JP7086080B2 - Oxide sintered body and sputtering target - Google Patents

Oxide sintered body and sputtering target Download PDF

Info

Publication number
JP7086080B2
JP7086080B2 JP2019535024A JP2019535024A JP7086080B2 JP 7086080 B2 JP7086080 B2 JP 7086080B2 JP 2019535024 A JP2019535024 A JP 2019535024A JP 2019535024 A JP2019535024 A JP 2019535024A JP 7086080 B2 JP7086080 B2 JP 7086080B2
Authority
JP
Japan
Prior art keywords
mass
sintered body
oxide sintered
transparent conductive
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019535024A
Other languages
Japanese (ja)
Other versions
JPWO2019031105A1 (en
Inventor
謙士 松元
雅樹 井上
信一郎 中村
智泰 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Publication of JPWO2019031105A1 publication Critical patent/JPWO2019031105A1/en
Application granted granted Critical
Publication of JP7086080B2 publication Critical patent/JP7086080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、酸化物焼結体およびスパッタリングターゲットに関し、詳しくは、可視光領域での透過率が高く、比抵抗が低い薄膜を得ることができるスパッタリングターゲット、およびそのようなターゲットを作製することができる酸化物焼結体に関する。 The present invention relates to an oxide sintered body and a sputtering target, and more particularly, it is possible to prepare a sputtering target capable of obtaining a thin film having a high transmittance and a low specific resistance in the visible light region, and such a target. Regarding the oxide sintered body that can be formed.

液晶を中心とする表示デバイスの発展に伴い、透明導電膜の需要が増加している。透明導電膜には高透明性が要求され、さらには低抵抗も要求される。高透明性および低抵抗の要求から、透明導電膜としてITO膜が広く用いられている。ITO透明導電膜の形成方法としては、操作性の簡便さという点からITOスパッタリングターゲットをスパッタリングして成膜する方法が一般的である。 With the development of display devices centered on liquid crystals, the demand for transparent conductive films is increasing. High transparency is required for the transparent conductive film, and low resistance is also required. Due to the demand for high transparency and low resistance, ITO film is widely used as a transparent conductive film. As a method for forming an ITO transparent conductive film, a method of sputtering an ITO sputtering target to form a film is generally used from the viewpoint of operability.

特に最近では液晶のカラー化、素子の微細化、アクティブマトリックス方式の採用に伴い、より透明性が高く、さらに抵抗が低い高性能なITO透明導電膜が要求されている。
特許文献1には、酸化スズを1~20重量%、および酸化チタニウムを0.05~5重量%含む高透過率、低抵抗の透明導電膜、およびスパッタリングターゲットが記載されており、300℃で熱処理、いわゆるアニールすることにより透明導電膜の高透過率化、低抵抗化をすることが可能なことが記載されている。
In particular, recently, with the colorization of liquid crystals, the miniaturization of elements, and the adoption of the active matrix method, there is a demand for a high-performance ITO transparent conductive film having higher transparency and lower resistance.
Patent Document 1 describes a transparent conductive film having a high transmittance and low resistance containing 1 to 20% by weight of tin oxide and 0.05 to 5% by weight of titanium oxide, and a sputtering target at 300 ° C. It is described that it is possible to increase the transmittance and reduce the resistance of the transparent conductive film by heat treatment, so-called annealing.

特許文献2には、酸化インジウム、酸化スズおよびチタニウム等の酸化物からなるスパッタリングターゲットをスパッタし、得られたインジウムスズ酸化物薄膜を熱処理によって結晶化させる透明導電膜の製造方法が記載されている。この方法では、スパッタによって得られたアモルファスであるインジウムスズ酸化物薄膜を200℃以上の熱処理によって結晶化させることで、薄膜の比抵抗を小さくして、導電特性を高めることができる。 Patent Document 2 describes a method for producing a transparent conductive film in which a sputtering target made of an oxide such as indium oxide, tin oxide and titanium oxide is sputtered and the obtained indium tin oxide thin film is crystallized by heat treatment. .. In this method, the amorphous indium tin oxide thin film obtained by sputtering is crystallized by a heat treatment at 200 ° C. or higher, so that the specific resistance of the thin film can be reduced and the conductivity characteristics can be improved.

しかし、200℃以上の高温での熱処理を必要とする方法は、200℃以上では変形してしまうような樹脂製のフィルム上に透明導電膜を作製する場合などにおいては適用できない。 However, the method that requires heat treatment at a high temperature of 200 ° C. or higher cannot be applied when a transparent conductive film is formed on a resin film that is deformed at 200 ° C. or higher.

特開平4-277408号公報Japanese Unexamined Patent Publication No. 4-277408 特許第5726752号公報Japanese Patent No. 5726752

本発明は、透明性が高く、また抵抗が低い透明導電膜を、高温の熱処理をしなくても得ることができる薄膜を成膜できるスパッタリングターゲットを提供することを目的とする。 An object of the present invention is to provide a sputtering target capable of forming a thin film capable of obtaining a transparent conductive film having high transparency and low resistance without heat treatment at a high temperature.

本発明の酸化物焼結体は、構成元素がIn、Sn、TiおよびOであり、Inの含有比率がIn23換算で88.0~98.2質量%であり、Snの含有比率がSnO2換算で1.0~8.0質量%であり、Tiの含有比率がTiO2換算で0.8~4.0質量%である。In the oxide sintered body of the present invention, the constituent elements are In, Sn, Ti and O, and the In content ratio is 88.0 to 98.2% by mass in terms of In 2 O 3 , and the Sn content ratio. Is 1.0 to 8.0% by mass in terms of SnO 2 , and the content ratio of Ti is 0.8 to 4.0% by mass in terms of TiO 2 .

前記酸化物焼結体は、比抵抗が5.0×10-4Ωcm以下であることが好ましく、相対密度が95%以上であることが好ましい。
本発明のスパッタリングターゲット材は、前記酸化物焼結体からなる。
本発明のスパッタリングターゲットは、前記スパッタリングターゲット材を基材に接合してなる。
The oxide sintered body preferably has a specific resistance of 5.0 × 10 -4 Ωcm or less, and preferably has a relative density of 95% or more.
The sputtering target material of the present invention comprises the oxide sintered body.
The sputtering target of the present invention is formed by joining the sputtering target material to a base material.

本発明の透明導電膜は、Inの含有比率がIn23換算で88.0~98.2質量%であり、Snの含有比率がSnO2換算で1.0~8.0質量%であり、Tiの含有比率がTiO2換算で0.8~4.0質量%である。The transparent conductive film of the present invention has an In content ratio of 88.0 to 98.2% by mass in terms of In 2 O 3 and a Sn content ratio of 1.0 to 8.0% by mass in terms of Sn O 2 . Yes, the Ti content ratio is 0.8 to 4.0% by mass in terms of TiO 2 .

本発明の透明導電膜の製造方法は、前記スパッタリングターゲットをスパッタリングすることにより成膜された薄膜を110~145℃にて加熱処理する。 In the method for producing a transparent conductive film of the present invention, a thin film formed by sputtering the sputtering target is heat-treated at 110 to 145 ° C.

本発明の酸化物焼結体により、透明性が高い透明導電膜、また、さらに抵抗が低い透明導電膜を、高温の熱処理をしなくても得ることができる薄膜を成膜できるスパッタリングターゲットを得ることができる。 The oxide sintered body of the present invention provides a sputtering target capable of forming a thin film capable of obtaining a transparent conductive film having high transparency and a transparent conductive film having low resistance without high-temperature heat treatment. be able to.

図1は、実施例15において、スパッタリングにより得られた薄膜およびこの薄膜を125℃で熱処理することにより得られた透明導電膜の波長300nm~800nmの範囲における光透過率を示す図である。FIG. 1 is a diagram showing the light transmittance of the thin film obtained by sputtering and the transparent conductive film obtained by heat-treating the thin film at 125 ° C. in the wavelength range of 300 nm to 800 nm in Example 15. 図2は、実施例15および比較例1,3において、スパッタリングにより得られた薄膜を125℃で熱処理することにより得られた透明導電膜の波長300nm~800nmの範囲における光透過率を示す図である。FIG. 2 is a diagram showing the light transmittance of the transparent conductive film obtained by heat-treating the thin film obtained by sputtering in Example 15 and Comparative Examples 1 and 3 at 125 ° C. in the wavelength range of 300 nm to 800 nm. be.

本発明の酸化物焼結体は、構成元素がIn、Sn、TiおよびOであり、Inの含有比率がIn23換算で88.0~98.2質量%であり、Snの含有比率がSnO2換算で1.0~8.0質量%であり、Tiの含有比率がTiO2換算で0.8~4.0質量%である。In the oxide sintered body of the present invention, the constituent elements are In, Sn, Ti and O, and the In content ratio is 88.0 to 98.2% by mass in terms of In 2 O 3 , and the Sn content ratio. Is 1.0 to 8.0% by mass in terms of SnO 2 , and the content ratio of Ti is 0.8 to 4.0% by mass in terms of TiO 2 .

前記酸化物焼結体は、Inの含有比率がIn23換算で88.0~98.2質量%、好ましくは90.0~97.0質量%、より好ましくは91.5~96.0質量%、さらに好ましくは93.0~95.5質量%であり、Snの含有比率はSnO2換算で1.0~8.0質量%、好ましくは2.0~7.0質量%、より好ましくは2.7~6.0質量%、さらに好ましくは3.0~5.0質量%であり、Tiの含有比率はTiO2換算で0.8~4.0質量%、好ましくは1.0~3.0質量%、より好ましくは1.3~2.5質量%、さらに好ましくは1.5~2.0質量%である。本発明のような酸化物焼結体には原料等に由来する不可避的不純物が含まれ得るのは当然であり、本発明の酸化物焼結体にも不可避的不純物が含まれる場合はある。本発明の酸化物焼結体における不可避的不純物としてはFe、Cr、Ni、Si、W、Zr等があげられ、それらの含有量は各々通常100ppm以下である。The oxide sintered body has an In content ratio of 88.0 to 98.2% by mass, preferably 90.0 to 97.0% by mass, and more preferably 91.5 to 96.% In terms of In 2 O 3 . It is 0% by mass, more preferably 93.0 to 95.5% by mass, and the Sn content ratio is 1.0 to 8.0% by mass, preferably 2.0 to 7.0% by mass in terms of SnO 2 . It is more preferably 2.7 to 6.0% by mass, further preferably 3.0 to 5.0% by mass, and the Ti content ratio is 0.8 to 4.0% by mass in terms of TiO 2 , preferably 1. It is 0.0 to 3.0% by mass, more preferably 1.3 to 2.5% by mass, and further preferably 1.5 to 2.0% by mass. It goes without saying that an oxide sintered body as in the present invention may contain unavoidable impurities derived from raw materials and the like, and the oxide sintered body of the present invention may also contain unavoidable impurities. Examples of the unavoidable impurities in the oxide sintered body of the present invention include Fe, Cr, Ni, Si, W, Zr and the like, and their contents are usually 100 ppm or less.

なお、本発明において構成元素とは、酸化物焼結体または透明導電膜における不可避的不純物を除く構成元素を意味し、各構成元素の含有比率は、酸化物焼結体または透明導電膜全体に占める各構成元素の含有比率を意味する。 In the present invention, the constituent elements mean constituent elements excluding unavoidable impurities in the oxide sintered body or the transparent conductive film, and the content ratio of each constituent element is applied to the entire oxide sintered body or the transparent conductive film. It means the content ratio of each constituent element.

前記酸化物焼結体の比抵抗は、5.0×10-4Ωcm以下であることが好ましく、4.8×10-4Ωcm以下であることがより好ましく、4.5×10-4Ωcm以下であることがさらに好ましい。これにより安価なDC電源を用いたスパッタリングが可能となり、成膜レートを向上させることができ、また異常放電の発生を抑制することができる。The specific resistance of the oxide sintered body is preferably 5.0 × 10 -4 Ωcm or less, more preferably 4.8 × 10 -4 Ωcm or less, and 4.5 × 10 -4 Ωcm or less. The following is more preferable. As a result, sputtering using an inexpensive DC power supply becomes possible, the film formation rate can be improved, and the occurrence of abnormal discharge can be suppressed.

前記酸化物焼結体の相対密度は、好ましくは95%以上であり、より好ましくは98%以上、さらに好ましくは99%以上である。相対密度が95%以上であると、ノジュールやアーキングの発生のない、効率的なスパッタリングが可能である。相対密度の上限は特に制限はなく、100%を超えてもよい。前記相対密度はアルキメデス法に基づき測定された数値である。 The relative density of the oxide sintered body is preferably 95% or more, more preferably 98% or more, still more preferably 99% or more. When the relative density is 95% or more, efficient sputtering without generation of nodules and arcing is possible. The upper limit of the relative density is not particularly limited and may exceed 100%. The relative density is a numerical value measured based on the Archimedes method.

前記酸化物焼結体は、たとえば以下に示すような方法により製造することができる。
まず、原料粉末を混合する。原料粉末は、通常In23粉末、SnO2粉末およびTiO2粉末である。In23粉末、SnO2粉末およびTiO2粉末は、得られる焼結体におけるIn、SnおよびTiの含有量がそれぞれ上記範囲内になるように混合される。なお、原料粉末を混合して得られた混合粉末におけるIn23粉末、SnO2粉末およびTiO2粉末の含有比は、前記酸化物焼結体におけるIn23換算のIn含有比、SnO2換算のSn含有比、およびTiO2換算のTi含有比とそれぞれ一致する。
The oxide sintered body can be produced, for example, by the method shown below.
First, the raw material powder is mixed. The raw material powder is usually In 2 O 3 powder, SnO 2 powder and TiO 2 powder. The In 2 O 3 powder, Sn O 2 powder and TiO 2 powder are mixed so that the contents of In, Sn and Ti in the obtained sintered body are within the above ranges, respectively. The content ratios of In 2 O 3 powder, SnO 2 powder and TiO 2 powder in the mixed powder obtained by mixing the raw material powders are the In 2 O 3 equivalent In content ratio and SnO in the oxide sintered body. It matches the Sn content ratio converted to 2 and the Ti content ratio converted to TiO 2 , respectively.

各原料粉末は、通常は粒子が凝集しているため、事前に粉砕して混合するか、あるいは混合しながら粉砕を行うことが好ましい。
原料粉末の粉砕方法や混合方法には特に制限はなく、例えば原料粉末をポットに入れて、ボールミルにより粉砕または混合を行うことができる。
Since the particles of each raw material powder are usually agglomerated, it is preferable to grind them in advance and mix them, or to grind them while mixing.
The method for crushing and mixing the raw material powder is not particularly limited, and for example, the raw material powder can be placed in a pot and crushed or mixed by a ball mill.

得られた混合粉末は、そのまま成形して成形体とし、これを焼結することもできるが、必要により混合粉末にバインダーを加えて成形して成形体としてもよい。このバインダーとしては、公知の粉末冶金法において成形体を得るときに使用されるバインダー、例えばポリビニルアルコール、アクリルエマルジョンバインダー等を用いることができる。また、混合粉末に分散媒を加えてスラリーを調製し、このスラリーをスプレードライして顆粒を作製し、この顆粒を成形してもよい。
成形方法は、従来粉末冶金法において採用されている方法、たとえばコールドプレスやCIP(冷間等方圧成形)等を用いることができる。
The obtained mixed powder can be molded as it is to form a molded product, which can be sintered, but if necessary, a binder may be added to the mixed powder and molded to form a molded product. As the binder, a binder used for obtaining a molded product in a known powder metallurgy method, for example, polyvinyl alcohol, an acrylic emulsion binder, or the like can be used. Alternatively, a dispersion medium may be added to the mixed powder to prepare a slurry, and the slurry may be spray-dried to prepare granules, and the granules may be formed.
As the molding method, a method conventionally adopted in the powder metallurgy method, for example, cold pressing, CIP (cold isotropic molding), or the like can be used.

また、混合粉末を一旦仮プレスして仮成形体を作製し、これを粉砕して得られた粉砕粉末を本プレスすることにより成形体を作製してもよい。
なお、スリップキャスト法等の湿式成形法を用いて成形体を作製してもよい。
得られた成形体は、必要に応じて従来粉末冶金法において採用されている方法により脱脂してもよい。成形体の密度は通常50~75%である。
Alternatively, the mixed powder may be temporarily pressed to produce a temporary molded product, and the crushed powder obtained by crushing the mixed powder may be subjected to main pressing to produce a molded product.
A molded product may be produced by using a wet molding method such as a slip cast method.
The obtained molded body may be degreased by a method conventionally adopted in the powder metallurgy method, if necessary. The density of the molded product is usually 50 to 75%.

次に得られた成形体を焼成し、酸化物焼結体を作製する。焼成に使用する焼成炉としては、冷却時に冷却速度をコントロールすることができれば特に制限はなく、粉末冶金に一般的に使用される焼成炉で差し支えない。焼成雰囲気としては酸素雰囲気が適している。 Next, the obtained molded body is fired to prepare an oxide sintered body. The firing furnace used for firing is not particularly limited as long as the cooling rate can be controlled during cooling, and a firing furnace generally used for powder metallurgy may be used. An oxygen atmosphere is suitable as the firing atmosphere.

昇温速度は、高密度化および割れ防止の観点から、通常100~500℃/hである。焼成温度は、1300~1600℃であり、好ましくは1400~1600℃である。焼成温度が前記範囲内であると、高密度の酸化物焼結体を得ることができる。前記焼成温度での保持時間は通常3~30h、好ましくは5~20hである。保持時間が前記範囲内であると、高密度の酸化物焼結体を得やすい。
冷却速度は通常300℃/hr以下、好ましくは50℃/hr以下である。
The rate of temperature rise is usually 100 to 500 ° C./h from the viewpoint of increasing the density and preventing cracking. The firing temperature is 1300 to 1600 ° C, preferably 1400 to 1600 ° C. When the firing temperature is within the above range, a high-density oxide sintered body can be obtained. The holding time at the firing temperature is usually 3 to 30 hours, preferably 5 to 20 hours. When the holding time is within the above range, it is easy to obtain a high-density oxide sintered body.
The cooling rate is usually 300 ° C./hr or less, preferably 50 ° C./hr or less.

本発明のスパッタリングターゲット材は前記酸化物焼結体からなる。具体的には、前記酸化物焼結体を、必要に応じて所望の形状に切り出し、研削を行うなどの加工を施すことによりスパッタリングターゲット材を得ることができる。 The sputtering target material of the present invention comprises the oxide sintered body. Specifically, the sputtering target material can be obtained by cutting the oxide sintered body into a desired shape as needed and performing processing such as grinding.

このスパッタリングターゲット材の組成および比抵抗、相対密度などの物性値については、前記酸化物焼結体の組成、比抵抗、相対密度などと同一である。
前記スパッタリングターゲット材を基材に接合することによりスパッタリングターゲットが得られる。基材は、通常Cu、Al、Tiまたはステンレス製である。接合材は、従来のITOターゲット材の接合に使用される接合材、たとえばInメタルを用いることができる。接合方法も、従来のITOターゲット材の接合方法と同様である。
The composition of the sputtering target material and the physical property values such as specific resistance and relative density are the same as the composition, specific resistance, relative density and the like of the oxide sintered body.
A sputtering target can be obtained by joining the sputtering target material to the substrate. The substrate is usually made of Cu, Al, Ti or stainless steel. As the joining material, a joining material used for joining a conventional ITO target material, for example, In metal can be used. The joining method is also the same as the conventional joining method of the ITO target material.

前記スパッタリングターゲットをスパッタリングすることにより薄膜を成膜することができる。スパッタリングは、通常のITOスパッタリングターゲットを用いたスパッタリングにおける条件に準じて行うことができる。 A thin film can be formed by sputtering the sputtering target. Sputtering can be performed according to the conditions in sputtering using a normal ITO sputtering target.

このようにして得られた薄膜は通常アモルファスである。この薄膜を熱処理、いわゆるアニールすることにより、結晶化することができ、光透過率が高く、比抵抗の低い透明導電膜を得ることができる。光透過率については、特に短波長域、例えば300~380nmの波長域における光透過率を顕著に高めることができる。 The thin film thus obtained is usually amorphous. By heat-treating this thin film, so-called annealing, it can be crystallized, and a transparent conductive film having high light transmittance and low resistivity can be obtained. Regarding the light transmittance, the light transmittance can be remarkably increased particularly in a short wavelength region, for example, a wavelength region of 300 to 380 nm.

この熱処理に必要な温度は110℃~145℃であり、好ましくは115~140℃であり、さらに好ましくは120℃~135℃である。前述のとおり、従来知られていたITO薄膜を高透過率化、低抵抗化するための熱処理には200℃以上の温度が必要であった。これに対し、本発明のスパッタリングターゲットをスパッタリングすることにより得られる薄膜を高透過率化、低抵抗化するための熱処理の温度は110~145℃という低温でよい。このため、本発明のスパッタリングターゲットを用いれば、200℃以上では変形などを起こしてしまうような樹脂製のフィルム等の上に透明導電膜を作製する場合であっても、フィルム等の変形などを引き起こすことなく、高い光透過率および低い抵抗を有する透明導電膜を作製することができる。一方、145℃を超える温度で熱処理を行うと、十分な高透過率化および低抵抗化が得られず、むしろ従来のITO膜(In23:SnO2=90:10(質量比))より透過率が低く、比抵抗が高くなる傾向があるので好ましくない。The temperature required for this heat treatment is 110 ° C. to 145 ° C., preferably 115 to 140 ° C., and more preferably 120 ° C. to 135 ° C. As described above, a temperature of 200 ° C. or higher was required for the heat treatment for increasing the transmittance and lowering the resistance of the conventionally known ITO thin film. On the other hand, the temperature of the heat treatment for increasing the transmittance and lowering the resistance of the thin film obtained by sputtering the sputtering target of the present invention may be as low as 110 to 145 ° C. Therefore, if the sputtering target of the present invention is used, even when a transparent conductive film is formed on a resin film or the like that is deformed at 200 ° C. or higher, the film or the like is deformed. A transparent conductive film having high light transmittance and low resistance can be produced without causing it. On the other hand, when the heat treatment is performed at a temperature exceeding 145 ° C., sufficient high transmittance and low resistivity cannot be obtained, but rather a conventional ITO film (In 2 O 3 : SnO 2 = 90: 10 (mass ratio)). It is not preferable because the transmittance tends to be lower and the specific resistance tends to be higher.

前記熱処理に要する時間は、通常0.1~2時間、好ましくは0.5~1時間である。前記熱処理は大気中で行うことができる。
本発明のスパッタリングターゲットをスパッタリングすることにより得られる薄膜に対して前記熱処理を施すことにより、光透過率および比抵抗を向上させることができる。
The time required for the heat treatment is usually 0.1 to 2 hours, preferably 0.5 to 1 hour. The heat treatment can be performed in the atmosphere.
By subjecting the thin film obtained by sputtering the sputtering target of the present invention to the heat treatment, the light transmittance and the specific resistance can be improved.

特に光透過率は、上記温度での熱処理を施すことにより、可視光の波長域(例えば380~750nm)の波長域において、また特に短波長域(例えば300~380nm)において、従来知られていたITO薄膜(In23:SnO2=90:10(質量比))よりも高くすることができる。In particular, the light transmittance has been conventionally known in the wavelength range of visible light (for example, 380 to 750 nm), and particularly in the short wavelength range (for example, 300 to 380 nm) by performing the heat treatment at the above temperature. It can be made higher than the ITO thin film (In 2 O 3 : SnO 2 = 90: 10 (mass ratio)).

このようにして得られた透明導電膜は、構成元素としてIn、Sn、TiおよびOを有し、たとえば、Inの含有比率がIn23換算で88.0~98.2質量%であり、好ましくは90.0~97.0質量%、より好ましくは91.5~96.0質量%、さらに好ましくは93.0~95.5質量%であり、Snの含有比率がSnO2換算で1.0~8.0質量%であり、好ましくは2.0~7.0質量%、より好ましくは2.7~6.0質量%、さらに好ましくは3.0~5.0質量%であり、Tiの含有比率がTiO2換算で0.8~4.0質量%であり、好ましくは1.0~3.0質量%、より好ましくは1.3~2.5質量%、さらに好ましくは1.5~2.0質量%である。この透明導電膜は、前述のとおり、高光透過率を有し、さらに低抵抗を有し得る。The transparent conductive film thus obtained has In, Sn, Ti and O as constituent elements, and for example, the content ratio of In is 88.0 to 98.2% by mass in terms of In 2 O 3 . It is preferably 90.0 to 97.0% by mass, more preferably 91.5 to 96.0% by mass, still more preferably 93.0 to 95.5% by mass, and the Sn content ratio is in terms of SnO 2 . It is 1.0 to 8.0% by mass, preferably 2.0 to 7.0% by mass, more preferably 2.7 to 6.0% by mass, and further preferably 3.0 to 5.0% by mass. The Ti content is 0.8 to 4.0% by mass, preferably 1.0 to 3.0% by mass, more preferably 1.3 to 2.5% by mass, and even more preferably. Is 1.5 to 2.0% by mass. As described above, this transparent conductive film has a high light transmittance and may have a low resistance.

下記実施例および比較例において用いた測定方法を以下示す。
1.酸化物焼結体の相対密度
酸化物焼結体の相対密度はアルキメデス法に基づき測定した。具体的には、酸化物焼結体の空中質量を体積(酸化物焼結体の水中質量/計測温度における水比重)で除し、下記式(X)に基づく理論密度ρ(g/cm3)に対する百分率の値を相対密度(単位:%)
とした。

Figure 0007086080000001
(式中C1~Ciはそれぞれ酸化物焼結体の構成物質の含有量(質量%)を示し、ρ1~ρiはC1~Ciに対応する各構成物質の密度(g/cm3)を示す。)
下記実施例および比較例において酸化物焼結体の製造に使用する物質(原料)は、In23、SnO2、TiO2であるため、例えば
C1:酸化物焼結体に使用したIn23原料の質量%
ρ1:In23の密度(7.18g/cm3
C2:酸化物焼結体に使用したSnO2原料の質量%
ρ2:SnO2の密度(6.95g/cm3
C3:酸化物焼結体に使用したTiO2原料の質量%
ρ3:TiO2の密度(4.26g/cm3
を式(X)に適用することで理論密度ρを算出することができる。The measurement methods used in the following Examples and Comparative Examples are shown below.
1. 1. Relative Density of Oxide Sintered Body The relative density of the oxide sintered body was measured based on the Archimedes method. Specifically, the aerial mass of the oxide sintered body is divided by the volume (mass of the oxide sintered body in water / water specific gravity at the measured temperature), and the theoretical density ρ (g / cm 3 ) based on the following formula (X) is used. ) Relative density (unit:%)
And said.
Figure 0007086080000001
(In the formula, C1 to Ci each indicate the content (mass%) of the constituent substances of the oxide sintered body, and ρ1 to ρi indicate the density (g / cm 3 ) of each constituent substance corresponding to C1 to Ci. )
In the following Examples and Comparative Examples, the substances (raw materials) used for producing the oxide sintered body are In 2 O 3 , SnO 2 , and TiO 2. Therefore, for example, C1: In 2 used for the oxide sintered body. O 3 Raw material mass%
ρ1: In 2 O 3 density (7.18 g / cm 3 )
C2: Mass% of SnO 2 raw material used for oxide sintered body
ρ2: Density of SnO 2 (6.95 g / cm 3 )
C3: Weight% of TiO 2 raw material used for the oxide sintered body
ρ3: TIO 2 density (4.26 g / cm 3 )
Can be applied to the equation (X) to calculate the theoretical density ρ.

2.酸化物焼結体の比抵抗
酸化物焼結体の比抵抗は、三菱化学社製、ロレスタ(登録商標)HP MCP-T410(直列4探針プローブ TYPE ESP)を用いて、加工後の焼結体表面にプローブをあてて、AUTO RANGEモードで測定した。測定箇所は酸化物焼結体の中央付近および4隅の計5か所とし、各測定値の平均値をその焼結体のバルク抵抗値とした。
2. 2. Specific resistance of oxide sintered body The specific resistance of the oxide sintered body is sintered after processing using Loresta (registered trademark) HP MCP-T410 (series 4-probe probe TYPE ESP) manufactured by Mitsubishi Chemical Corporation. A probe was applied to the body surface and measurement was performed in AUTO RANGE mode. The measurement points were a total of 5 points near the center of the oxide sintered body and at the four corners, and the average value of each measured value was taken as the bulk resistance value of the sintered body.

3.膜の光透過性
膜の光透過率は日立ハイテクサイエンス社製、紫外可視近赤外分光光度計UH4150を用いて測定した。測定条件は、スキャンスピード;600nm/min、波長領域;200~2600nmに設定した。初めに、成膜を行っていない素ガラス基板を装置にセットしてベースラインを測定し、その後各々の成膜サンプルの透過率を測定した。
3. 3. Light transmittance of the film The light transmittance of the film was measured using an ultraviolet-visible near-infrared spectrophotometer UH4150 manufactured by Hitachi High-Tech Science. The measurement conditions were set to scan speed; 600 nm / min and wavelength range; 200 to 2600 nm. First, a bare glass substrate that had not been film-formed was set in the apparatus and the baseline was measured, and then the transmittance of each film-forming sample was measured.

4.透明導電膜の比抵抗
透明導電膜の膜比抵抗は、共和理研社製、四探針計測器 K-705RSを用いて測定した。
4. Specific resistance of the transparent conductive film The film resistivity of the transparent conductive film was measured using a four-probe measuring instrument K-705RS manufactured by Kyowa Riken Co., Ltd.

[実施例および比較例]
(酸化物焼結体の製造)
In23粉末と、SnO2粉末と、TiO2粉末とを、表1に示した比率で、ボールミルを用いて混合し、混合粉末を調製した。
[Examples and Comparative Examples]
(Manufacturing of oxide sintered body)
The In 2 O 3 powder, the SnO 2 powder, and the TiO 2 powder were mixed at the ratios shown in Table 1 using a ball mill to prepare a mixed powder.

前記混合粉末に、4質量%に希釈したポリビニルアルコールを混合粉末に対して6質量%添加し、乳鉢を用いてポリビニルアルコールを粉末に良く馴染ませ、5.5メッシュの篩に通した。得られた粉末を200kg/cm2の条件で仮プレスし、得られた仮成形体を乳鉢で粉砕した。得られた粉砕粉をプレス用の型に充填し、プレス圧1t/cm2で60秒間成形して、成形体を得た。To the mixed powder, 6% by mass of polyvinyl alcohol diluted to 4% by mass was added to the mixed powder, and the polyvinyl alcohol was well blended into the powder using a mortar and passed through a 5.5 mesh sieve. The obtained powder was temporarily pressed under the condition of 200 kg / cm 2 , and the obtained temporary molded product was pulverized in a mortar. The obtained pulverized powder was filled in a press mold and molded at a press pressure of 1 t / cm 2 for 60 seconds to obtain a molded product.

得られた成形体を焼結炉に入れ、炉内に10L/minで酸素をフローさせ、焼成雰囲気を酸素フロー雰囲気とし、昇温速度を350℃/h、焼結温度を1550℃、焼結温度での保持時間を9hとして焼結した。 The obtained molded product is placed in a sintering furnace, oxygen is flowed into the furnace at 10 L / min, the firing atmosphere is an oxygen flow atmosphere, the temperature rise rate is 350 ° C./h, the sintering temperature is 1550 ° C., and sintering. Sintering was performed with the holding time at temperature set to 9 hours.

その後、降温速度100℃/hで冷却し酸化物焼結体を得た。
次に、得られた酸化物焼結体を切削加工し、表面粗さRaが1.0μmである幅210mm、長さ710mm、厚さ6mmのスパッタリングターゲット材を得た。なお、切削加工には#170の砥石を使用した。
前記酸化物焼結体の相対密度および比抵抗を上記方法により測定した。結果を表1に示す。
なお、各実施例および比較例において、各原料粉末を調製する際に計量した各元素の含有率が、得られた酸化物焼結体における各元素の含有率と等しいことを確認した。酸化物焼結体における各元素の含有率は、たとえば、ICP-AES(Inductively Coupled Plasma Atomic Emission Spectroscopy:誘導結合プラズマ発光分光法)により測定することができる。
Then, it was cooled at a temperature lowering rate of 100 ° C./h to obtain an oxide sintered body.
Next, the obtained oxide sintered body was machined to obtain a sputtering target material having a surface roughness Ra of 1.0 μm, a width of 210 mm, a length of 710 mm, and a thickness of 6 mm. A # 170 grindstone was used for cutting.
The relative density and resistivity of the oxide sintered body were measured by the above method. The results are shown in Table 1.
In each Example and Comparative Example, it was confirmed that the content of each element measured when preparing each raw material powder was equal to the content of each element in the obtained oxide sintered body. The content of each element in the oxide sintered body can be measured by, for example, ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy).

(スパッタリングターゲットの製造)
前記スパッタリングターゲット材を、銅製バッキングプレートにIn半田により接合することでスパッタリングターゲットを製造した。
(透明導電膜の製造)
前記スパッタリングターゲットを使用し、以下の条件でスパッタリングを行い、ガラス基板上に膜厚100nmの薄膜を成膜した。
装置:真空機器工業株式会社製EX-3013M
(DCマグネトロンスパッタリング装置)
到達真空度:1.0×10-4Pa未満
スパッタガス:Ar/O2混合ガス
スパッタガス圧力:0.4Pa
酸素流量:0~2.0sccm
基板:ガラス基板(コーニング社製EAGLE XG(登録商標))
基板温度:室温
スパッタリング電力:3W/cm2
なお、各実施例および比較例において、スパッタリングターゲット材に用いられた酸化物焼結体における各元素の含有率が、成膜された透明導電膜における各元素の含有率と等しいことを確認した。透明導電膜における各元素の含有率は、たとえば、ICP-AES(Inductively Coupled Plasma Atomic Emission Spectroscopy:誘導結合プラズマ発光分光法)により測定することができる。
(Manufacturing of sputtering target)
A sputtering target was manufactured by joining the sputtering target material to a copper backing plate with In solder.
(Manufacturing of transparent conductive film)
Using the sputtering target, sputtering was performed under the following conditions to form a thin film having a film thickness of 100 nm on a glass substrate.
Equipment: EX-3013M manufactured by Vacuum Equipment Industry Co., Ltd.
(DC magnetron sputtering equipment)
Ultimate vacuum: 1.0 x 10 -4 Pa or less Spatter gas: Ar / O 2 mixed gas Spatter gas pressure: 0.4 Pa
Oxygen flow rate: 0-2.0 sccm
Substrate: Glass substrate (EAGLE XG (registered trademark) manufactured by Corning Inc.)
Substrate temperature: Room temperature Sputtering power: 3 W / cm 2
In each Example and Comparative Example, it was confirmed that the content of each element in the oxide sintered body used for the sputtering target material was equal to the content of each element in the film-formed transparent conductive film. The content of each element in the transparent conductive film can be measured by, for example, ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy).

得られた薄膜を大気中、125℃で1時間熱処理して、透明導電膜を製造した。
前記薄膜および透明導電膜の波長350nmおよび550nmにおける光透過率、透明導電膜の比抵抗を上記方法により測定した。光透過率および比抵抗の結果を表1に示す。
比抵抗については、従来のITO薄膜である比較例1で得られた透明導電膜(In23:SnO2=90:10(質量比))の比抵抗 4.8×10-4Ωcm(以下、基準比抵抗という)と比較して評価を行い、比抵抗が基準比抵抗の1.0倍未満であった透明導電膜を「A」、比抵抗が基準比抵抗の1.0倍以上1.1倍未満であった透明導電膜を「B」、比抵抗が基準比抵抗の1.1倍以上1.2倍未満であった透明導電膜を「C」、比抵抗が基準比抵抗の1.2倍以上であった透明導電膜を「D」と評価した。
The obtained thin film was heat-treated in the air at 125 ° C. for 1 hour to produce a transparent conductive film.
The light transmittance and the specific resistance of the transparent conductive film at wavelengths of 350 nm and 550 nm of the thin film and the transparent conductive film were measured by the above methods. The results of light transmittance and specific resistance are shown in Table 1.
Regarding the specific resistance, the specific resistance of the transparent conductive film (In 2 O 3 : SnO 2 = 90:10 (mass ratio)) obtained in Comparative Example 1 which is a conventional ITO thin film is 4.8 × 10 -4 Ωcm ( (Hereinafter referred to as reference resistivity), the transparent conductive film having a specific resistance less than 1.0 times the reference specific resistance is "A", and the specific resistance is 1.0 times or more the reference specific resistance. "B" is the transparent conductive film that was less than 1.1 times, "C" is the transparent conductive film whose specific resistance is 1.1 times or more and less than 1.2 times the reference specific resistance, and the specific resistance is the reference specific resistance. The transparent conductive film which was 1.2 times or more of the above was evaluated as "D".

また、実施例15において、スパッタリングにより得られた薄膜およびこの薄膜を125℃で熱処理することにより得られた透明導電膜の波長300nm~800nmの範囲における光透過率を図1に、実施例15および比較例1,3において、スパッタリングにより得られた薄膜を125℃で熱処理した透明導電膜の波長300nm~800nmの範囲における光透過率を図2に示す。図1において「as-depo」は、熱処理していないことを意味する。 Further, in Example 15, the light transmittance of the thin film obtained by sputtering and the transparent conductive film obtained by heat-treating the thin film at 125 ° C. in the wavelength range of 300 nm to 800 nm is shown in FIG. In Comparative Examples 1 and 3, the light transmittance of the transparent conductive film obtained by heat-treating the thin film obtained by sputtering at 125 ° C. in the wavelength range of 300 nm to 800 nm is shown in FIG. In FIG. 1, “as-depo” means that the heat treatment has not been performed.

Figure 0007086080000002
Figure 0007086080000002

Claims (7)

構成元素がIn、Sn、TiおよびOであり、Inの含有比率がIn23換算で90.0~96.0質量%であり、Snの含有比率がSnO2換算で2.0~8.0質量%であり、Tiの含有比率がTiO2換算で1.5~2.0質量%であり、相対密度が95%以上である、酸化物焼結体。 The constituent elements are In, Sn, Ti and O, the content ratio of In is 90.0 to 96.0 % by mass in terms of In 2 O 3 , and the content ratio of Sn is 2.0 to 8 in terms of Sn O 2 . An oxide sintered body having a Ti content of 1.0 % by mass, a Ti content ratio of 1.5 to 2.0 % by mass in terms of TiO 2 , and a relative density of 95% or more . 比抵抗が5.0×10-4Ωcm以下である請求項1に記載の酸化物焼結体。 The oxide sintered body according to claim 1, wherein the specific resistance is 5.0 × 10 -4 Ωcm or less. 請求項1または2に記載の酸化物焼結体からなるスパッタリングターゲット材。 A sputtering target material made of the oxide sintered body according to claim 1 or 2 . 請求項に記載のスパッタリングターゲット材を基材に接合してなるスパッタリングターゲット。 A sputtering target obtained by joining the sputtering target material according to claim 3 to a base material. 構成元素としてIn、Sn、TiおよびOを有し、Inの含有比率がIn23換算で90.0~96.0質量%であり、Snの含有比率がSnO2換算で2.0~8.0質量%であり、Tiの含有比率がTiO2換算で1.5~2.0質量%である透明導電膜。 It has In, Sn, Ti and O as constituent elements, the content ratio of In is 90.0 to 96.0 % by mass in terms of In 2 O 3 , and the content ratio of Sn is 2.0 to 2 in terms of Sn O 2. A transparent conductive film having a Ti content of 8.0 % by mass and a Ti content of 1.5 to 2.0 % by mass in terms of TIO 2 . 膜厚100nmで製膜し、大気中125℃で1時間熱処理したのときの、比抵抗が4.8×10When a film was formed with a film thickness of 100 nm and heat-treated at 125 ° C in the air for 1 hour, the specific resistance was 4.8 × 10. -4-Four Ωcm未満であり、波長350nmにおける光透過率が72.1%以上である、It is less than Ω cm and has a light transmittance of 72.1% or more at a wavelength of 350 nm.
請求項5に記載の透明導電膜。The transparent conductive film according to claim 5.
請求項に記載のスパッタリングターゲットをスパッタリングすることにより成膜された薄膜を110~145℃にて加熱処理する透明導電膜の製造方法。 A method for producing a transparent conductive film in which a thin film formed by sputtering a sputtering target according to claim 4 is heat-treated at 110 to 145 ° C.
JP2019535024A 2017-08-08 2018-07-02 Oxide sintered body and sputtering target Active JP7086080B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017153043 2017-08-08
JP2017153043 2017-08-08
PCT/JP2018/025106 WO2019031105A1 (en) 2017-08-08 2018-07-02 Oxide sintered compact and sputtering target

Publications (2)

Publication Number Publication Date
JPWO2019031105A1 JPWO2019031105A1 (en) 2020-07-09
JP7086080B2 true JP7086080B2 (en) 2022-06-17

Family

ID=65271197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019535024A Active JP7086080B2 (en) 2017-08-08 2018-07-02 Oxide sintered body and sputtering target

Country Status (5)

Country Link
JP (1) JP7086080B2 (en)
KR (1) KR102375637B1 (en)
CN (1) CN110741106A (en)
TW (1) TWI778100B (en)
WO (1) WO2019031105A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7214063B1 (en) * 2021-12-28 2023-01-27 三井金属鉱業株式会社 Oxide sintered body, manufacturing method thereof, and sputtering target material
CN114620996A (en) * 2022-02-23 2022-06-14 洛阳晶联光电材料有限责任公司 High-efficiency rotary ceramic target for solar cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246570A (en) 2012-07-06 2012-12-13 Nitto Denko Corp Transparent conductive film, method of manufacturing the same, and touch panel with the same
JP2017071850A (en) 2014-05-20 2017-04-13 日東電工株式会社 Transparent conductive film

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726752B2 (en) 1974-09-17 1982-06-07
JPH04277408A (en) 1991-03-01 1992-10-02 Kojundo Chem Lab Co Ltd Transparent electrode
JP3827334B2 (en) * 1993-08-11 2006-09-27 東ソー株式会社 ITO sintered body and sputtering target
JP3629333B2 (en) * 1996-03-27 2005-03-16 帝人株式会社 Transparent conductive laminate for touch panel and manufacturing method thereof
JPH09262926A (en) * 1996-03-27 1997-10-07 Teijin Ltd Transparent conductive laminate for touch panel and its production
JP2000238178A (en) * 1999-02-24 2000-09-05 Teijin Ltd Transparent conductive laminate
TW570909B (en) * 2001-06-26 2004-01-11 Mitsui Mining & Smelting Co Sputtering target for forming transparent conductive film of high electric resistance and method for producing transparent conductive film of high electric resistance
JP3785109B2 (en) * 2002-04-08 2006-06-14 日東電工株式会社 Method for producing transparent conductive laminate
KR20120070597A (en) * 2009-11-19 2012-06-29 가부시키가이샤 아루박 Manufacturing method and device for transparent conductive film, sputtering target and transparent conductive film
JP5301021B2 (en) * 2011-09-06 2013-09-25 出光興産株式会社 Sputtering target
JP6261987B2 (en) * 2013-01-16 2018-01-17 日東電工株式会社 Transparent conductive film and method for producing the same
CN103510047A (en) * 2013-10-21 2014-01-15 研创应用材料(赣州)有限公司 Method for preparing novel conductive indium tin oxide material and film thereof
KR20160146638A (en) * 2014-04-30 2016-12-21 닛토덴코 가부시키가이샤 Transparent electroconductive film
JP5876172B1 (en) * 2014-10-06 2016-03-02 Jx金属株式会社 Oxide sintered body, oxide sputtering target, conductive oxide thin film, and method for producing oxide sintered body
JP5735190B1 (en) * 2015-01-22 2015-06-17 Jx日鉱日石金属株式会社 Oxide sintered body, sputtering target, and oxide thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246570A (en) 2012-07-06 2012-12-13 Nitto Denko Corp Transparent conductive film, method of manufacturing the same, and touch panel with the same
JP2017071850A (en) 2014-05-20 2017-04-13 日東電工株式会社 Transparent conductive film

Also Published As

Publication number Publication date
KR102375637B1 (en) 2022-03-17
CN110741106A (en) 2020-01-31
JPWO2019031105A1 (en) 2020-07-09
WO2019031105A1 (en) 2019-02-14
TW201910539A (en) 2019-03-16
KR20200008583A (en) 2020-01-28
TWI778100B (en) 2022-09-21

Similar Documents

Publication Publication Date Title
JP6621422B2 (en) Production method of transparent alumina sintered body
JP6278229B2 (en) Sputtering target for forming transparent oxide film and method for producing the same
JP7086080B2 (en) Oxide sintered body and sputtering target
JP2006022373A (en) Method for manufacturing sputtering target for preparing transparent conductive thin film
TWI592383B (en) Indium oxide-based oxide sintering article and method for producing the same
JP6267297B1 (en) Sintered body, sputtering target and manufacturing method thereof
JP6677058B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
JP6453528B1 (en) Sputtering target for transparent conductive film
JP6582698B2 (en) Oxide sintered body and sputtering target
WO2020044798A1 (en) Oxide sputtering target and production method for oxide sputtering target
JP6453990B2 (en) Sintered body, sputtering target and manufacturing method thereof
JP6885038B2 (en) Oxide sintered body, its manufacturing method and sputtering target
JP7203088B2 (en) Oxide sintered body, sputtering target and transparent conductive film
WO2021111970A1 (en) Oxide sputtering target and oxide sputtering target production method
JP6520523B2 (en) Oxide sintered body, method for producing the same, and sputtering target
JP6722736B2 (en) Sintered body and sputtering target
JP6155919B2 (en) Composite oxide sintered body and oxide transparent conductive film
KR20170142169A (en) ITO sputtering target material
WO2021112006A1 (en) Oxide sputtering target, and method for producing oxide sputtering target
JP2021091963A (en) Oxide sputtering target, and method for producing oxide sputtering target
JP2007238365A (en) Oxide sintered compact, its manufacturing method, sputtering target and transparent conductive film
JP2023124649A (en) Sputtering target member and method for producing sputtering target member
WO2017183263A1 (en) Oxide sintered body, sputtering target, and methods for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220607

R150 Certificate of patent or registration of utility model

Ref document number: 7086080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150