JP5458053B2 - Translucent ceramics and method for producing the same - Google Patents
Translucent ceramics and method for producing the same Download PDFInfo
- Publication number
- JP5458053B2 JP5458053B2 JP2011080022A JP2011080022A JP5458053B2 JP 5458053 B2 JP5458053 B2 JP 5458053B2 JP 2011080022 A JP2011080022 A JP 2011080022A JP 2011080022 A JP2011080022 A JP 2011080022A JP 5458053 B2 JP5458053 B2 JP 5458053B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- yttrium oxide
- crystal grain
- grain size
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000919 ceramic Substances 0.000 title claims description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000013078 crystal Substances 0.000 claims description 36
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 34
- 239000000843 powder Substances 0.000 claims description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 238000002834 transmittance Methods 0.000 description 24
- 239000011148 porous material Substances 0.000 description 19
- 238000010304 firing Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 10
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 238000000149 argon plasma sintering Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910016036 BaF 2 Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910019655 synthetic inorganic crystalline material Inorganic materials 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
本発明は、透光性セラミックス及びその製造方法に関し、例えば、放電ランプ用材料、レーザ用ホスト材、半導体製造装置のプラズマ処理装置の窓材料などに使用される透光性セラミックス及びその製造方法に関する。 The present invention relates to a translucent ceramic and a method for manufacturing the same, and, for example, to a translucent ceramic used for a discharge lamp material, a laser host material, a window material for a plasma processing apparatus of a semiconductor manufacturing apparatus, and the like. .
透光性セラミックスは、前記したように種々の用途に用いられているが、例えば、半導体製造装置のプラズマ処理装置の窓材料として用いる場合には、透光性のみならず、耐熱性が必要とされる。また、前記半導体製造装置のプラズマ処理装置にあっては、ハロゲンガス等の腐食性ガスやプラズマに曝されるため、腐食性ガスやプラズマに対する耐食性も必要とされる。 As described above, translucent ceramics are used for various applications. For example, when used as a window material for a plasma processing apparatus of a semiconductor manufacturing apparatus, not only translucency but also heat resistance is required. Is done. Further, since the plasma processing apparatus of the semiconductor manufacturing apparatus is exposed to corrosive gas such as halogen gas or plasma, corrosion resistance against the corrosive gas or plasma is also required.
このような透光性、耐熱性、耐食性等の特性を有する透光性セラミックスとしては、従来から、酸化イットリウムが知られており、既に、本出願人においても特開2007−145702号公報(特許文献1)において、酸化イットリウムを主成分とする、光透過率の優れた透光性セラミックスを提案している。 As translucent ceramics having such properties as translucency, heat resistance, and corrosion resistance, yttrium oxide has been conventionally known, and the present applicant has already disclosed JP 2007-145702 (patent). Document 1) proposes translucent ceramics having yttrium oxide as a main component and excellent in light transmittance.
この特許文献1に示した透光性セラミックスは、酸化イットリウムを主成分とし、少なくともタンタル若しくはニオブのいずれか一方又は双方を含有し、厚さ1mm時の可視光帯域波長400〜800nmにおける直線透過率が60%以上であることを特徴とするものであり、またタンタルを、金属単体換算で0.1wt%以上1.3wt%以下含有している。 The translucent ceramic shown in Patent Document 1 contains yttrium oxide as a main component, contains at least one of tantalum and niobium, or both, and has a linear transmittance at a visible light band wavelength of 400 to 800 nm at a thickness of 1 mm. Is 60% or more, and tantalum is contained in an amount of 0.1 wt% or more and 1.3 wt% or less in terms of a single metal.
また、特許文献2には、透光性を有する酸化イットリウム焼結体として、YAG、スピネル、Al2O3、SiO2、Y2O3、ZrO2、Si3N4、AlN、ZnS、CaF2およびBaF2のうち少なくとも1種を含有し、結晶粒径が100nm以下の酸化イットリウム焼結体が示されている。 Patent Document 2 discloses YAG, spinel, Al 2 O 3 , SiO 2 , Y 2 O 3 , ZrO 2 , Si 3 N 4 , AlN, ZnS, and CaF as translucent yttrium oxide sintered bodies. An yttrium oxide sintered body containing at least one of 2 and BaF 2 and having a crystal grain size of 100 nm or less is shown.
ところで、特許文献1に記載された発明では、直線透過率が60%以上の透光性酸化イットリウム焼結体が得られる。
しかしながら、特許文献1に記載された発明では、直線透過率が80%以上の酸化イットリウムを得ることが困難であった。また同様に、特許文献2に記載された発明においても、直線透過率が80%以上のものを得ることが困難であった。
By the way, in the invention described in Patent Document 1, a translucent yttrium oxide sintered body having a linear transmittance of 60% or more is obtained.
However, in the invention described in Patent Document 1, it is difficult to obtain yttrium oxide having a linear transmittance of 80% or more. Similarly, in the invention described in Patent Document 2, it is difficult to obtain a linear transmittance of 80% or more.
本願発明者らは、上記課題を解決するために、酸化イットリウム焼結体の透過率について鋭意研究を行った。
その結果、透過率向上のためには、粒界により光の散乱を抑制する必要があり、焼結体の結晶粒径を大きくする必要があることを知見した。また透過率向上のためには、結晶組織中のポア(気孔)の存在量を抑制する必要があることを知見した。
即ち、本願発明者らは、透過率向上のためには、結晶粒径の制御、結晶組織中のポア(気孔)の存在量の制御を、SiO2及びTa2O5の添加することにより行い、より透光性の優れた酸化イットリウム焼結体が得られることを知見し、本発明を想到するに至ったものである。
In order to solve the above-mentioned problems, the inventors of the present application conducted intensive studies on the transmittance of the yttrium oxide sintered body.
As a result, it has been found that in order to improve the transmittance, it is necessary to suppress light scattering by the grain boundary, and it is necessary to increase the crystal grain size of the sintered body. It was also found that in order to improve the transmittance, it is necessary to suppress the abundance of pores in the crystal structure.
That is, in order to improve the transmittance, the inventors of the present invention control the crystal grain size and the amount of pores in the crystal structure by adding SiO 2 and Ta 2 O 5. The inventors have found that a yttrium oxide sintered body having more excellent translucency can be obtained, and have come up with the present invention.
本発明は、上記知見に基づいてなされたものであり、酸化イットリウムを主成分とする、光透過率のより優れた透光性セラミックス及びその製造方法を提供することを目的とする。 The present invention has been made based on the above findings, and an object of the present invention is to provide a translucent ceramic that has yttrium oxide as a main component and has an excellent light transmittance, and a method for producing the same.
上記目的を達成するためになされた本発明に係る透光性セラミックスは、実質的にY,Si,Taの酸化物からなる透光性セラミックスであって、前記Siを酸化物換算で0.5wt%〜10wt%含有し、前記Taを酸化物換算で0.5wt%〜10wt%含有し、平均結晶粒径が10μm〜200μmであることを特徴としている。なお、「実質的に」とは、原料に含まれる不可避不純物を除いたものであることを示す。
このように、Siを酸化物換算で0.5wt%〜10wt%含有することにより、焼結体の結晶粒径を制御することができ、またTaを酸化物換算で0.5wt%〜10wt%含有することにより、結晶組織中のポア(気孔)の存在量を制御することができる。その結果、光透過率が高く、耐熱性、耐食性、低発塵性、高強度の特性を有した透光性セラミックスを得ることができる。
The translucent ceramic according to the present invention made to achieve the above object is a translucent ceramic substantially composed of an oxide of Y, Si, Ta, and the Si is converted to 0.5 wt. The Ta content is 0.5 wt% to 10 wt% in terms of oxide, and the average crystal grain size is 10 μm to 200 μm. In addition, “substantially” indicates that the inevitable impurities contained in the raw material are removed.
Thus, by containing 0.5 wt% to 10 wt% of Si in terms of oxide, the crystal grain size of the sintered body can be controlled, and Ta is 0.5 wt% to 10 wt% in terms of oxide. By containing, the abundance of pores (pores) in the crystal structure can be controlled. As a result, a light-transmitting ceramic having high light transmittance, heat resistance, corrosion resistance, low dust generation, and high strength can be obtained.
また、上記目的を達成するためになされた本発明に係る透光性セラミックスの製造方法は、酸化イットリウム粉末にシリカ粉末および酸化タンタル成分を同時に添加し、成型し、還元雰囲気下、1400℃〜2100℃の温度で3時間以上焼成することを特徴としている。
このように1400℃〜2100℃の温度で3時間以上焼成することにより、焼結体の結晶粒径を制御することができ、上記のような透光性セラミックスを得ることができる。
Moreover, the manufacturing method of the translucent ceramics based on this invention made | formed in order to achieve the said objective adds a silica powder and a tantalum oxide component to yttrium oxide powder simultaneously, it shape | molds, 1400 degreeC-2100 in a reducing atmosphere. It is characterized by firing at a temperature of 3 ° C. for 3 hours or more.
Thus, by baking at a temperature of 1400 ° C. to 2100 ° C. for 3 hours or more, the crystal grain size of the sintered body can be controlled, and the above translucent ceramics can be obtained.
上述したとおり、本発明によれば、酸化イットリウムを主成分とする、光透過率のより優れた透光性セラミックス及びその製造方法を得ることができる。 As described above, according to the present invention, it is possible to obtain a light-transmitting ceramic that has yttrium oxide as a main component and has more excellent light transmittance and a method for manufacturing the same.
以下、本発明にかかる透光性セラミックスについてより詳細に説明する。
本発明にかかる透光性セラミックスは、実質的にY,Si,Taの酸化物からなる透光性セラミックスであって、前記Siを酸化物換算で0.5wt%〜10wt%含有し、前記Taを酸化物換算で0.5wt%〜10wt%含有している。
なお、「実質的に」とは、原料に含まれる不可避不純物を除いたものであることを示す。
Hereinafter, the translucent ceramic according to the present invention will be described in more detail.
The translucent ceramic according to the present invention is a translucent ceramic substantially composed of an oxide of Y, Si, Ta, containing 0.5 wt% to 10 wt% of the Si in terms of oxide, and the Ta Is contained in an oxide equivalent of 0.5 wt% to 10 wt%.
In addition, “substantially” indicates that the inevitable impurities contained in the raw material are removed.
ここで、本発明にかかる透光性セラミックスは、酸化イットリウムを主成分としている。具体的は、酸化イットリウムは80wt%〜99wt%含有している。酸化イットリウムが80wt%未満では、イットリアの特性が得られなく、また酸化イットリウムが99wt%を超える場合には、高額(高コスト)となるため、好ましくない。
また、酸化イットリウム粉末の純度が低いと、得られる透光性セラミックスのポアの存在量が多くなるため、酸化イットリウム粉末の純度は95%以上のものが用いられる。
Here, the translucent ceramic according to the present invention contains yttrium oxide as a main component. Specifically, yttrium oxide contains 80 wt% to 99 wt%. If the yttrium oxide is less than 80 wt%, the characteristics of yttria cannot be obtained, and if the yttrium oxide exceeds 99 wt%, the cost is high (high cost).
In addition, when the purity of the yttrium oxide powder is low, the amount of pores in the obtained translucent ceramic increases, so that the purity of the yttrium oxide powder is 95% or more.
また、本発明にかかる透光性セラミックスは、含有されるSiによって、焼結体の結晶粒径が制御され、またTaによって、結晶組織中のポア(気孔)の存在量が制御される。そのため、Siを酸化物換算で0.5wt%〜10wt%含有し、前記Taを酸化物換算で0.5wt%〜10wt%含有していることが好ましい。 In the translucent ceramic according to the present invention, the crystal grain size of the sintered body is controlled by Si contained, and the amount of pores (pores) in the crystal structure is controlled by Ta. Therefore, it is preferable to contain 0.5 wt% to 10 wt% of Si in terms of oxide and 0.5 wt% to 10 wt% of Ta in terms of oxide.
前記Siを酸化物換算で含有量が0.5wt%未満である場合、透光性セラミックス(透光性酸化イットリウム焼結体)の平均結晶粒径が、10μm未満と小さくなり、光の散乱を生じやすくなるため好ましくない。
一方、Siを酸化物換算で含有量が10wt%超である場合、透光性セラミックス(透光性酸化イットリウム焼結体)の平均結晶粒径が、400μmと大きくなり、十分な強度が得られないため好ましくない。
このように、Siを酸化物換算で0.5wt%〜10wt%含有している場合には、焼結体の結晶粒径を平均結晶粒径10μm〜200μmになすことができる。そして、平均結晶粒径が、10μm〜200μmである場合には、高い透過率を有すると共に、十分な強度を有している。特に、前記平均結晶粒径は、50μm〜200μmであることが好ましく、更には100μm〜150μmであることがより好ましい。
尚、焼結体の前記結晶粒径の分布範囲は、透光性を向上させる観点から狭い方が好ましい。即ち、結晶粒径が均一化していることが望ましい。
When the content of Si in terms of oxide is less than 0.5 wt%, the average crystal grain size of the translucent ceramic (translucent yttrium oxide sintered body) becomes less than 10 μm, and light scattering occurs. This is not preferable because it tends to occur.
On the other hand, when the content of Si is more than 10 wt% in terms of oxide, the average crystal grain size of the translucent ceramic (translucent yttrium oxide sintered body) becomes as large as 400 μm, and sufficient strength is obtained. Since it is not, it is not preferable.
As described above, when Si is contained in an amount of 0.5 wt% to 10 wt% in terms of oxide, the crystal grain size of the sintered body can be set to an average crystal grain size of 10 μm to 200 μm. And when an average crystal grain diameter is 10 micrometers-200 micrometers, while having high transmittance | permeability, it has sufficient intensity | strength. In particular, the average crystal grain size is preferably 50 μm to 200 μm, and more preferably 100 μm to 150 μm.
The distribution range of the crystal grain size of the sintered body is preferably narrow from the viewpoint of improving translucency. That is, it is desirable that the crystal grain size is uniform.
また、Taを酸化物換算で含有量が0.5wt%〜10wt%である場合には、結晶組織中のポアが1mm2当たり20個以下となり、好ましい。尚、ポアの1mm2当たりの個数は、プラニメトリック法での面積換算での個数を意味している。
また、前記Taを酸化物換算で含有量が0.5wt%未満である場合には、結晶組織中のポアが1mm2当たり1500個以上となり、光りの散乱を誘発するため好ましくない。
一方、前記Taを酸化物換算で含有量が10wt%を超える場合には、結晶粒界にTa2O5の偏析が生じるため、光の散乱を誘発するため好ましくない。
Also, when the content in terms of oxide of Ta is 0.5 wt% 10 wt%, the pores of the crystalline tissue becomes less than 20 per 1 mm 2, preferably. The number of pores per 1 mm 2 means the number in terms of area by the planimetric method.
In addition, when the content of Ta is less than 0.5 wt% in terms of oxide, the number of pores in the crystal structure is 1500 or more per 1 mm 2, which is not preferable because light scattering is induced.
On the other hand, when the content of Ta exceeds 10 wt% in terms of oxide, segregation of Ta 2 O 5 occurs at the grain boundaries, which is not preferable because light scattering is induced.
また、本発明の透光性セラミックスは、以下の製造方法によって製造される。
まず、酸化イットリウム粉末に、酸化タンタル粉末、シリカ粉末を添加し、スラリーを調製する。そして、このスラリーにバインダー溶液を混合した後、スプレードライヤーにて造粒し、得られた造粒粉をラバープレスし、仮焼し、真空あるいは還元雰囲気下(例えば、水素雰囲気下)で、1400℃〜2100℃の温度で3時間以上焼成することにより、酸化イットリウム焼結体を得る。
Moreover, the translucent ceramics of this invention are manufactured with the following manufacturing methods.
First, tantalum oxide powder and silica powder are added to yttrium oxide powder to prepare a slurry. And after mixing a binder solution with this slurry, it granulates with a spray dryer, the obtained granulated powder is rubber-pressed, calcined, and 1400 in a vacuum or reducing atmosphere (for example, under hydrogen atmosphere). A yttrium oxide sintered body is obtained by firing at a temperature of from ℃ to 2100 ℃ for 3 hours or more.
ここで、前記酸化イットリウム粉末の純度が低いと、得られる透光性セラミックスのポアの存在量が多くなるため、酸化イットリウム粉末の純度は95%以上のもが用いられる。
また、酸化イットリウムは80重量部〜105重量部用いられる。
Here, if the purity of the yttrium oxide powder is low, the amount of pores in the obtained translucent ceramic increases, so that the purity of the yttrium oxide powder is 95% or more.
Yttrium oxide is used in an amount of 80 to 105 parts by weight.
酸化タンタル(Ta2O5)粉末は、0.5重量部〜10重量部用いられる。また、シリカ(SiO2)粉末は、0.5重量部〜10重量部用いられる。尚、シリカ(SiO2)の添加には、粉末に限らず、水ガラスやTEOS(テトラエトキシシラン)等を用いても構わない。
また、バインダー溶液としては、一般的な樹脂溶液、例えばPVA(ポリビニルアルコール)が用いられる。
尚、焼結性の観点から原料粉末は、平均粒径2μm以下であることが好ましい。
The tantalum oxide (Ta 2 O 5 ) powder is used in an amount of 0.5 to 10 parts by weight. Silica (SiO 2 ) powder is used in an amount of 0.5 to 10 parts by weight. The addition of silica (SiO 2 ) is not limited to powder, and water glass, TEOS (tetraethoxysilane), or the like may be used.
As the binder solution, a general resin solution such as PVA (polyvinyl alcohol) is used.
From the viewpoint of sinterability, the raw material powder preferably has an average particle size of 2 μm or less.
また、前記焼成温度は、SiO2の含有率と同様に、焼結体の結晶粒径に影響を与える。
即ち、前記焼成温度が1400℃未満の場合、焼結体の粒成長が進まず、結晶粒径が小さいために、結晶粒界における光の散乱を抑制することができず、優れた透光性を得ることができない。
一方、前記焼成温度が2100℃超の場合、Ta、Siが気化してしまうため所望の結晶粒径やポアの存在量とすることができず、前記した焼成温度の場合と同様に、結晶粒界における光の散乱を抑制することができず、優れた透光性を得ることができない。
また、焼成時間も、焼結体の結晶粒径に影響を与える。即ち、焼成時間が3時間未満の場合、粒成長が十分に進まず、結晶粒径が小さいために、結晶粒界における光の散乱を抑制することができず、優れた透光性をえることができない。
尚、焼成後に、大気熱処理(例えば、温度1400℃で3時間熱処理)することによって、イットリア結晶構造中の酸素欠陥部位に酸素原子を再注入することができるため、これにより透光性をより高めることができる。
The firing temperature affects the crystal grain size of the sintered body as well as the content of SiO 2 .
That is, when the firing temperature is less than 1400 ° C., the grain growth of the sintered body does not proceed and the crystal grain size is small, so that light scattering at the crystal grain boundary cannot be suppressed, and excellent translucency is achieved. Can't get.
On the other hand, when the firing temperature is higher than 2100 ° C., Ta and Si are vaporized, so that the desired crystal grain size and pore abundance cannot be obtained. Scattering of light in the field cannot be suppressed, and excellent translucency cannot be obtained.
The firing time also affects the crystal grain size of the sintered body. That is, when the firing time is less than 3 hours, the grain growth does not proceed sufficiently and the crystal grain size is small, so that scattering of light at the crystal grain boundary cannot be suppressed and excellent translucency can be obtained. I can't.
In addition, oxygen atoms can be reinjected into the oxygen defect site in the yttria crystal structure by performing atmospheric heat treatment (for example, heat treatment at a temperature of 1400 ° C. for 3 hours) after firing, thereby further improving translucency. be able to.
以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。
[実施例1]
表1の実施例1に示すように、平均粒径1.0μm、純度97%の酸化イットリウム粉末101重量部に、平均粒径1.0μm、純度99%の五酸化タンタル粉末1重量部、及び平均粒径1.0μm、純度99%のシリカ粉末1重量部を添加し、イオン交換水を加え、スラリーを調製した。
このスラリーにバインダー溶液(ポリビニルアルコール)を加え混合した後、スプレードライヤーを用いて平均粒径20μmの造粒粉を作製した。得られた造粒粉をラバープレスし、仮焼し、真空炉にて1800℃、3時間で焼成し、酸化イットリウム焼結体を得た。
得られた焼結体は、Y2O3換算で98wt%、SiO2換算で1wt%、Ta2O5換算で1wt%の含有量であった。焼結体の含有量は、ICP発光分光分析を用いて算出した。なお、得られた焼結体の含有量の算出には、原料粉末に由来する含まれる不可避不純物は除いている。
そして、得られた焼結体を直径20mm、厚さ1mmで両面光学研磨品へと加工し、これを分光高度計を用いて可視光領域波長における直線透過率を測定した。
さらに、光学研磨試料の一部を大気中1500℃にて3時間サーマルエッチングを行い、微構造を電子顕微鏡にて観察し、1mm2中のポアの存在量を測定し、プラニメトリック法により平均結晶粒径を算出した。
また、耐食性及び曲げ強度を測定した結果、エッチングレート(耐食性)が0.3μm/h、曲げ強度が105MPaであり従来の透光性セラミックスと劣らなかった。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.
[Example 1]
As shown in Example 1 of Table 1, 101 parts by weight of yttrium oxide powder having an average particle diameter of 1.0 μm and 97% purity, 1 part by weight of tantalum pentoxide powder having an average particle diameter of 1.0 μm and purity of 99%, and 1 part by weight of silica powder having an average particle size of 1.0 μm and a purity of 99% was added, and ion-exchanged water was added to prepare a slurry.
After adding and mixing a binder solution (polyvinyl alcohol) to this slurry, granulated powder with an average particle diameter of 20 μm was prepared using a spray dryer. The obtained granulated powder was rubber-pressed, calcined, and fired at 1800 ° C. for 3 hours in a vacuum furnace to obtain a yttrium oxide sintered body.
The obtained sintered body had a content of 98 wt% in terms of Y 2 O 3 , 1 wt% in terms of SiO 2 , and 1 wt% in terms of Ta 2 O 5 . The content of the sintered body was calculated using ICP emission spectroscopic analysis. In addition, in the calculation of content of the obtained sintered compact, the inevitable impurity contained derived from raw material powder is excluded.
The obtained sintered body was processed into a double-sided optically polished product having a diameter of 20 mm and a thickness of 1 mm, and the linear transmittance at a wavelength in the visible light region was measured using a spectrophotometer.
Further, a part of the optically polished sample was subjected to thermal etching at 1500 ° C. for 3 hours in the atmosphere, the microstructure was observed with an electron microscope, the amount of pores in 1 mm 2 was measured, and the average was obtained by a planimetric method. The crystal grain size was calculated.
Further, as a result of measuring the corrosion resistance and bending strength, the etching rate (corrosion resistance) was 0.3 μm / h and the bending strength was 105 MPa, which was not inferior to conventional translucent ceramics.
[実施例2〜11]
実施例1と同様にして、表1の実施例2〜11に示す条件で酸化イットリウム焼結体を作製し、実施例1と同様にして、直線透過率の測定、ポアの存在量の測定、平均結晶粒径の測定を行った。
また、耐食性及び曲げ強度を測定した結果、エッチングレート(耐食性)が0.3μm/h、曲げ強度が105MPaであり従来の透光性セラミックスと劣らなかった。
[Examples 2 to 11]
In the same manner as in Example 1, yttrium oxide sintered bodies were produced under the conditions shown in Examples 2 to 11 of Table 1, and in the same manner as in Example 1, measurement of linear transmittance, measurement of pore abundance, The average crystal grain size was measured.
Further, as a result of measuring the corrosion resistance and bending strength, the etching rate (corrosion resistance) was 0.3 μm / h and the bending strength was 105 MPa, which was not inferior to conventional translucent ceramics.
[比較例1〜6]
実施例1と同様にして、下記表1の比較例1〜6に示す条件で酸化イットリウム焼結体を作製し、実施例1と同様にして、直線透過率の測定、ポアの存在量の測定、平均結晶粒径の測定を行った。
[Comparative Examples 1-6]
In the same manner as in Example 1, yttrium oxide sintered bodies were produced under the conditions shown in Comparative Examples 1 to 6 in Table 1 below, and in the same manner as in Example 1, measurement of linear transmittance and measurement of pore abundance were performed. The average crystal grain size was measured.
前記実施例1乃至11、及び比較例2,3、6から、前記Ta2O5を0.5wt%〜10wt%含有している場合には、直線透過率が80%以上と高いことが認められた。
また、前記実施例1乃至11、比較例4,5、6から、前記SiO2を0.5wt%〜10wt%含有している場合には、直線透過率が80%以上と高いことが認められた。
実施例1乃至11及び比較例4、6から、平均結晶粒径が10μm〜200μmである場合には、直線透過率が80%以上と高いことが認められた。
また、前記実施例1、3乃至11、及び比較例2,4から、結晶組織中のポアが1mm2当たり20個以下であるある場合には、直線透過率が80%以上と高いことが認められた。
From Examples 1 to 11 and Comparative Examples 2, 3, and 6, it is recognized that the linear transmittance is as high as 80% or more when the Ta 2 O 5 is contained in an amount of 0.5 wt% to 10 wt%. It was.
Also, from Examples 1 to 11 and Comparative Examples 4, 5, and 6, it is recognized that the linear transmittance is as high as 80% or more when the SiO 2 is contained by 0.5 wt% to 10 wt%. It was.
From Examples 1 to 11 and Comparative Examples 4 and 6, it was confirmed that the linear transmittance was as high as 80% or more when the average crystal grain size was 10 μm to 200 μm.
Further, from Examples 1, 3 to 11 and Comparative Examples 2 and 4, when the number of pores in the crystal structure is 20 or less per 1 mm 2, it is recognized that the linear transmittance is as high as 80% or more. It was.
次に、酸化イットリウムの純度、焼成温度、焼成時間を下記表2に示す条件で変化させ、酸化イットリウム焼結体を得た。そして、得られた焼結体を直径20mm、厚さ1mmで両面光学研磨品へと加工し、これを分光高度計を用いて可視光領域波長における直線透過率を測定した。さらに、光学研磨試料の一部を大気中1500℃にて3時間サーマルエッチングを行い、微構造を電子顕微鏡にて観察し、1mm2中のポアの存在量を測定し、プラニメトリック法により平均結晶粒径を算出した。
尚、表2中、比較例8のポア量はポア量が多く測定できず、また比較例9は、焼成温度が高く、酸化イットリウム焼結体を得ることができなかった。
Next, the purity, firing temperature, and firing time of yttrium oxide were changed under the conditions shown in Table 2 below to obtain a yttrium oxide sintered body. The obtained sintered body was processed into a double-sided optically polished product having a diameter of 20 mm and a thickness of 1 mm, and the linear transmittance at a wavelength in the visible light region was measured using a spectrophotometer. Further, a part of the optically polished sample was subjected to thermal etching at 1500 ° C. for 3 hours in the atmosphere, the microstructure was observed with an electron microscope, the amount of pores in 1 mm 2 was measured, and the average was obtained by a planimetric method. The crystal grain size was calculated.
In Table 2, the amount of pores in Comparative Example 8 could not be measured because the amount of pores was large, and Comparative Example 9 had a high firing temperature, and an yttrium oxide sintered body could not be obtained.
実施例12乃至20及び比較例8,9から、1400℃〜2100℃の温度で焼成する場合には、直線透過率が80%以上と高いことが認められた。
実施例12乃至20及び比較例10から、1400℃〜2100℃の温度で3時間以上焼成時間した場合には、直線透過率が80%以上と高いことが認められた。
From Examples 12 to 20 and Comparative Examples 8 and 9, when firing at a temperature of 1400 ° C. to 2100 ° C., it was confirmed that the linear transmittance was as high as 80% or more.
From Examples 12 to 20 and Comparative Example 10, it was confirmed that the linear transmittance was as high as 80% or more when the firing time was 1400 ° C. to 2100 ° C. for 3 hours or more.
このように、前記SiO2を0.5wt%〜10wt%含有し、前記Ta2O5を0.5wt%〜10wt%含有し、平均結晶粒径が10μm〜200μmである酸化イットリウム焼結体によれば、光透過率が80%以上と良好であることが認められた。 Thus, in the yttrium oxide sintered body containing 0.5 wt% to 10 wt% of SiO 2 , 0.5 wt% to 10 wt% of Ta 2 O 5 , and having an average crystal grain size of 10 μm to 200 μm. According to the results, it was confirmed that the light transmittance was as good as 80% or more.
Claims (2)
前記Siを酸化物換算で0.5wt%〜10wt%含有し、前記Taを酸化物換算で0.5wt%〜10wt%含有し、平均結晶粒径が10μm〜200μmであることを特徴とする透光性セラミックス。 A translucent ceramic substantially made of an oxide of Y, Si, Ta,
The Si is contained in an amount of 0.5 wt% to 10 wt% in terms of oxide, the Ta is contained in an amount of 0.5 wt% to 10 wt% in terms of oxide, and an average crystal grain size is 10 μm to 200 μm. Photoceramics.
酸化イットリウム粉末にシリカ粉末および酸化タンタル成分を同時に添加し、成型し、還元雰囲気下、1400℃〜2100℃の温度で3時間以上焼成することを特徴とする透光性セラミックスの製造方法。 It is a manufacturing method of the translucent ceramics of Claim 1, Comprising:
A method for producing a translucent ceramic, characterized in that silica powder and a tantalum oxide component are simultaneously added to yttrium oxide powder, molded, and fired in a reducing atmosphere at a temperature of 1400 ° C. to 2100 ° C. for 3 hours or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011080022A JP5458053B2 (en) | 2011-03-31 | 2011-03-31 | Translucent ceramics and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011080022A JP5458053B2 (en) | 2011-03-31 | 2011-03-31 | Translucent ceramics and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012214319A JP2012214319A (en) | 2012-11-08 |
JP5458053B2 true JP5458053B2 (en) | 2014-04-02 |
Family
ID=47267546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011080022A Active JP5458053B2 (en) | 2011-03-31 | 2011-03-31 | Translucent ceramics and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5458053B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114956821A (en) * | 2022-06-24 | 2022-08-30 | 中国科学院上海硅酸盐研究所 | High-transmittance yttrium oxide transparent ceramic and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2951771B2 (en) * | 1991-09-26 | 1999-09-20 | 守 大森 | Rare earth oxide-alumina-silica sintered body and method for producing the same |
JP2001322871A (en) * | 2000-03-07 | 2001-11-20 | Shin Etsu Chem Co Ltd | Oxide sintered body containing rare earth element and method for manufacturing the same |
JP2004269350A (en) * | 2003-02-17 | 2004-09-30 | Toshiba Ceramics Co Ltd | Yttrium oxide (y2o3) sintered compact and method of manufacturing the same |
JP5005317B2 (en) * | 2005-10-31 | 2012-08-22 | コバレントマテリアル株式会社 | Translucent yttrium oxide sintered body and method for producing the same |
JP2008174432A (en) * | 2007-01-22 | 2008-07-31 | Fujifilm Corp | Translucent ceramic, its manufacturing method, and optical member |
-
2011
- 2011-03-31 JP JP2011080022A patent/JP5458053B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012214319A (en) | 2012-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5685846B2 (en) | Transparent zirconia sintered body, method for producing the same, and use thereof | |
KR101500932B1 (en) | Protective coatings resistant to reactive plasma processing | |
EP3434661B1 (en) | Refractory object | |
JP5231823B2 (en) | Polycrystalline MgO sintered body, method for producing the same, and MgO target for sputtering | |
CN107352994B (en) | Preparation method of magnesia-alumina spinel transparent ceramic | |
US10081575B2 (en) | Sintered ceramic component and a process of forming the same | |
JP5005317B2 (en) | Translucent yttrium oxide sintered body and method for producing the same | |
JP2008195581A (en) | Translucent alumina sintered compact and its manufacturing method | |
KR20090045427A (en) | Sintered yttria, anticorrosion member and process for producing the same | |
JP4894379B2 (en) | Rare earth sintered body and manufacturing method thereof | |
KR20070046763A (en) | Transparent rare-earth oxide sintered body manufacturing method thereof | |
JP5458552B2 (en) | Highly tough and translucent colored alumina sintered body, method for producing the same, and use | |
JP5458053B2 (en) | Translucent ceramics and method for producing the same | |
JP5019380B2 (en) | Translucent yttrium oxide aluminum garnet sintered body and manufacturing method thereof. | |
JP4806952B2 (en) | Translucent ceramics | |
JP2007277034A (en) | POLYCRYSTALLINE Al2O3 SINTERED COMPACT AND METHOD OF MANUFACTURING THE SAME | |
JP2009234877A (en) | Member used for plasma processing apparatus | |
JP2007063069A (en) | Light-transmissive yttria sintered compact and its manufacturing method | |
TWI557091B (en) | Composite oxide sintered object and oxide transparent conductive film | |
TW201332934A (en) | Tin-oxide refractory | |
JP4783654B2 (en) | Translucent ceramic sintered body and manufacturing method thereof | |
KR101442634B1 (en) | Manufacturing method of aluminum titanate having high-temperature strength and manufacturing method of the same | |
JP2000239065A (en) | Light-transmissible corrosionproof material and its production | |
JP6585536B2 (en) | Transparent alumina sintered body with holes and manufacturing method thereof | |
JP4783636B2 (en) | Translucent lutetium oxide sintered body and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130802 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140110 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5458053 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |