粉末特性がよくなかったことに起因するもの
と考えられる。このように従来の方法では、一次粒子径
が小さく、凝集粒子のない易焼結性,均一性等の粉末特
性に優れた原料粉末を合成することが困難であった。本
発明は、このような問題を解消すべく案出されたもので
あり、特定条件下で合成・熟成した炭酸イットリウムを
母塩として使用することにより、一次粒子径が小さく凝
集粒子のない酸化イットリウム粉末を得ることを目的と
する。
The uniform precipitation method using urea or trichloroacetic acid produces a uniform spherical precipitate. However, when the spherical precipitate is calcined, spherical particles remain, and the primary particles become secondary particles of an aggregate in which the primary particles are densely aggregated. The secondary particles are so strong that they are difficult to grind. For powders using carbonate as a mother salt, see Ceramic Bull.
Although sinterability is reported in etin 45 (1966) 1051, only a sintered body in which voids remain in the particles is obtained. It is considered that this is because the powder characteristics were not good because the synthesis conditions of the mother salt were not properly adjusted. As described above, according to the conventional method, it was difficult to synthesize a raw material powder having a small primary particle size and excellent powder characteristics such as easy sinterability and uniformity without agglomerated particles. The present invention has been devised to solve such a problem, and by using yttrium carbonate synthesized and aged under specific conditions as a mother salt, yttrium oxide having a small primary particle size and no agglomerated particles is used. The purpose is to obtain a powder.

【0005】[0005]

【課題を解決するための手段】本発明の製造方法は、そ
の目的を達成するため、イットリウムの酸性塩水溶液を
炭酸含有塩基性塩水溶液によりpH4以上で且つ板状結
晶が生成する値以下に中和して炭酸イットリウムを沈澱
させ、次いで50℃以下の温度範囲で撹拌しながら10
時間以上熟成した後、炭酸イットリウムを仮焼して酸化
イットリウムにすることを特徴とする。熟成後の炭酸イ
ットリウムは、700〜1300℃の温度で一次粒子径
0.01〜0.2μmの酸化イットリウム微粉末に仮焼
される。
In order to achieve the object, the production method of the present invention is performed such that the yttrium acidic salt aqueous solution has a pH value of 4 or more and a platey crystal formation value or less with the carbonate-containing basic salt aqueous solution. To precipitate yttrium carbonate, which is then stirred at a temperature in the range of 50 ° C or lower with stirring.
It is characterized in that yttrium carbonate is calcined to yttrium oxide after aging for more than an hour. The yttrium carbonate after aging is calcined at a temperature of 700 to 1300 ° C. into a fine yttrium oxide powder having a primary particle diameter of 0.01 to 0.2 μm.

【0006】[0006]

【作用】本発明者等は、一次粒子が細かく凝集粒子のな
い焼結用粉末について種々調査・研究した。その結果、
特定条件下で合成,熟成された炭酸イットリウムから得
られた酸化イットリウム微粉末が好適であることを見い
出した。すなわち、pH調整によって沈澱させた炭酸イ
ットリウムを適正な条件下で熟成した後、炭酸イットリ
ウムを仮焼して酸化イットリウム微粉末にする。この酸
化イットリウム微粉末を使用すると、たとえば従来より
も600〜800℃も低い温度での通常焼結法によって
酸化イットリウム透明焼結体が製造できる。また、凝集
粒子がないため分散性が良好で、安定化剤,焼結助剤,
蛍光体原料,触媒等としても高性能の粉末として使用さ
れる。本発明の酸化イットリウム微粉末の製造方法は、
生成条件を制御した炭酸イットリウムを母塩として使用
する方法である。この炭酸イットリウムは、凝集のない
易焼結性粉末の母塩に求められる(1)仮焼時の凝集粒
子生成の原因となる副生成物が残留しないこと,(2)
仮焼後に形骸が残らないような微細な形状であること等
の要件を満足する。そのため、炭酸イットリウムを仮焼
することにより、焼結性,分散性に優れた0.01〜
0.2μmの酸化イットリウム微粉末が得られる。
The present inventors conducted various investigations and researches on sintering powder having fine primary particles and no agglomerated particles. as a result,
It has been found that yttrium oxide fine powder obtained from yttrium carbonate synthesized and aged under specific conditions is suitable. That is, yttrium carbonate precipitated by adjusting pH is aged under appropriate conditions, and then yttrium carbonate is calcined to obtain yttrium oxide fine powder. When this yttrium oxide fine powder is used, a yttrium oxide transparent sintered body can be produced, for example, by a normal sintering method at a temperature lower by 600 to 800 ° C. than before. Also, because there are no agglomerated particles, the dispersibility is good, and stabilizers, sintering aids,
It is also used as a high-performance powder as a phosphor raw material and catalyst. The method for producing the yttrium oxide fine powder of the present invention,
It is a method of using yttrium carbonate as a mother salt under controlled production conditions. This yttrium carbonate is required for the mother salt of the easily sinterable powder without aggregation (1) The by-product that causes the generation of aggregated particles during calcination does not remain, (2)
Satisfies requirements such as a fine shape that does not leave any body after calcination. Therefore, by calcining yttrium carbonate, it is possible to improve the sinterability and dispersibility of 0.01 to
0.2 μm yttrium oxide fine powder is obtained.

【0007】[0007]

【実施の形態】炭酸イットリウムの合成には、先ずイッ
トリウムの酸性塩水溶液を炭酸を含む塩基性塩水溶液で
pH4〜8に中和して非晶質の沈澱物を生成する。この
とき、pHが4より低いと沈澱物が生成しない。逆にp
Hが高いと、板状結晶が生成する領域に入り好ましくな
い。pHの上限は、温度に応じて変化し、20℃ではp
H=7,50℃ではpH=8である。板状結晶は、ミク
ロンサイズの大きな結晶であるため、仮焼後の粉末には
形骸が残り、大きな二次粒子が形成されるので好ましく
ない。原料のイットリウムの酸性塩としては、塩化物,
硝酸塩,硫酸塩,酢酸塩等の水溶性無機酸塩又は有機酸
塩の1種又は2種以上が使用される。炭酸を含む塩基性
塩には、炭酸アンモニウム,炭酸ナトリウム,炭酸カリ
ウム又はそれらの炭酸水素塩等の水溶性炭酸塩の1種又
は2種以上が使用される。
BEST MODE FOR CARRYING OUT THE INVENTION In the synthesis of yttrium carbonate, first, an acidic salt aqueous solution of yttrium is neutralized with a basic salt aqueous solution containing carbonic acid to pH 4 to 8 to form an amorphous precipitate. At this time, if the pH is lower than 4, no precipitate is formed. Conversely p
When H is high, it enters the region where plate crystals are generated, which is not preferable. The upper limit of pH changes depending on the temperature, and at 20 ° C, p
At H = 7 and 50 ° C., pH = 8. Since the plate-like crystal is a large crystal having a micron size, the powder after calcination has a skeleton and large secondary particles are formed, which is not preferable. The acid salt of yttrium as a raw material is chloride,
One or more of water-soluble inorganic acid salts or organic acid salts such as nitrates, sulfates and acetates are used. As the basic salt containing carbonic acid, one kind or two or more kinds of water-soluble carbonates such as ammonium carbonate, sodium carbonate, potassium carbonate or hydrogen carbonates thereof is used.

【0008】沈澱を生成した後、適正な条件下で沈澱物
を熟成することが焼結性,分散性に優れた微粉末を得る
上で重要な役割を果たす。すなわち、初めに生成した沈
澱物は非晶質であるため、仮焼時に悪影響を及ぼす副生
成物を吸蔵し易い。残留する副生成物は、仮焼後の粉末
に不均一性をもたらす原因となり、焼結性や反応性を低
下させる。これに対し、熟成すると、非晶質の沈澱物が
結晶質の炭酸イットリウムに変化するので、熟成中の結
晶化過程で、吸蔵されている副生成物が放出される。そ
のため、熟成された炭酸イットリウムを焼成すると、微
細で凝集のない酸化イットリウム微粉末が得られる。
After forming the precipitate, aging the precipitate under appropriate conditions plays an important role in obtaining a fine powder having excellent sinterability and dispersibility. That is, since the precipitate formed initially is amorphous, it is easy to occlude by-products that adversely affect calcining. The residual by-product causes non-uniformity in the powder after calcination, and reduces sinterability and reactivity. On the other hand, upon aging, the amorphous precipitate changes to crystalline yttrium carbonate, so that the occluded by-product is released during the crystallization process during aging. Therefore, when the aged yttrium carbonate is fired, fine yttrium oxide fine powder without agglomeration is obtained.

【0009】熟成は、50℃以下の温度で行うことが好
ましい。熟成温度が50℃を超えると、結晶性が高く、
大きなサイズの炭酸イットリウム結晶子が生成される。
そのため、仮焼後に形骸粒子が残り、粒径の揃った均一
な粉末が得られない。熟成時間は熟成温度が高いほど短
くできるが、好ましくは10時間以上,より好ましくは
1日以上の時間をかけて熟成される。熟成が不十分であ
ると、非晶質の沈澱物が残留する。非晶質沈澱物は、熱
分解時に悪影響を及ぼす副生成物を吸蔵し易く、仮焼後
の粉末に不均一性をもたらす原因となり、焼結性や反応
性を低下させる。炭酸イットリウム結晶子の大きさや組
成は、1日以上熟成しても変化しないので、長時間の熟
成には実質上制約がない。
Aging is preferably carried out at a temperature of 50 ° C. or lower. When the aging temperature exceeds 50 ° C, the crystallinity is high,
Large size yttrium carbonate crystallites are produced.
Therefore, skeleton particles remain after calcination, and a uniform powder having a uniform particle size cannot be obtained. The aging time can be shortened as the aging temperature increases, but the aging time is preferably 10 hours or longer, more preferably 1 day or longer. Insufficient aging leaves an amorphous precipitate. Amorphous precipitates tend to occlude by-products that adversely affect thermal decomposition, cause non-uniformity in the powder after calcination, and reduce sinterability and reactivity. Since the size and composition of the yttrium carbonate crystallites do not change even after aging for 1 day or longer, there is virtually no restriction on aging for a long time.

【0010】このようにして得られた炭酸イットリウム
を仮焼すると、一次粒子径が0.01〜0.2μmと微
細で、凝集粒子のない酸化イットリウム微粉末が得られ
る。仮焼温度は、700〜1300℃が好ましい。70
0℃より低い温度で仮焼すると、粉末に未分解物が残留
する。また、1300℃を超えるより高温で仮焼する
と、一次粒子,二次粒子の成長が著しく、不均一な粉末
となる。その結果、焼結性,反応性等の粉末特性が低下
する。得られた酸化イットリウム微粉末は、一次粒子径
が0.01〜0.2μmと微細であり、凝集粒子がな
い。また、焼結性,反応性,分散性に優れ、焼結体原
料,安定化剤,焼結助剤,蛍光体原料,触媒等として広
範な分野に使用される。
When yttrium carbonate thus obtained is calcined, fine yttrium oxide powder having a primary particle size of 0.01 to 0.2 μm and no agglomerated particles is obtained. The calcination temperature is preferably 700 to 1300 ° C. 70
When calcined at a temperature lower than 0 ° C., undecomposed matter remains in the powder. Further, when calcined at a temperature higher than 1300 ° C., primary particles and secondary particles grow remarkably, resulting in a non-uniform powder. As a result, powder characteristics such as sinterability and reactivity are deteriorated. The obtained yttrium oxide fine powder has a fine primary particle diameter of 0.01 to 0.2 μm and has no agglomerated particles. Further, it is excellent in sinterability, reactivity and dispersibility, and is used in a wide range of fields as a sintered body raw material, a stabilizer, a sintering aid, a phosphor raw material, a catalyst and the like.

【0011】[0011]

【実施例】【Example】

実施例1:0.5モル/lの硝酸イットリウム水溶液5
0mlに2.5モル/lの炭酸水素アンモニウム水溶液
20mlを滴下し、pH4.5に調整することにより炭
酸イットリウムを沈澱させた。沈澱物を含むスラリー溶
液を室温で撹拌しながら、2日間熟成した。その結果、
長さ0.1μm,直径0.02μmの微細な炭酸イット
リウムの針状結晶が得られた。この針状結晶を濾過,洗
浄,乾燥した後、酸素雰囲気中1000℃で4時間仮焼
し、酸化イットリウム微粉末を得た。酸化イットリウム
微粉末は、凝集がなく、平均粒径が0.07μmであっ
た。この酸化イットリウム微粉末を2トン/cm2 の静
水圧下で圧粉成形した後、真空中1600℃で1時間焼
成した。得られた焼結体は、焼結密度がほぼ理論密度に
等しい緻密度構造であり、高い透明度及び均一な微構造
を示した。比較のため、同じ条件で生成した沈澱物を熟
成することなく、仮焼した。このときの沈澱物は非晶質
で大きさが約0.1μmの無定形のものであった。仮焼
後の粉末は、平均粒径が0.07μmで凝集のない粉末
であったが、十分に熟成されたものから得られた粉末に
比較して均一性に問題があった。そのため、1700℃
で焼成して得られた焼結体は、緻密な構造を持つもの
の、不透明であった。
Example 1: 0.5 mol / l yttrium nitrate aqueous solution 5
20 ml of a 2.5 mol / l ammonium hydrogen carbonate aqueous solution was added dropwise to 0 ml to adjust the pH to 4.5, whereby yttrium carbonate was precipitated. The slurry solution containing the precipitate was aged for 2 days while stirring at room temperature. as a result,
Fine yttrium carbonate needle crystals having a length of 0.1 μm and a diameter of 0.02 μm were obtained. The needle crystals were filtered, washed and dried, and then calcined in an oxygen atmosphere at 1000 ° C. for 4 hours to obtain yttrium oxide fine powder. The yttrium oxide fine powder had no agglomeration and had an average particle diameter of 0.07 μm. This yttrium oxide fine powder was compacted under a hydrostatic pressure of 2 ton / cm 2 and then calcined in vacuum at 1600 ° C. for 1 hour. The obtained sintered body had a dense structure in which the sintered density was almost equal to the theoretical density, and showed high transparency and a uniform microstructure. For comparison, the precipitate formed under the same conditions was calcined without aging. The precipitate at this time was amorphous and amorphous with a size of about 0.1 μm. The powder after calcination was a powder having an average particle size of 0.07 μm and no aggregation, but there was a problem in uniformity as compared with the powder obtained from a fully aged product. Therefore, 1700 ℃
Although the sintered body obtained by firing in (1) had a dense structure, it was opaque.

【0012】沈澱物の生成及び熟成温度を70℃とし、
同様に炭酸イットリウムを沈澱させた。得られた沈澱物
は、長さ3μm,直径0.2μmの大きな針状結晶であ
った。この沈澱物を仮焼して得た酸化イットリウム微粉
末には形骸粒子が残った。そのため、1700℃で焼成
したところ、得られた焼結体の相対密度は95%であっ
た。また、滴下する炭酸水素アンモニウム水溶液の量を
50mlにすると、溶液のpHは約7.5で、辺の長さ
が3μmの大きな板状結晶の沈澱物が生成した。仮焼後
の酸化イットリウム微粉末には形骸粒子が残った。これ
を1700℃で焼成したところ、得られた焼結体の相対
密度は94%であった。他方、市販の炭酸イットリウム
を母塩に使用し、1100℃で仮焼した場合には、形骸
粒子が残った。そのため、1700℃で焼成して得られ
た焼結体の相対密度は92%であった。
The temperature for forming and aging the precipitate was 70 ° C.,
Similarly, yttrium carbonate was precipitated. The obtained precipitate was large needle-like crystals with a length of 3 μm and a diameter of 0.2 μm. Precipitated particles remained in the yttrium oxide fine powder obtained by calcining this precipitate. Therefore, when fired at 1700 ° C., the relative density of the obtained sintered body was 95%. When the amount of the ammonium hydrogencarbonate aqueous solution added dropwise was 50 ml, the pH of the solution was about 7.5 and a large plate-like crystal precipitate having a side length of 3 μm was formed. The skeleton particles remained in the yttrium oxide fine powder after calcination. When this was fired at 1700 ° C., the relative density of the obtained sintered body was 94%. On the other hand, when commercially available yttrium carbonate was used as the mother salt and calcined at 1100 ° C., skeleton particles remained. Therefore, the relative density of the sintered body obtained by firing at 1700 ° C. was 92%.

【0013】実施例2:0.6モル/lの塩化イットリ
ウム水溶液50mlに1.5モル/lの炭酸アンモニウ
ム水溶液20mlを滴下してpH5に調整し、炭酸イッ
トリウムを沈澱させた。沈澱物を室温で撹拌下2日間熟
成し、針状結晶を得た。これを濾過,洗浄,乾燥した
後、酸素雰囲気中1100℃で4時間仮焼し、酸化イッ
トリウム微粉末を得た。得られた酸化イットリウム微粉
末は、凝集がなく平均粒径0.1μmの均一性に富むも
のであった。
Example 2: 20 ml of a 1.5 mol / l ammonium carbonate aqueous solution was added dropwise to 50 ml of a 0.6 mol / l yttrium chloride aqueous solution to adjust the pH to 5 to precipitate yttrium carbonate. The precipitate was aged at room temperature for 2 days with stirring to obtain needle crystals. This was filtered, washed and dried, and then calcined in an oxygen atmosphere at 1100 ° C. for 4 hours to obtain yttrium oxide fine powder. The obtained yttrium oxide fine powder had no agglomeration and was highly uniform with an average particle size of 0.1 μm.

【0014】実施例3:0.2モル/lの硝酸イットリ
ウム水溶液200mlに1モル/lの炭酸水素ナトリウ
ム水溶液80mlを滴下してpH5に調整し、炭酸イッ
トリウムを沈澱させた。沈澱物を室温で撹拌下2日間熟
成し、針状結晶を得た。これを濾過,洗浄,乾燥した
後、酸素雰囲気中1100℃で4時間仮焼し、酸化イッ
トリウム微粉末を得た。この酸化イットリウム微粉末
は、凝集がなく平均粒径0.1μmの均一性に富むもの
であった。
Example 3: 80 ml of a 1 mol / l sodium hydrogen carbonate aqueous solution was added dropwise to 200 ml of a 0.2 mol / l yttrium nitrate aqueous solution to adjust the pH to 5 to precipitate yttrium carbonate. The precipitate was aged at room temperature for 2 days with stirring to obtain needle crystals. This was filtered, washed and dried, and then calcined in an oxygen atmosphere at 1100 ° C. for 4 hours to obtain yttrium oxide fine powder. The yttrium oxide fine powder had no agglomeration and was highly uniform with an average particle size of 0.1 μm.

【0015】[0015]

【発明の効果】以上に説明したように、本発明において
は、酸性塩水溶液からpH調整によって沈澱させた炭酸
イットリウムを熟成して針状結晶とし、この針状結晶を
仮焼して粒径0.01〜0.2μmの酸化イットリウム
微粉末を得ている。この酸化イットリウム微粉末は、焼
結性に優れ、従来よりも焼結温度が600〜800℃低
い通常焼結法で理論密度の透明燒結体まで焼結できる。
また、分散性や反応性に優れ、他の粉末と均一に混合さ
れるため、焼結助剤,複合セラミックス原料としても有
用で、低温焼成によって均一で緻密な高性能セラミック
スが得られる。しかも、従来法で使用されていた毒性の
ある蓚酸を必要とせず酸化イットリウムが合成されるた
め、安全面や環境面においても問題のない製造法とな
る。
As described above, in the present invention, yttrium carbonate precipitated from an acidic salt aqueous solution by pH adjustment is aged to obtain needle crystals, and the needle crystals are calcined to have a grain size of 0. Yttrium oxide fine powder of 0.01 to 0.2 μm is obtained. This yttrium oxide fine powder is excellent in sinterability and can be sintered to a transparent sintered body having a theoretical density by a normal sintering method having a sintering temperature lower than that of the conventional one by 600 to 800 ° C.
Moreover, since it has excellent dispersibility and reactivity and is uniformly mixed with other powders, it is useful as a sintering aid and a raw material for composite ceramics, and uniform and dense high-performance ceramics can be obtained by low-temperature firing. Moreover, since yttrium oxide is synthesized without using the toxic oxalic acid used in the conventional method, the manufacturing method has no problems in terms of safety and environment.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 イットリウムの酸性塩水溶液を炭酸含有
塩基性塩水溶液によりpH4以上で且つ板状結晶が生成
する値以下に中和して炭酸イットリウムを沈澱させ、次
いで50℃以下の温度範囲で撹拌しながら10時間以上
熟成した後、炭酸イットリウムを仮焼して酸化イットリ
ウムにする酸化イットリウム微粉末の製造方法。
1. Yttrium carbonate is precipitated by neutralizing an aqueous solution of yttrium acid salt with an aqueous solution of carbonate-containing basic salt to a pH of 4 or more and below a value at which plate crystals are formed, and then stirring in a temperature range of 50 ° C. or less. However, after aging for 10 hours or more, a method for producing fine yttrium oxide powder by calcining yttrium carbonate into yttrium oxide.
【請求項2】 請求項1記載の熟成後の炭酸イットリウ
ムを700〜1300℃で仮焼し、一次粒子径が0.0
1〜0.2μmの酸化イットリウムにする酸化イットリ
ウム微粉末の製造方法。
2. The yttrium carbonate after aging according to claim 1 is calcined at 700 to 1300 ° C. to have a primary particle diameter of 0.0.
A method for producing fine yttrium oxide powder, which is yttrium oxide of 1 to 0.2 μm.
JP8156006A 1996-05-27 1996-05-27 Method for producing yttrium oxide fine powder Expired - Lifetime JP2843908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8156006A JP2843908B2 (en) 1996-05-27 1996-05-27 Method for producing yttrium oxide fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8156006A JP2843908B2 (en) 1996-05-27 1996-05-27 Method for producing yttrium oxide fine powder

Publications (2)

Publication Number Publication Date
JPH09315816A true JPH09315816A (en) 1997-12-09
JP2843908B2 JP2843908B2 (en) 1999-01-06

Family

ID=15618275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8156006A Expired - Lifetime JP2843908B2 (en) 1996-05-27 1996-05-27 Method for producing yttrium oxide fine powder

Country Status (1)

Country Link
JP (1) JP2843908B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063069A (en) * 2005-08-31 2007-03-15 Toshiba Ceramics Co Ltd Light-transmissive yttria sintered compact and its manufacturing method
JP2008189489A (en) * 2007-02-02 2008-08-21 Mitsui Mining & Smelting Co Ltd Yttrium oxide powder
JP2008273838A (en) * 2008-08-18 2008-11-13 National Institute For Materials Science Yttrium oxide sintered compact
KR100963604B1 (en) * 2009-12-16 2010-06-15 주식회사 금강쿼츠 Yttria granule powder and method of munufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063069A (en) * 2005-08-31 2007-03-15 Toshiba Ceramics Co Ltd Light-transmissive yttria sintered compact and its manufacturing method
JP2008189489A (en) * 2007-02-02 2008-08-21 Mitsui Mining & Smelting Co Ltd Yttrium oxide powder
JP2008273838A (en) * 2008-08-18 2008-11-13 National Institute For Materials Science Yttrium oxide sintered compact
KR100963604B1 (en) * 2009-12-16 2010-06-15 주식회사 금강쿼츠 Yttria granule powder and method of munufacturing the same

Also Published As

Publication number Publication date
JP2843908B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
US5688480A (en) Complex metal oxide powder and method for the production of the same
JP3861144B2 (en) Method for producing easily sinterable nanospherical ceria compound powder
JP2980504B2 (en) Cerium carbonate and cerium carbonate having novel morphology and method for producing cerium oxide
JP3906352B2 (en) Method for producing YAG transparent sintered body
JPH0137331B2 (en)
JPH1121125A (en) Fine thin platy boehmite particles and their production
JP2843909B2 (en) Method for producing yttrium oxide transparent sintered body
JPH11292548A (en) Tricobalt tetroxide and its production
US4164557A (en) Process for the production of β-lithium aluminate and needle-shaped product
JP2843908B2 (en) Method for producing yttrium oxide fine powder
JPH06305726A (en) Production of powdery oxide of rare earth element
JP4195931B2 (en) Scandium compound ultrafine particles and method for producing the same
JPH11292549A (en) Cobalt hydroxide and its production
JP2790951B2 (en) Method for producing plate-like alumina particles
CN1858022A (en) Gel combustion synthesis method for preparing neodymium-doped gadolinium-gallium garnet nano powder
JPH01294527A (en) Production of metallic oxide of perovskite type of abo3 type
JP3906353B2 (en) YAG fine powder manufacturing method
JP2547007B2 (en) Method for producing perovskite type oxide fine powder
KR20080054580A (en) Novel synthetic method of cerium carbonate and ceria, and abrasive liquid containing the said ceria
JPH11130428A (en) Easily sinterable yttrium aluminum garnet powder
JP3801275B2 (en) Method for producing yttrium aluminum garnet raw material powder
JP3681550B2 (en) Rare earth oxide and method for producing the same
JP3394071B2 (en) Method for producing rare earth oxide fine powder
JPH09110420A (en) Production of easily sinterable aluminum oxide powder and yttrium-aluminum garnet powder
JPH01294528A (en) Production of oxide of perovskite type of abo3 type

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term