JP6585536B2 - Transparent alumina sintered body with holes and manufacturing method thereof - Google Patents

Transparent alumina sintered body with holes and manufacturing method thereof Download PDF

Info

Publication number
JP6585536B2
JP6585536B2 JP2016066433A JP2016066433A JP6585536B2 JP 6585536 B2 JP6585536 B2 JP 6585536B2 JP 2016066433 A JP2016066433 A JP 2016066433A JP 2016066433 A JP2016066433 A JP 2016066433A JP 6585536 B2 JP6585536 B2 JP 6585536B2
Authority
JP
Japan
Prior art keywords
sintered body
alumina sintered
holes
hole
transparent alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016066433A
Other languages
Japanese (ja)
Other versions
JP2017178654A (en
Inventor
潔 松島
潔 松島
守道 渡邊
守道 渡邊
佐藤 圭
圭 佐藤
七瀧 努
七瀧  努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2016066433A priority Critical patent/JP6585536B2/en
Publication of JP2017178654A publication Critical patent/JP2017178654A/en
Application granted granted Critical
Publication of JP6585536B2 publication Critical patent/JP6585536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、穴付き透明アルミナ焼結体及びその製法に関する。   The present invention relates to a transparent alumina sintered body with holes and a method for producing the same.

高密度、高純度の多結晶アルミナは透光性を有することが知られており、高圧ナトリウムランプ用発光管や高耐熱窓材、半導体装置用部材、光学部品用基板等に用いることができる。こうした多結晶アルミナは配向性を高めることで透光性が発現することが知られている(例えば特許文献1や非特許文献1参照)。   High-density, high-purity polycrystalline alumina is known to have translucency, and can be used for arc tubes for high-pressure sodium lamps, high heat-resistant window materials, semiconductor device members, optical component substrates, and the like. Such polycrystalline alumina is known to exhibit translucency by enhancing orientation (see, for example, Patent Document 1 and Non-Patent Document 1).

特開2002−293609号JP 2002-293609 A

Ceramics International 38 (2012) 5557-5561Ceramics International 38 (2012) 5557-5561

しかしながら、これらの透明アルミナ焼結体に機械加工やレーザー加工、化学加工等を用いて穴あけ加工を施したところ、いずれの加工法でも穴の周辺にクラックが発生しやすいという問題があった。   However, when these transparent alumina sintered bodies were subjected to drilling using mechanical processing, laser processing, chemical processing, or the like, there was a problem that cracks were likely to occur around the hole in any processing method.

本発明はこのような課題を解決するためになされたものであり、穴の周辺にクラックが発生しにくい穴付き透明アルミナ焼結体を提供することを主目的とする。   The present invention has been made to solve such problems, and has as its main object to provide a transparent alumina sintered body with a hole in which cracks are unlikely to occur around the hole.

本発明の穴付き透明アルミナ焼結体は、
穴の開口縁に含まれるマグネシウム量MgHと前記透明アルミナ焼結体の内部に含まれるマグネシウム量MgIとの比MgH/MgIが1.2以上
のものである。
The transparent alumina sintered body with holes of the present invention is
The ratio Mg H / Mg I of the magnesium amount Mg H contained in the opening edge of the hole and the magnesium amount Mg I contained in the transparent alumina sintered body is 1.2 or more.

本発明の穴付き透明アルミナ焼結体の製法は、
(a1)表面に含まれるマグネシウム量MgSと内部に含まれるマグネシウム量MgIとの比MgS/MgIが1.2以上である透明アルミナ焼結体を作製する工程と、
(b1)前記透明アルミナ焼結体に穴をあけることにより、上述した穴付き透明アルミナ焼結体を得る工程と、
を含むか、あるいは、
(a2)焼結すると表面に含まれるマグネシウム量MgSと内部に含まれるマグネシウム量MgIとの比MgS/MgIが1.2以上の透明アルミナ焼結体になる穴付き成形体を作製する工程と、
(b2)前記穴付き成形体を焼成することにより、上述した穴付き透明アルミナ焼結体を得る工程と、
を含むものである。
The method for producing a transparent alumina sintered body with holes of the present invention is as follows.
(A1) a step of producing a transparent alumina sintered body having a ratio Mg S / Mg I of 1.2 or more between the amount of magnesium Mg S contained in the surface and the amount of magnesium Mg I contained therein;
(B1) a step of obtaining the above-mentioned transparent alumina sintered body with holes by making a hole in the transparent alumina sintered body;
Or
(A2) A sintered compact with a hole that becomes a transparent alumina sintered body having a ratio Mg S / Mg I of 1.2 or more between the amount of magnesium Mg S contained in the surface and the amount of magnesium Mg I contained in the interior is produced. And a process of
(B2) a step of obtaining the above-described transparent alumina sintered body with holes by firing the molded body with holes;
Is included.

本発明の穴付き透明アルミナ焼結体は、穴の開口縁に含まれるマグネシウム量MgHと透明アルミナ焼結体の内部に含まれるマグネシウム量MgIとの比MgH/MgIが1.2以上のものである。本透明アルミナ焼結体のうちマグネシウム濃度の高い領域(穴の開口縁)でクラックが発生しづらく、製品加工時に歩留まりが向上することが分かった。この理由は不明だが、マグネシウムが高濃度となったことで穴開口縁の強度が高まったとも考えられる。 The transparent alumina sintered body with a hole of the present invention has a ratio Mg H / Mg I of 1.2 between the magnesium amount Mg H contained in the opening edge of the hole and the magnesium amount Mg I contained in the transparent alumina sintered body. That's all. It was found that cracks hardly occur in the high magnesium concentration region (opening edge of the hole) of the transparent alumina sintered body, and the yield was improved during product processing. The reason for this is unclear, but it is thought that the strength of the hole opening edge increased due to the high concentration of magnesium.

本発明の穴付き透明アルミナ焼結体の製法としては、上述したように、透明アルミナ焼結体に穴をあける方法と、穴付き成形体を焼成する方法とがある。前者の方法では、穴をあける前の透明アルミナ焼結体として、表面に含まれるマグネシウム量MgHと内部に含まれるマグネシウム量MgIとの比MgH/MgIが1.2以上のものを用いる。この場合、穴あけ加工を施したとしても穴の周辺にクラックが発生しにくい。後者の方法では、穴付き成形体を焼成すると、表面に含まれるマグネシウム量MgHと内部に含まれるマグネシウム量MgIとの比MgH/MgIが1.2以上の透明アルミナ焼結体になるものを用いる。この場合も、穴付き透明アルミナ焼結体の穴の周辺にクラックが発生しにくい。いずれの製法を採用しても、穴付き透明アルミナ焼結体の歩留まりが向上する。 As described above, the method for producing a transparent alumina sintered body with a hole according to the present invention includes a method of making a hole in the transparent alumina sintered body and a method of firing the molded body with a hole. In the former method, as the transparent alumina sintered body before drilling a hole, the ratio Mg H / Mg I between the magnesium amount Mg H contained in the surface and the magnesium amount Mg I contained therein is 1.2 or more. Use. In this case, cracks are unlikely to occur around the hole even if drilling is performed. In the latter method, when baking the apertured molded body, the ratio Mg H / Mg I is 1.2 or more transparent alumina sintered body of magnesium content Mg I contained within the amount of magnesium Mg H contained in the surface Use what Also in this case, cracks hardly occur around the hole of the transparent alumina sintered body with holes. Whichever manufacturing method is adopted, the yield of the transparent alumina sintered body with holes is improved.

穴付き透明アルミナ焼結体10の一実施形態の断面図。Sectional drawing of one Embodiment of the transparent alumina sintered compact 10 with a hole. 穴付き透明アルミナ焼結体20の一実施形態の断面図。Sectional drawing of one Embodiment of the transparent alumina sintered compact 20 with a hole. 穴付き透明アルミナ焼結体10の製法の一例の説明図。Explanatory drawing of an example of the manufacturing method of the transparent alumina sintered compact 10 with a hole. 穴付き透明アルミナ焼結体10の製法の一例の説明図。Explanatory drawing of an example of the manufacturing method of the transparent alumina sintered compact 10 with a hole. 面分析を実施した視野の説明図。Explanatory drawing of the visual field which implemented surface analysis.

本発明の穴付き透明アルミナ焼結体は、穴の開口縁に含まれるマグネシウム量MgHと透明アルミナ焼結体の内部に含まれるマグネシウム量MgIとの比MgH/MgIが1.2以上のものである。図1及び図2は、それぞれ本発明の穴付き透明アルミナ焼結体の一実施形態を示す断面図である。図1の透明アルミナ焼結体10は、厚み方向に貫通した穴12を備えた例であり、図2の透明アルミナ焼結体20は、厚み方向に窪んだ穴22を備えた例である。穴12,22の開口縁14,24は、透明アルミナ焼結体10,20の表面のうち図中点線の円で囲んだ部分である。透明アルミナ焼結体10,20の内部16,26は、例えば図中1点鎖線の円で囲んだ部分である。 The transparent alumina sintered body with a hole of the present invention has a ratio Mg H / Mg I of 1.2 between the magnesium amount Mg H contained in the opening edge of the hole and the magnesium amount Mg I contained in the transparent alumina sintered body. That's all. FIG.1 and FIG.2 is sectional drawing which shows one Embodiment of the transparent alumina sintered body with a hole of this invention, respectively. The transparent alumina sintered body 10 in FIG. 1 is an example having holes 12 penetrating in the thickness direction, and the transparent alumina sintered body 20 in FIG. 2 is an example having holes 22 recessed in the thickness direction. Opening edges 14 and 24 of the holes 12 and 22 are portions surrounded by a dotted circle in the figure on the surface of the transparent alumina sintered body 10 and 20. The insides 16 and 26 of the transparent alumina sintered bodies 10 and 20 are, for example, portions surrounded by a one-dot chain line circle in the figure.

本発明の穴付き透明アルミナ焼結体において、穴は、穴付き透明アルミナ焼結体の厚み方向に貫通していてもよいし(図1参照)、貫通せず窪んでいてもよい(図2参照)。こうした穴の用途は特に限定するものではないが、貫通穴の場合、例えばボタンやスイッチなどを露出させるために用いてもよいし、ネジやビスなどを挿通させるために用いてもよい。穴の形状は、特に限定するものではなく、例えば丸穴であってもよいし角穴であってもよい。また、本発明の透明アルミナ焼結体は穴加工のみでなく、研削及び切断加工時もクラックが生じにくい。   In the transparent alumina sintered body with holes of the present invention, the holes may penetrate in the thickness direction of the transparent alumina sintered body with holes (see FIG. 1) or may be recessed without penetrating (see FIG. 2). reference). The use of such a hole is not particularly limited, but in the case of a through hole, for example, it may be used for exposing a button or a switch, or may be used for inserting a screw or a screw. The shape of the hole is not particularly limited, and may be, for example, a round hole or a square hole. Moreover, the transparent alumina sintered body of the present invention is not easily cracked not only during drilling but also during grinding and cutting.

本発明の穴付き透明アルミナ焼結体において、穴の開口縁に含まれるマグネシウム量MgHと透明アルミナ焼結体の内部に含まれるマグネシウム量MgIとの比MgH/MgIは1.2以上が好ましく、1.5以上がより好ましい。比MgH/MgIが1.2以上であれば、穴の開口縁付近のアルミナの粒径が十分小さくなって高強度化して穴の周辺にクラックが発生しにくくなる。マグネシウム量MgH,MgIは、例えば単位面積当たりのマグネシウム量であってもよいし、単位体積当たりのマグネシウム量であってもよい。また、穴付きアルミナ焼結体の断面を研磨したあとの研磨面の面分析を電子線マイクロアナライザ(EPMA)で行ったときの、穴の開口縁のMg−Kα1スペクトル強度をMgH、穴付きアルミナ焼結体の内部のMg−Kα1スペクトル強度をMgIとしてもよい。比MgH/MgIの上限は特に限定するものではないが、3.0以下が好ましく、2.0以下がより好ましい。 In the transparent alumina sintered body with a hole of the present invention, the ratio Mg H / Mg I between the magnesium amount Mg H contained in the opening edge of the hole and the magnesium amount Mg I contained in the transparent alumina sintered body is 1.2. The above is preferable, and 1.5 or more is more preferable. If the ratio Mg H / Mg I is 1.2 or more, the particle size of alumina in the vicinity of the opening edge of the hole becomes sufficiently small to increase the strength, and cracks are unlikely to occur around the hole. The magnesium amounts Mg H and Mg I may be, for example, the amount of magnesium per unit area or the amount of magnesium per unit volume. Further, when the surface analysis of the polished surface after polishing the cross section of the alumina sintered body with holes is performed with an electron beam microanalyzer (EPMA), the Mg-Kα1 spectrum intensity of the opening edge of the holes is Mg H , The Mg—Kα1 spectral intensity inside the alumina sintered body may be Mg I. The upper limit of the ratio Mg H / Mg I is not particularly limited, but is preferably 3.0 or less, and more preferably 2.0 or less.

本発明の穴付き透明アルミナ焼結体において、穴の開口縁に含まれる窒素量NHと透明アルミナ焼結体の内部に含まれる窒素量NIとの比NH/NIは1.1以上が好ましく、1.2以上がより好ましい。比NH/NIIが1.1以上であれば、穴の周辺にクラックが一層発生しにくくなる。窒素量NH,NIは、例えば単位面積当たりの窒素量であってもよいし、単位体積当たりの窒素量であってもよい。また、穴付きアルミナ焼結体の断面を研磨したあとの研磨面の面分析を電子線マイクロアナライザ(EPMA)で行ったときの、穴の開口縁のN−Kα1スペクトル強度をNH、穴付きアルミナ焼結体の内部のN−Kα1スペクトル強度をNIとしてもよい。比NH/NIの上限は特に限定するものではないが、2.0以下が好ましく、1.5以下がより好ましい。穴付き透明アルミナ焼結体に含まれる窒素は、例えば焼成時の窒素雰囲気に由来するものである。 In slotted transparent alumina sintered body of the present invention, the ratio N H / N I the nitrogen content N I contained within the nitrogen content N H and transparent alumina sintered body included in the opening edge of the hole 1.1 The above is preferable, and 1.2 or more is more preferable. If the ratio N H / N II is 1.1 or more, cracks are less likely to occur around the hole. The nitrogen amounts N H and N I may be, for example, the nitrogen amount per unit area or the nitrogen amount per unit volume. Further, when the surface analysis of the polished surface after polishing the cross section of the alumina sintered body with a hole is performed with an electron beam microanalyzer (EPMA), the N-Kα1 spectrum intensity of the opening edge of the hole is N H , with the hole. The N-Kα1 spectral intensity inside the alumina sintered body may be N I. The upper limit of the ratio N H / N I is not particularly limited, but is preferably 2.0 or less, and more preferably 1.5 or less. Nitrogen contained in the transparent alumina sintered body with holes is derived from, for example, a nitrogen atmosphere at the time of firing.

本発明の穴付き透明アルミナ焼結体は、厚み0.5mmの穴付き透明アルミナ焼結体を用いたときに波長300〜1000nmにおける直線透過率が50%以上のものが好ましく、60%以上のものがより好ましい。直線透過率は、分光光度計(例えばPerkin Elmer製、Lambda900)を用いて測定することができる。なお、試料の厚みを他の厚みに換算する場合には、以下の換算式を利用すればよい。この式は、Scripta Materialia vol.69, pp362-365(2013)から引用した。式中、T1は直線透過率の実測値、T2は換算後の直線透過率、t1は厚みの実測値、t2は換算後の厚み、Rは材料由来の表面反射(アルミナの場合0.14)である。
T2=(1-R)(T1/(1-R))^(t2/t1)
The transparent alumina sintered body with a hole of the present invention preferably has a linear transmittance of 50% or more at a wavelength of 300 to 1000 nm when a transparent alumina sintered body with a thickness of 0.5 mm is used. More preferred. The linear transmittance can be measured using a spectrophotometer (for example, Lambda900, manufactured by Perkin Elmer). In addition, what is necessary is just to utilize the following conversion formulas, when converting the thickness of a sample into other thickness. This formula is quoted from Scripta Materialia vol.69, pp362-365 (2013). In the formula, T1 is an actually measured value of linear transmittance, T2 is a linear transmittance after conversion, t1 is an actually measured value of thickness, t2 is a thickness after conversion, and R is a surface reflection derived from a material (0.14 in the case of alumina). It is.
T2 = (1-R) (T1 / (1-R)) ^ (t2 / t1)

本発明の透明アルミナ焼結体の製法は、
(a1)表面に含まれるマグネシウム量MgSと内部に含まれるマグネシウム量MgIとの比MgS/MgIが1.2以上である透明アルミナ焼結体を作製する工程と、
(b1)前記透明アルミナ焼結体に穴をあけることにより、上述した穴付き透明アルミナ焼結体を得る工程と、
を含むか、
(a2)焼結すると表面に含まれるマグネシウム量MgSと内部に含まれるマグネシウム量MgIとの比MgS/MgIが1.2以上の透明アルミナ焼結体になる穴付き成形体を作製する工程と、
(b2)前記穴付き成形体を焼成することにより、上述した穴付き透明アルミナ焼結体を得る工程と、
を含むものである。
The method for producing the transparent alumina sintered body of the present invention is as follows.
(A1) a step of producing a transparent alumina sintered body having a ratio Mg S / Mg I of 1.2 or more between the amount of magnesium Mg S contained in the surface and the amount of magnesium Mg I contained therein;
(B1) a step of obtaining the above-mentioned transparent alumina sintered body with holes by making a hole in the transparent alumina sintered body;
Contains or
(A2) A sintered compact with a hole that becomes a transparent alumina sintered body having a ratio Mg S / Mg I of 1.2 or more between the amount of magnesium Mg S contained in the surface and the amount of magnesium Mg I contained in the interior is produced. And a process of
(B2) a step of obtaining the above-described transparent alumina sintered body with holes by firing the molded body with holes;
Is included.

図3は、本発明の穴付き透明アルミナ焼結体の製法のうち工程(a1),(b1)を含む一例の説明図であり、図4は、本発明の穴付き透明アルミナ焼結体の製法のうち工程(a2),(b2)を含む一例の説明図である。   FIG. 3 is an explanatory diagram of an example including the steps (a1) and (b1) in the method for producing a transparent alumina sintered body with holes of the present invention, and FIG. 4 shows the transparent alumina sintered body with holes of the present invention. It is explanatory drawing of an example including process (a2) and (b2) among manufacturing methods.

工程(a1)では、例えば、板状アルミナ粉末とその板状アルミナ粉末よりも平均粒径が小さい微細アルミナ粉末とを含むアルミナ原料粉末100質量部にMgOを0.005〜0.5質量部添加した成形用原料を成形して成形体とし、該成形体を焼成することにより、比MgS/MgIが1.2以上の透明アルミナ焼結体を作製してもよい。図3(a)から図3(b)は工程(a1)の一例の説明図であり、ここではプレーンな成形体30を焼成してプレーンな透明アルミナ焼結体40を作製している。図3(b)の透明アルミナ焼結体40の表面44すなわちハッチングの細かい部分は、マグネシウム濃度の高い領域(マグネシウム量MgSの領域)である。表面44は、透明アルミナ焼結体40の上面、下面及び側面である。透明アルミナ焼結体40の内部46すなわちハッチングの粗い部分は、マグネシウム濃度の低い領域(マグネシウム量MgIの領域)である。 In the step (a1), for example, 0.005 to 0.5 parts by mass of MgO is added to 100 parts by mass of an alumina raw material powder including a plate-like alumina powder and a fine alumina powder having an average particle size smaller than that of the plate-like alumina powder. A transparent alumina sintered body having a ratio Mg S / Mg I of 1.2 or more may be produced by molding the molded raw material into a molded body and firing the molded body. FIG. 3A to FIG. 3B are explanatory views of an example of the step (a1). Here, the plain molded body 30 is fired to produce the plain transparent alumina sintered body 40. The surface 44 of the transparent alumina sintered body 40 in FIG. 3B, that is, the fine hatched portion is a region having a high magnesium concentration (region of magnesium amount Mg S ). The surface 44 is an upper surface, a lower surface, and a side surface of the transparent alumina sintered body 40. Interior 46 That rough areas hatching of the transparent alumina sintered body 40 is a low magnesium concentration region (region of magnesium content Mg I).

板状アルミナ粉末は、アスペクト比が3以上のものが好ましい。最終的に得られるアルミナ焼結体の配向度が高くなるからである。アスペクト比は、平均粒径/平均厚さ、平均粒径は、粒子板面の長軸長の平均値、平均厚さは、粒子の短軸長の平均値である。これらの値は、走査型電子顕微鏡(SEM)で板状アルミナ粉末中の任意の粒子100個を観察して決定することができる。板状アルミナ粒子は、平面視したときの形状が略六角形状である。アルミナ原料粉末は、板状アルミナ粉末と微細アルミナ粉末とを混合した混合アルミナ粉末を用いる。このような原料粉末を用いることで焼成時に、板状アルミナ粉末が種結晶(テンプレート)となり、微細アルミナ粉末がマトリックスとなって、テンプレートがマトリックスを取り込みながらホモエピタキシャル成長する。こうした製法は、TGG法と呼ばれる。TGG法では、板状アルミナ粉末と微細アルミナ粉末との混合割合は、例えば質量比でT:(100−T)(Tは0.001以上、1未満)とすることが好ましい。MgOは、アルミナの焼結時に気孔排出効果のある添加物として知られている。また、MgOを添加した場合、析出する可能性のあるMgAl24の屈折率はアルミナに近いため、透明性への影響は小さい。 The plate-like alumina powder preferably has an aspect ratio of 3 or more. This is because the degree of orientation of the finally obtained alumina sintered body is increased. The aspect ratio is the average particle diameter / average thickness, the average particle diameter is the average value of the major axis length of the particle plate surface, and the average thickness is the average value of the minor axis length of the particles. These values can be determined by observing 100 arbitrary particles in the plate-like alumina powder with a scanning electron microscope (SEM). The plate-like alumina particles have a substantially hexagonal shape when viewed in plan. As the alumina raw material powder, a mixed alumina powder obtained by mixing a plate-like alumina powder and a fine alumina powder is used. By using such a raw material powder, during firing, the plate-like alumina powder becomes a seed crystal (template), the fine alumina powder becomes a matrix, and the template is homoepitaxially grown while taking in the matrix. Such a manufacturing method is called a TGG method. In the TGG method, the mixing ratio of the plate-like alumina powder and the fine alumina powder is preferably, for example, T: (100-T) (T is 0.001 or more and less than 1) in mass ratio. MgO is known as an additive having an effect of exhausting pores during sintering of alumina. In addition, when MgO is added, the refractive index of MgAl 2 O 4 that may be precipitated is close to that of alumina, so the effect on transparency is small.

成形方法としては、特に限定するものではないが、例えばテープ成形、押出成形、鋳込み成形、射出成形、一軸プレス成形、ゲルキャスト等が挙げられる。焼成としては、常圧焼成でも加圧焼成でもよいが、加圧焼成が好ましい。加圧焼成としては、例えばホットプレス焼成やHIP焼成、プラズマ放電焼成(SPS)などが挙げられる。なお、加圧焼成前に常圧予備焼成を行ってもよい。HIP焼成を行うときにはカプセル法を用いることもできる。ホットプレス焼成の場合の圧力は、50kgf/cm2以上が好ましく、200kgf/cm2以上がより好ましい。HIP焼成の場合の圧力は、1000kgf/cm2以上が好ましく、2000kgf/cm2以上がより好ましい。焼成雰囲気は特に限定するものではないが、大気、窒素、Ar等の不活性ガス、真空雰囲気下のいずれかが好ましく、窒素、Ar雰囲気下が特に好ましく、窒素雰囲気が最も好ましい。加圧焼成の条件としては、焼成温度(最高温度)を1850〜2050℃に設定し、その温度で1〜10時間キープすることが好ましい。上述した成形体は、板状アルミナ粉末、微細アルミナ粉末及びMgO粉末がほぼ均質に分散されていたとしても、焼成されることによって表面のMg濃度が内部のMg濃度よりも高くなる。なお、MgOの代わりに他のMg成分(例えばMgF2とかMgNO3など)を添加してもよい。その場合、Mg成分の質量部をMgOに換算したときに上述した数値範囲になるように添加するのが好ましい。成形体を焼成する場合、焼成中の最高到達温度からの降温時において、所定温度(1000〜1400℃(好ましくは1100〜1300℃)の範囲で設定された温度)まで50kgf/cm2以上のプレス圧を印加することが好ましい。このようにすることで、得られる焼結体の透明性を高めることができる。また、所定温度未満の温度域では50kgf/cm2未満の圧力(例えばゼロ)まで除圧することが好ましい。 The molding method is not particularly limited, and examples thereof include tape molding, extrusion molding, casting molding, injection molding, uniaxial press molding, gel casting, and the like. The firing may be atmospheric firing or pressure firing, but pressure firing is preferred. Examples of pressure firing include hot press firing, HIP firing, plasma discharge firing (SPS), and the like. In addition, you may perform a normal pressure preliminary baking before pressure baking. When performing HIP baking, a capsule method can also be used. Pressure when the hot-press firing is preferably 50 kgf / cm 2 or more, 200 kgf / cm 2 or more is more preferable. Pressure when the HIP sintering is preferably 1000 kgf / cm 2 or more, 2,000 kgf / cm 2 or more is more preferable. The firing atmosphere is not particularly limited, but is preferably any one of air, an inert gas such as nitrogen and Ar, and a vacuum atmosphere, particularly preferably a nitrogen and Ar atmosphere, and most preferably a nitrogen atmosphere. As conditions for pressure firing, it is preferable to set the firing temperature (maximum temperature) to 1850 to 2050 ° C. and keep at that temperature for 1 to 10 hours. Even if the plate-like alumina powder, fine alumina powder, and MgO powder are almost uniformly dispersed in the above-described molded body, the Mg concentration on the surface becomes higher than the internal Mg concentration by firing. Other Mg components (for example, MgF 2 or MgNO 3 ) may be added instead of MgO. In that case, it is preferable to add so that the mass part of Mg component may become the numerical range mentioned above when converted into MgO. When the molded body is fired, a press of 50 kgf / cm 2 or more up to a predetermined temperature (temperature set in the range of 1000 to 1400 ° C. (preferably 1100 to 1300 ° C.)) when the temperature is lowered from the highest temperature during firing. It is preferable to apply pressure. By doing in this way, transparency of the obtained sintered compact can be improved. Further, it is preferable that the pressure is reduced to a pressure of less than 50 kgf / cm 2 (for example, zero) in a temperature range below the predetermined temperature.

工程(a1)では、成形体として、表面のMg濃度が内部のMg濃度より高いものを用いてもよい。例えば、成形体の表面にMg成分を塗布などでコーティングしてもよい。コーティング方法としては、例えばスプレーコート、ディップコート、インクジェットコート、スピンコート、スクリーン印刷、真空蒸着、スパッタリング、CVDなどが挙げられる。また、テープ成形を採用する場合には、最下層や最上層のテープのMg濃度を他のテープより高くしてもよい。   In the step (a1), a molded body having a surface Mg concentration higher than the internal Mg concentration may be used. For example, the Mg component may be coated on the surface of the molded body by coating or the like. Examples of the coating method include spray coating, dip coating, inkjet coating, spin coating, screen printing, vacuum deposition, sputtering, and CVD. Moreover, when adopting tape molding, the Mg concentration of the lowermost layer or the uppermost layer tape may be higher than that of other tapes.

工程(b1)では、工程(a1)で得られた透明アルミナ焼結体に切削加工等で穴をあけることが好ましい。通常、アルミナ焼結体に切削加工で穴をあける場合、穴の周辺にクラックが発生することが多い。しかし、ここでは、透明アルミナ焼結体として比MgS/MgIが1.2以上のものを使用する。この透明アルミナ焼結体のうちMg濃度が高い領域(表面)は、Mg濃度が低い領域(内部)に比べてアルミナの粒径が小さくなって高強度化している。そのため、切削加工等で穴をあけたとしても、透明アルミナ焼結体の表面のうち穴の開口縁にクラックが発生しにくい。図3(b)から図3(c)は工程(b1)の一例の説明図であり、ここではプレーンな透明アルミナ焼結体40に穴12をあけて穴付き透明アルミナ焼結体10を作製している。得られた穴付き透明アルミナ焼結体10のうち穴12の開口縁14はマグネシウム濃度の高い領域(マグネシウム量MgSの領域)、内部16はマグネシウム濃度の低い領域(マグネシウム量MgIの領域)である。 In the step (b1), it is preferable to make a hole by cutting or the like in the transparent alumina sintered body obtained in the step (a1). Usually, when a hole is made in an alumina sintered body by cutting, cracks often occur around the hole. However, here, a transparent alumina sintered body having a ratio Mg S / Mg I of 1.2 or more is used. In this transparent alumina sintered body, the region (surface) with a high Mg concentration has a higher alumina particle size and a higher strength than the region (inside) with a low Mg concentration. Therefore, even if a hole is made by cutting or the like, cracks are hardly generated at the opening edge of the hole in the surface of the transparent alumina sintered body. FIG. 3B to FIG. 3C are explanatory views of an example of the step (b1). Here, the transparent alumina sintered body 10 with holes is produced by making holes 12 in the plain transparent alumina sintered body 40. is doing. Of the obtained transparent alumina sintered body 10 with a hole, the opening edge 14 of the hole 12 is a region having a high magnesium concentration (region of magnesium amount Mg S ), and the inside 16 is a region having a low magnesium concentration (region of magnesium amount Mg I ). It is.

工程(a2)では、焼結すると表面に含まれるマグネシウム量MgSと内部に含まれるマグネシウム量MgIとの比MgS/MgIが1.2以上の透明アルミナ焼結体になる成形体を作製するが、例えば工程(a1)で説明した成形体を作製すればよい。この工程(a2)では、穴付き成形体を作製する。例えば、成形体を作製したあと切削加工等により穴をあけて穴付き成形体にしてもよいし、穴付き成形体となるような成形型を用いて穴付き成形体を作製してもよい。図4(a)から図4(b)は工程(a2)の一例の説明図であり、前出の成形体30を作製したあと切削加工等により穴32をあけて穴付き成形体34を作製している。 In the step (a2), when the sintered body is formed into a transparent alumina sintered body having a ratio Mg S / Mg I of 1.2 or more between the magnesium amount Mg S contained in the surface and the magnesium amount Mg I contained in the interior when sintered. For example, the molded body described in the step (a1) may be manufactured. In this step (a2), a molded body with holes is produced. For example, after forming a molded body, holes may be formed by cutting or the like to form a molded body with a hole, or a molded body with a hole may be manufactured using a mold that becomes a molded body with a hole. FIG. 4A to FIG. 4B are explanatory views of an example of the step (a2). After the above-described molded body 30 is manufactured, a hole 32 is formed by cutting or the like to form a molded body 34 with a hole. is doing.

工程(b2)では、穴付き成形体を焼成することにより、上述した穴付き透明アルミナ焼結体を得る。このときの焼成条件としては、例えば工程(a1)で説明した焼成条件を採用すればよい。通常、穴付きアルミナ成形体を焼成する場合、穴の開口縁や内壁にクラックが発生することが多い。しかし、ここでは、成形体として、焼成すると表面に含まれるマグネシウム量MgHと内部に含まれるマグネシウム量MgIとの比MgH/MgIが1.2以上の透明アルミナ焼結体になるものを用いている。その場合、焼結が進むにつれて穴の開口縁の強度が高くなるため、穴付き透明アルミナ焼結体の穴の周辺にクラックが発生しにくい。図4(b)から図4(c)は工程(b2)の一例の説明図であり、穴付き成形体34を焼成して穴付きアルミナ焼結体10を作製している。図4(c)の穴付き透明アルミナ焼結体10のうち上面、下面、側面や穴12の内壁面(ハッチングの細かい部分、開口縁14を含む)は、マグネシウム濃度の高い領域すなわちマグネシウム量MgSの領域であり、内部16はマグネシウム濃度の低い領域すなわちマグネシウム量MgIの領域である。 At a process (b2), the transparent alumina sintered compact with a hole mentioned above is obtained by baking a molded object with a hole. As the firing conditions at this time, for example, the firing conditions described in the step (a1) may be employed. Usually, when an alumina molded body with holes is fired, cracks often occur on the opening edges and inner walls of the holes. However, in this case, the molded body becomes a transparent alumina sintered body having a ratio Mg H / Mg I of 1.2 or more between the magnesium amount Mg H contained in the surface and the magnesium amount Mg I contained in the interior when fired. Is used. In that case, since the strength of the opening edge of the hole increases as the sintering proceeds, cracks hardly occur around the hole of the transparent alumina sintered body with a hole. FIG. 4B to FIG. 4C are explanatory diagrams of an example of the step (b2), in which the holed compact 34 is fired to produce the holed alumina sintered body 10. In the transparent alumina sintered body 10 with a hole in FIG. 4C, the upper surface, the lower surface, the side surface, and the inner wall surface of the hole 12 (including the hatched portion and the opening edge 14) are regions having a high magnesium concentration, that is, the amount of magnesium Mg. a region of the S, the internal 16 is a region of low magnesium concentration region or magnesium content Mg I.

[実験例1]
1.アルミナ焼結体の作製
(1)板状アルミナ粉末の作製
高純度γ−アルミナ(TM−300D、大明化学製)96質量部と、高純度AlF3
関東化学製、鹿特級)4質量部と、種結晶として高純度α−アルミナ(TM−DAR、大明化学製、D50=1μm)0.17質量部とを、溶媒をIPA(イソプロピルアルコール)としてφ2mmのアルミナボールを用いて5時間ポットミルで混合した。得られた混合粉末中のF,H,C,S以外の不純物元素の質量割合の合計は1000ppm以下であった。得られた混合原料粉末300gを純度99.5質量%の高純度アルミナ製のさや(容積750cm3)に入れ、純度99.5質量%の高純度アルミナ製の蓋をして電気炉内
でエアフロー中、900℃、3時間熱処理した。エアの流量は25000cc/minとした。熱処理後の粉末を大気中、1150℃で40時間アニール処理した後、φ2mmのアルミナボールを用いて4時間粉砕して平均粒径2μm、平均厚み0.2μm、アスペクト比10の板状アルミナ粉末を得た。粒子の平均粒径、平均厚みは、走査型電子顕微鏡(SEM)で板状アルミナ粉末中の任意の粒子100個を観察して決定した。平均粒径は、粒子の長軸長の平均値、平均厚みは、粒子の短軸長の平均値、アスペクト比は平均粒径/平均厚みである。得られた板状アルミナ粉末は、α−アルミナであった。
[Experiment 1]
1. Production of alumina sintered body (1) Production of plate-like alumina powder 96 parts by mass of high-purity γ-alumina (TM-300D, manufactured by Daimei Chemical) and high-purity AlF 3 (
4 parts by mass of Kanto Chemical Co., Ltd., deer special grade), 0.17 parts by mass of high-purity α-alumina (TM-DAR, manufactured by Daimei Chemical, D50 = 1 μm) as a seed crystal, and φ2 mm with IPA (isopropyl alcohol) as a solvent The mixture was mixed in a pot mill for 5 hours. The total mass ratio of impurity elements other than F, H, C, and S in the obtained mixed powder was 1000 ppm or less. 300 g of the obtained mixed raw material powder was placed in a sheath made of high-purity alumina having a purity of 99.5% by mass (volume: 750 cm 3 ), covered with a lid made of high-purity alumina having a purity of 99.5% by mass, and airflow in an electric furnace. Heat treatment was performed at 900 ° C. for 3 hours. The air flow rate was 25000 cc / min. The heat-treated powder was annealed at 1150 ° C. for 40 hours in the atmosphere, and then pulverized for 4 hours using φ2 mm alumina balls to obtain a plate-like alumina powder having an average particle diameter of 2 μm, an average thickness of 0.2 μm, and an aspect ratio of 10. Obtained. The average particle diameter and average thickness of the particles were determined by observing 100 arbitrary particles in the plate-like alumina powder with a scanning electron microscope (SEM). The average particle diameter is the average value of the major axis length of the particle, the average thickness is the average value of the minor axis length of the particle, and the aspect ratio is the average particle diameter / average thickness. The obtained plate-like alumina powder was α-alumina.

(2)テープ成形
上記(1)で作製した板状アルミナ粉末2.0質量部と、微細なアルミナ粉末(TM−DAR、平均粒径0.1μm、大明化学製)98.0質量部とを混合し、混合アルミナ粉末とした。この混合アルミナ粉末100質量部に対し、酸化マグネシウム(500A、宇部マテリアルズ製)0.035質量部と、バインダーとしてポリビニルブチラール(品番BM−2、積水化学工業製)7.8質量部と、可塑剤としてジ(2−エチルヘキシル)フタレート(黒金化成製)3.9質量部と、分散剤としてトリオレイン酸ソルビタン(レオドールSP−O30、花王製)2質量部と、分散媒として2−エチルヘキサノールとを加えて混合した。分散媒の量は、スラリー粘度が20000cPとなるように調整した。このようにして調製されたスラリーを、ドクターブレード法によってPETフィルムの上に乾燥後の厚さが20μmとなるようにシート状に成形した。得られたテープを直径50.8mm(2インチ)の円形に切断した後55枚積層し、厚さ10mmのAl板の上に載置した後、パッケージに入れて内部を真空にすることで真空パックとした。この真空パックを85℃の温水中で100kgf/cm2の圧力にて静水圧プレスを行い、円板状の成形体を得た。
(2) Tape molding 2.0 parts by mass of the plate-like alumina powder prepared in the above (1) and 98.0 parts by mass of fine alumina powder (TM-DAR, average particle size 0.1 μm, manufactured by Daimei Chemical) Mixed to obtain mixed alumina powder. With respect to 100 parts by mass of this mixed alumina powder, 0.035 parts by mass of magnesium oxide (500A, manufactured by Ube Materials), 7.8 parts by mass of polyvinyl butyral (product number BM-2, manufactured by Sekisui Chemical Co., Ltd.) as a binder, and plastic 3.9 parts by mass of di (2-ethylhexyl) phthalate (manufactured by Kurokin Kasei) as an agent, 2 parts by mass of sorbitan trioleate (Leodol SP-O30, manufactured by Kao) as a dispersant, and 2-ethylhexanol as a dispersion medium And mixed. The amount of the dispersion medium was adjusted so that the slurry viscosity was 20000 cP. The slurry thus prepared was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 20 μm. The obtained tape was cut into a circular shape with a diameter of 50.8 mm (2 inches) and then stacked 55 sheets, placed on an Al plate with a thickness of 10 mm, and then placed in a package to create a vacuum. Packed. This vacuum pack was hydrostatically pressed at a pressure of 100 kgf / cm 2 in 85 ° C. warm water to obtain a disk-shaped molded body.

(3)焼成
得られた成形体を脱脂炉中に配置し、600℃で10時間の条件で脱脂を行った。得られた脱脂体を黒鉛製の型を用い、ホットプレスにて窒素中、焼成温度(最高到達温度)1975℃で4時間、面圧200kgf/cm2の条件で焼成し、アルミナ焼結体を得た。なお、焼成温度から降温する際に1200℃までプレス圧を維持し、1200℃未満の温度域ではプレス圧をゼロに開放した。
(3) Firing The obtained molded body was placed in a degreasing furnace and degreased at 600 ° C. for 10 hours. The obtained degreased body was fired in a nitrogen mold in a hot press at a firing temperature (maximum reached temperature) of 1975 ° C. for 4 hours under a surface pressure of 200 kgf / cm 2 to obtain an alumina sintered body. Obtained. When the temperature was lowered from the firing temperature, the press pressure was maintained up to 1200 ° C., and the press pressure was released to zero in the temperature range below 1200 ° C.

(4)穴あけ加工
得られたアルミナ焼結体(φ50.8mm、厚み0.5mm)の表面に対し、φ10mm、厚み1mmtの円板状ダイヤモンド砥石を回転させながら垂直に押し当て、アルミナ焼結体を貫通するまで研削して10個の穴をあけた。こうした穴付きアルミナ焼結体を10体作製した(穴の数は合計100個)。
(4) Drilling process The surface of the obtained alumina sintered body (φ50.8 mm, thickness 0.5 mm) was pressed vertically while rotating a disk-shaped diamond grindstone having a diameter of 10 mm and a thickness of 1 mmt, and the alumina sintered body 10 holes were made by grinding until passing through. Ten such alumina sintered bodies with holes were produced (a total of 100 holes).

2.アルミナ焼結体の特性等
(1)直線透過率
前記1.(3)で得られた厚み0.5mmのアルミナ焼結体を、10mm×10mmの大きさに切り出し、φ68mmの金属製定盤の最外周部に90°おきに4個固定し、SiC研磨紙上で、金属製定盤と研磨治具の荷重のみ(合わせて1314g)をかけた状態で#800で10分、#1200で5分ラップ研磨(予備研磨)した。その後、セラミック定盤上でダイヤモンド砥粒を用いたラップ研磨を行った。ラップ研磨は、砥粒サイズ1μmで30分、その後、砥粒サイズ0.5μmで2時間行った。研磨後の10mm×10mm×0.5mm厚の試料をアセトン、エタノール、イオン交換水の順でそれぞれ3分間洗浄した後、分光光度計(Perkin Elmer製、Lambda900)を用いて波長300〜1000nmにおける直線透過率を測定した。実験例1のアルミナ焼結体の波長300〜1000nmにおける直線透過率は80.1%以上であった。
2. Characteristics of Alumina Sintered Body (1) Linear Transmittance The 0.5 mm thick alumina sintered body obtained in (3) is cut into a size of 10 mm × 10 mm, and fixed to the outermost peripheral part of a φ68 mm metal surface plate at 90 ° intervals, on a SiC abrasive paper Then, lapping was performed (preliminary polishing) for 10 minutes at # 800 and 5 minutes at # 1200 in a state where only the load of the metal surface plate and the polishing jig (1314 g in total) was applied. Thereafter, lapping using diamond abrasive grains was performed on a ceramic surface plate. The lapping was performed at an abrasive grain size of 1 μm for 30 minutes and then at an abrasive grain size of 0.5 μm for 2 hours. The polished 10 mm × 10 mm × 0.5 mm thick sample was washed for 3 minutes each in the order of acetone, ethanol, and ion-exchanged water, and then a straight line at a wavelength of 300 to 1000 nm using a spectrophotometer (Perkin Elmer, Lambda 900). The transmittance was measured. The linear transmittance of the alumina sintered body of Experimental Example 1 at a wavelength of 300 to 1000 nm was 80.1% or more.

(2)MgS/MgI及びNS/NI
前記1.(3)で得られたアルミナ焼結体を、10mm×10mmの大きさに切り出した後、任意の断面をクロスセクションポリッシャ(CP)(日本電子製、IB−09010CP)で研磨した。CPはイオンミリングの範疇に属する。CPを用いたのは、研磨面に脱粒が生じないことと、表面に加工変質層が残留しないからである。研磨面を電子線マイクロアナライザ(EPMA)で、図5に示す視野A及び視野B(いずれも縦1.5μm、横2.0μm範囲)で面分析を実施した。なお、視野Aをアルミナ焼結体表面の視野、視野Bをアルミナ焼結体内部の視野とする。
視野A:焼成体表面から1μm下の視野
視野B:焼成体表面から10μm下の視野
(2) Mg S / Mg I and N S / N I
1 above. After the alumina sintered body obtained in (3) was cut out to a size of 10 mm × 10 mm, an arbitrary cross section was polished with a cross section polisher (CP) (IB-09010CP, manufactured by JEOL Ltd.). CP belongs to the category of ion milling. The reason for using CP is that no degranulation occurs on the polished surface and no work-affected layer remains on the surface. The polished surface was subjected to surface analysis with an electron beam microanalyzer (EPMA) in the field of view A and field of view B shown in FIG. 5 (both 1.5 μm long and 2.0 μm wide). The field of view A is the field of view on the surface of the alumina sintered body, and the field of view B is the field of view inside the alumina sintered body.
Field of view A: Field of view 1 μm below the surface of the fired body Field of view B: Field of view 10 μm below the surface of the fired body

視野Aの面分析で得られたMg−Kα1スペクトル強度をMgS、視野Bの面分析で得られたMg−Kα1スペクトル強度をMgIとしたときMgS/MgI=1.7であった。同様に、視野Aの面分析で得られたN−Kα1スペクトル強度をNS、視野Bの面分析で得られたN−Kα1スペクトル強度をNIとしたときNS/NI=1.3であった。 Mg S / Mg I = 1.7 when the Mg—Kα1 spectral intensity obtained by the surface analysis of the visual field A is Mg S , and the Mg—Kα1 spectral intensity obtained by the surface analysis of the visual field B is Mg I. . Similarly, N S / N I = 1.3, where N S is the N-Kα1 spectral intensity obtained by the surface analysis of the visual field A, and N I is the N-Kα1 spectral intensity obtained by the surface analysis of the visual field B. Met.

(3)クラック発生の有無
前記1.(4)で得られた穴付きアルミナ焼結体の各穴について、50倍の光学顕微鏡にて、穴の周囲にクラックが発生したか否かを観察し、1個以上クラックが観察された穴の数をカウントした。そうしたところ、クラックの発生した穴の数は100個中ゼロ(0/100)であった。
(3) Presence or absence of occurrence of cracks For each hole of the alumina sintered body with holes obtained in (4), it was observed whether or not cracks occurred around the holes with a 50 × optical microscope, and one or more cracks were observed. Counted the number of. As a result, the number of cracked holes was zero (0/100) out of 100.

なお、前記2.(1)及び(2)では穴あけ加工を施す前のアルミナ焼結体の直線透過率やMgS/MgI及びNS/NI を測定したが、穴あけ加工を施した後もこれらの数値は変わらない。また、穴付きアルミナ焼結体の穴の開口縁は、表面の一部とみることができる。そのため、穴の開口縁のMg−Kα1スペクトル強度をMgH、N−Kα1スペクトル強度をNHとすると、MgH=MgS、NH=NSとみなすことができる。 Note that 2. In (1) and (2), the linear transmittance, Mg S / Mg I and N S / N I of the alumina sintered body before drilling were measured, but these values are still present after drilling. does not change. Moreover, the opening edge of the hole of the alumina sintered body with a hole can be regarded as a part of the surface. Therefore, if the Mg-Kα1 spectrum intensity at the opening edge of the hole is Mg H and the N-Kα1 spectrum intensity is N H , it can be regarded as Mg H = Mg S and N H = N S.

[実験例2]
実験例1の1.(2)で得られた成形体を10体用意し、実験例1の1.(4)と同様にしてそれぞれにつきφ10mmの穴を10個あけた(穴の数は合計100個)。穴あけ加工後の成形体を実験例1の1.(3)の焼成条件でホットプレス焼成し、穴付きアルミナ焼結体を得た。この穴付きアルミナ焼結体の特性を実験例1と同様にして測定したところ、直線透過率は厚さ0.5mmで80.6%、MgS/MgIは1.7、NS/NI は1.3、クラックの発生した穴の数は100個中ゼロであった。
[Experiment 2]
Experimental Example 1 Ten compacts obtained in (2) were prepared and In the same manner as in (4), 10 holes each having a diameter of 10 mm were formed (a total of 100 holes). The molded body after the drilling process was subjected to 1. Hot press firing was performed under the firing conditions of (3) to obtain an alumina sintered body with holes. The characteristics of the alumina sintered body with holes were measured in the same manner as in Experimental Example 1. As a result, the linear transmittance was 80.6% when the thickness was 0.5 mm, Mg S / Mg I was 1.7, and N S / N. I was 1.3, and the number of cracked holes was zero out of 100.

なお、この場合も、穴付きアルミナ焼結体の穴の開口縁のMg−Kα1スペクトル強度をMgH、N−Kα1スペクトル強度をNHとすると、MgH=MgS、NH=NSとみなすことができる。 In this case as well, if the Mg-Kα1 spectral intensity at the opening edge of the hole of the alumina sintered body with holes is Mg H and the N-Kα1 spectral intensity is N H , then Mg H = Mg S and N H = N S Can be considered.

[実験例3]
実験例1の1.(2)のテープ成形において板状アルミナ粉末2.5質量部と微細アルミナ粉末97.5質量部とを混合し酸化マグネシウムの添加量を0.05質量部にしたこと、1.(3)の焼成において焼成温度(最高到達温度)を1850℃としたこと以外は、実験例1と同様にして穴付きアルミナ焼結体を作製した。本実験例のアルミナ焼結体の直線透過率は厚さ0.5mmで81.1%、MgS/MgIは1.5、NS/NIは1.2であった。また、穴付きアルミナ焼結体のクラックの発生した穴の数は100個中ゼロ(0/100)であった。
[Experiment 3]
Experimental Example 1 In the tape molding of (2), 2.5 parts by mass of plate-like alumina powder and 97.5 parts by mass of fine alumina powder were mixed to add 0.05 parts by mass of magnesium oxide. A sintered alumina body with a hole was produced in the same manner as in Experimental Example 1 except that the firing temperature (maximum temperature reached) was 1850 ° C. in the firing of (3). The linear transmittance of the alumina sintered body of this experimental example was 81.1% at a thickness of 0.5 mm, Mg S / Mg I was 1.5, and N S / N I was 1.2. Moreover, the number of the holes which the crack of the alumina sintered body with a hole generate | occur | produced was zero (0/100).

[実験例4]
実験例3のテープ成形後に得られた成形体を10体用意し、実験例1の1.(4)と同様にしてそれぞれにつきφ10mmの穴を10個あけた(穴の数は合計100個)。穴あけ加工後の成形体を実験例3の焼成条件でホットプレス焼成し、穴付きアルミナ焼結体を得た。この穴付きアルミナ焼結体の特性を実験例1と同様にして測定したところ、直線透過率は厚さ0.5mmで81.3%、MgS/MgIは1.5、NS/NIは1.2、クラックの発生した穴の数は100個中ゼロ(0/100)であった。
[Experimental Example 4]
Ten molded articles obtained after the tape molding in Experimental Example 3 were prepared. In the same manner as in (4), 10 holes each having a diameter of 10 mm were formed (a total of 100 holes). The formed body after drilling was hot-press fired under the firing conditions of Experimental Example 3 to obtain an alumina sintered body with holes. The characteristics of the alumina sintered body with holes were measured in the same manner as in Experimental Example 1. As a result, the linear transmittance was 81.3% when the thickness was 0.5 mm, Mg S / Mg I was 1.5, and N S / N. I was 1.2, and the number of cracked holes was zero (0/100) out of 100.

[実験例5]
実験例1の1.(3)の焼成において焼成温度(最高到達温度)を1900℃としたこと以外は、実験例1と同様にして穴付きアルミナ焼結体を作製した。本実験例のアルミナ焼結体の直線透過率は厚さ0.5mmで76.6%、MgS/MgI=1.3、NS/NI=1.1であった。また、穴付きアルミナ焼結体のクラックの発生した穴の数は100個中13個(13/100)であった。
[Experimental Example 5]
Experimental Example 1 A sintered alumina body with a hole was produced in the same manner as in Experimental Example 1, except that the firing temperature (maximum temperature reached) was 1900 ° C. in the firing of (3). The linear transmittance of the alumina sintered body of this experimental example was 76.6% at a thickness of 0.5 mm, Mg S / Mg I = 1.3, and N S / N I = 1.1. Moreover, the number of the holes which the crack of the alumina sintered body with a hole generate | occur | produced was 13 out of 100 (13/100).

[実験例6]
実験例5のテープ成形後に得られた成形体を10体用意し、実験例1の1.(4)と同様にしてそれぞれにつきφ10mmの穴を10個あけた(穴の数は合計100個)。穴あけ加工後の成形体を実験例5の焼成条件でホットプレス焼成し、穴付きアルミナ焼結体を得た。この穴付きアルミナ焼結体の特性を実験例1と同様にして測定したところ、直線透過率は厚さ0.5mmで75.3%、MgS/MgIは1.3、NS/NIは1.1、クラックの発生した穴の数は100個中7個(7/100)であった。
[Experimental Example 6]
Ten molded articles obtained after the tape molding of Experimental Example 5 were prepared. In the same manner as in (4), 10 holes each having a diameter of 10 mm were formed (a total of 100 holes). The formed body after drilling was hot-press fired under the firing conditions of Experimental Example 5 to obtain a holed alumina sintered body. The characteristics of the alumina sintered body with holes were measured in the same manner as in Experimental Example 1. As a result, the linear transmittance was 75.3% at a thickness of 0.5 mm, Mg S / Mg I was 1.3, and N S / N. I was 1.1 and the number of cracked holes was 7 out of 100 (7/100).

[実験例7]
実験例1の1.(2)のテープ成形において酸化マグネシウムを無添加としたこと以外は、実験例1と同様にして穴付きアルミナ焼結体を作製した。本実験例のアルミナ焼結体の直線透過率は厚さ0.5mmで75.2%であった。実験例1の2.(2)の電子線マイクロアナライザ測定ではMgS、MgIはバックグラウンドレベルにしか検出されず、NS/NIは1.1であった。また、穴付きアルミナ焼結体のクラックの発生した穴の数は100個中43個(43/100)であった。
[Experimental Example 7]
Experimental Example 1 An alumina sintered body with a hole was produced in the same manner as in Experimental Example 1 except that magnesium oxide was not added in the tape molding of (2). The linear transmittance of the alumina sintered body of this experimental example was 75.2% at a thickness of 0.5 mm. Example 1-2. In the electron beam microanalyzer measurement of (2), Mg S and Mg I were detected only at the background level, and N S / N I was 1.1. Moreover, the number of the holes which the crack generate | occur | produced the alumina sintered compact with a hole was 43 out of 100 (43/100).

[実験例8]
実験例7のテープ成形後に得られた成形体を10体用意し、実験例1の1.(4)と同様にしてそれぞれにつきφ10mmの穴を10個あけた(穴の数は合計100個)。穴あけ加工後の成形体を実験例7の焼成条件でホットプレス焼成し、穴付きアルミナ焼結体を得た。この穴付きアルミナ焼結体の特性を実験例1と同様にして測定したところ、直線透過率は厚さ0.5mmで73.6%、MgS、MgIはバックグラウンドレベルにしか検出されず、NS/NIは1.0、クラックの発生した穴の数は100個中29個(29/100)であった。
[Experimental Example 8]
Ten molded articles obtained after the tape molding of Experimental Example 7 were prepared. In the same manner as in (4), 10 holes each having a diameter of 10 mm were formed (a total of 100 holes). The formed body after drilling was hot-press fired under the firing conditions of Experimental Example 7 to obtain an alumina sintered body with holes. When the characteristics of the alumina sintered body with holes were measured in the same manner as in Experimental Example 1, the linear transmittance was 73.6% at a thickness of 0.5 mm, and Mg S and Mg I were detected only at the background level. , N S / N I 1.0, the number of generated holes cracks was 29 in 100 (29/100).

[実験例9]
実験例1の1.(3)の焼成において焼成温度(最高到達温度)に到達したあとキープせずに直ちに降温したこと以外は、実験例1と同様にして穴付きアルミナ焼結体を作製した。本実験例のアルミナ焼結体の直線透過率は厚さ0.5mmで78.9%、MgS/MgI=1.15、NS/NI=1.05であった。また、穴付きアルミナ焼結体のクラックの発生した穴の数は100個中21個(21/100)であった。
[Experimental Example 9]
Experimental Example 1 In the firing of (3), an alumina sintered body with holes was produced in the same manner as in Experimental Example 1 except that the temperature was immediately lowered without reaching after reaching the firing temperature (maximum temperature reached). The linear transmittance of the alumina sintered body of this experimental example was 78.9% at a thickness of 0.5 mm, Mg S / Mg I = 1.15, and N S / N I = 1.05. Moreover, the number of the holes which the crack of the alumina sintered body with a hole generate | occur | produced was 21 out of 100 (21/100).

[実験例10]
実験例9のテープ成形後に得られた成形体を10体用意し、実験例1の1.(4)と同様にしてそれぞれにつきφ10mmの穴を10個あけた(穴の数は合計100個)。穴あけ加工後の成形体を実験例9の焼成条件でホットプレス焼成し、穴付きアルミナ焼結体を得た。この穴付きアルミナ焼結体の特性を実験例1と同様にして測定したところ、直線透過率は厚さ0.5mmで79.5%、MgS/MgIは1.15、NS/NIは1.05、クラックの発生した穴の数は100個中14個(14/100)であった。
[Experimental Example 10]
Ten molded articles obtained after the tape molding of Experimental Example 9 were prepared. In the same manner as in (4), 10 holes each having a diameter of 10 mm were formed (a total of 100 holes). The formed body after drilling was hot-press fired under the firing conditions of Experimental Example 9 to obtain an alumina sintered body with holes. When the characteristics of the alumina sintered body with holes were measured in the same manner as in Experimental Example 1, the linear transmittance was 79.5% at a thickness of 0.5 mm, Mg S / Mg I was 1.15, N S / N I was 1.05 and the number of cracked holes was 14 out of 100 (14/100).

なお、実験例1〜6が本発明の実施例に相当し、実験例7〜10が比較例に相当する。本発明は、上述した実施形態や実験例に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   Experimental examples 1 to 6 correspond to examples of the present invention, and experimental examples 7 to 10 correspond to comparative examples. The present invention is not limited to the above-described embodiments and experimental examples, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

10 透明アルミナ焼結体、12 穴、14 開口縁、16 透明アルミナ焼結体の内部、20 透明アルミナ焼結体、22 穴、24 開口縁、26 透明アルミナ焼結体の内部、30 成形体、32 穴、34 成形体、40 透明アルミナ焼結体、44 透明アルミナ焼結体の表面、46 透明アルミナ焼結体の内部。 10 transparent alumina sintered body, 12 holes, 14 opening edge, 16 inside transparent alumina sintered body, 20 transparent alumina sintered body, 22 holes, 24 opening edge, 26 inside transparent alumina sintered body, 30 molded body, 32 holes, 34 molded body, 40 transparent alumina sintered body, 44 surface of transparent alumina sintered body, 46 inside transparent alumina sintered body.

Claims (5)

穴の開口縁に含まれるマグネシウム量MgH と透明アルミナ焼結体の内部に含まれるマグネシウム量MgIとの比MgH/MgIが1.2以上で、前記穴の開口縁に含まれる窒素量N H と前記透明アルミナ焼結体の内部に含まれる窒素量N I との比N H /N I が1.1以上である、
穴付き透明アルミナ焼結体。
The ratio Mg H / Mg I and magnesium content Mg I contained within the magnesium content Mg H and transparency alumina sintered body included in the opening edge of the hole is 1.2 or more, it is included in the opening edge of the hole the ratio N H / N I the nitrogen content N I contained inside the transparent alumina sintered body with the nitrogen content N H is 1.1 or more,
Transparent alumina sintered body with holes.
前記MgH/MgIは、前記透明アルミナ焼結体の断面を研磨したあとの研磨面の面分析を電子マイクロアナライザで行い、前記穴の開口縁のMg−Kα1スペクトル強度をMgH、前記透明アルミナ焼結体の内部のMg−Kα1スペクトル強度をMgI として算出した値である、
請求項1に記載の穴付き透明アルミナ焼結体。
The Mg H / Mg I is a surface analysis of the polished surface after the cross section of the transparent alumina sintered body is polished with an electronic microanalyzer, and the Mg-Kα1 spectral intensity of the opening edge of the hole is Mg H. It is a value calculated as the Mg-Kα1 spectral intensity inside the alumina sintered body as Mg I.
The transparent alumina sintered body with holes according to claim 1.
前記NH/NIは、前記透明アルミナ焼結体の断面を研磨したあとの研磨面の面分析を電子マイクロアナライザで行い、前記穴の開口縁のN−Kα1スペクトル強度をNH、前記透明アルミナ焼結体の内部のN−Kα1スペクトル強度をNI として算出した値である、
請求項1又は2に記載の穴付き透明アルミナ焼結体。
The N H / N I is a surface analysis of the polished surface after the cross section of the transparent alumina sintered body is polished with an electronic microanalyzer, and the N-Kα1 spectral intensity of the opening edge of the hole is N H. the interior of the N-K.alpha.1 spectral intensity of the alumina sintered body is calculated values as N I,
The transparent alumina sintered body with holes according to claim 1 or 2 .
(a)表面に含まれるマグネシウム量MgSと内部に含まれるマグネシウム量MgIとの比MgS/MgIが1.2以上で、表面に含まれる窒素量N S と内部に含まれる窒素量N I との比N S /N I が1.1以上である透明アルミナ焼結体を作製する工程と、
(b)前記透明アルミナ焼結体に穴をあけることにより、請求項1に記載の穴付き透明アルミナ焼結体を得る工程と、
を含む穴付き透明アルミナ焼結体の製法。
(A) the ratio Mg S / Mg I and magnesium content Mg I contained within the amount of magnesium Mg S contained in the surface is 1.2 or more, a nitrogen contained within the nitrogen content N S contained in the surface weight a step of the ratio N S / N I with N I to prepare a transparent alumina sintered body is 1.1 or more,
(B) obtaining the transparent alumina sintered body with holes according to claim 1 by making a hole in the transparent alumina sintered body;
Of transparent alumina sintered body with holes including
(a)焼結すると表面に含まれるマグネシウム量MgSと内部に含まれるマグネシウム量MgIとの比MgS/MgIが1.2以上の透明アルミナ焼結体になる穴付き成形体を作製する工程と、
(b)前記穴付き成形体を窒素雰囲気で焼成することにより、請求項1に記載の穴付き透明アルミナ焼結体を得る工程と、
を含む穴付き透明アルミナ焼結体の製法。
(A) When sintered, a molded body with a hole that becomes a transparent alumina sintered body having a ratio Mg S / Mg I of 1.2 or more between the amount of magnesium Mg S contained in the surface and the amount of magnesium Mg I contained therein is made And a process of
(B) obtaining the transparent alumina sintered body with holes according to claim 1 by firing the molded body with holes in a nitrogen atmosphere ;
Of transparent alumina sintered body with holes including
JP2016066433A 2016-03-29 2016-03-29 Transparent alumina sintered body with holes and manufacturing method thereof Active JP6585536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016066433A JP6585536B2 (en) 2016-03-29 2016-03-29 Transparent alumina sintered body with holes and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016066433A JP6585536B2 (en) 2016-03-29 2016-03-29 Transparent alumina sintered body with holes and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017178654A JP2017178654A (en) 2017-10-05
JP6585536B2 true JP6585536B2 (en) 2019-10-02

Family

ID=60003915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016066433A Active JP6585536B2 (en) 2016-03-29 2016-03-29 Transparent alumina sintered body with holes and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6585536B2 (en)

Also Published As

Publication number Publication date
JP2017178654A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
KR102376825B1 (en) Alumina sintered body and ground substrate for optical element
JP5231823B2 (en) Polycrystalline MgO sintered body, method for producing the same, and MgO target for sputtering
JP2009263187A (en) Yttria sintered compact and member for plasma processing device
JP7062229B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP6621422B2 (en) Production method of transparent alumina sintered body
JP6649959B2 (en) Manufacturing method of transparent alumina sintered body
JP7062230B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP6626500B2 (en) Alumina sintered body and base substrate for optical element
JP6585536B2 (en) Transparent alumina sintered body with holes and manufacturing method thereof
JP2011063866A (en) Compound oxide sintered compact, oxide transparent conductive film, and method for producing the same
JP2014125422A (en) Oxide sintered body, oxide sintered body sputtering target and its manufacturing method
JP7086080B2 (en) Oxide sintered body and sputtering target
JP2019081704A (en) Manufacturing method of oriented ceramic sintered body and flat sheet
JP2012111671A (en) Method for producing aluminum nitride sintered compact workpiece
JP7201103B2 (en) Plate-like silicon nitride sintered body and manufacturing method thereof
JP7272370B2 (en) Silicon nitride substrate manufacturing method and silicon nitride substrate
JP4026194B2 (en) ZnO-Ga2O3-based sintered body for sputtering target and method for producing the same
TWI557091B (en) Composite oxide sintered object and oxide transparent conductive film
KR102624914B1 (en) Electrostatic chuck, electrostatic chuck heater and semiconductor holding device comprising the same
JPWO2019082916A1 (en) Method for producing oriented ceramic sintered body and flat sheet
JP5458053B2 (en) Translucent ceramics and method for producing the same
KR20220158635A (en) Electrostatic chuck, electrostatic chuck heater and semiconductor holding device comprising the same
WO2024019940A2 (en) Process for sintering large diameter yag layers substantially free of unreacted yttrium oxide and yttrium rich phases
JP2011190163A (en) Method for producing aluminum nitride sintered compact workpiece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190905

R150 Certificate of patent or registration of utility model

Ref document number: 6585536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150