JP5876172B1 - Oxide sintered body, oxide sputtering target, conductive oxide thin film, and method for producing oxide sintered body - Google Patents

Oxide sintered body, oxide sputtering target, conductive oxide thin film, and method for producing oxide sintered body Download PDF

Info

Publication number
JP5876172B1
JP5876172B1 JP2015012019A JP2015012019A JP5876172B1 JP 5876172 B1 JP5876172 B1 JP 5876172B1 JP 2015012019 A JP2015012019 A JP 2015012019A JP 2015012019 A JP2015012019 A JP 2015012019A JP 5876172 B1 JP5876172 B1 JP 5876172B1
Authority
JP
Japan
Prior art keywords
oxide
sintered body
film
sputtering
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015012019A
Other languages
Japanese (ja)
Other versions
JP2016074579A (en
Inventor
淳史 奈良
淳史 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2015012019A priority Critical patent/JP5876172B1/en
Priority to TW104127113A priority patent/TWI537404B/en
Priority to KR1020150139701A priority patent/KR101668963B1/en
Priority to CN201510646309.2A priority patent/CN105481352A/en
Priority to CN201811061549.6A priority patent/CN109437856A/en
Application granted granted Critical
Publication of JP5876172B1 publication Critical patent/JP5876172B1/en
Publication of JP2016074579A publication Critical patent/JP2016074579A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

【課題】相対密度が高く体積抵抗率が低く、DCスパッタリングが可能であり、高透過率かつ高屈折率でアモルファスの導電性酸化物薄膜を形成するのに適した酸化物焼結体スパッタリングターゲットの提供。【解決手段】インジウム(In)、チタン(Ti)、亜鉛(Zn)、錫(Sn)、及び、酸素(O)からなり、Tiに対するInの含有量が原子数比で3.0≦In/Ti≦5.0、InとTiに対するZnとSnの含有量が原子数比で0.2≦(Zn+Sn)/(In+Ti)≦1.5、Snに対するZnの含有量が原子数比で0.5≦Zn/Sn≦7.0、の関係式を満たす酸化物焼結体。相対密度が90%以上であり、体積抵抗率が10Ωcm以下であり、波長550nmにおける屈折率が2.05以上であり、波長405nmにおける消衰係数が0.05以下である複合酸化物膜。【選択図】図1An oxide sintered sputtering target suitable for forming an amorphous conductive oxide thin film with a high relative density and a low volume resistivity, capable of DC sputtering, and having a high transmittance and a high refractive index. Provided. Indium (In), titanium (Ti), zinc (Zn), tin (Sn), and oxygen (O), the content of In with respect to Ti is 3.0 ≦ In / Ti ≦ 5.0, the content of Zn and Sn with respect to In and Ti is 0.2 ≦ (Zn + Sn) / (In + Ti) ≦ 1.5 in atomic ratio, and the content of Zn with respect to Sn is 0.1 in atomic ratio. An oxide sintered body satisfying a relational expression of 5 ≦ Zn / Sn ≦ 7.0. A complex oxide film having a relative density of 90% or more, a volume resistivity of 10 Ωcm or less, a refractive index at a wavelength of 550 nm of 2.05 or more, and an extinction coefficient of 405 nm or less. [Selection] Figure 1

Description

本発明は、酸化物焼結体、酸化物スパッタリングターゲット及び導電性酸化物薄膜並びに酸化物焼結体の製造方法に関し、特に、高透過率かつ高屈折率でアモルファスの導電性酸化物薄膜を形成するのに適した酸化物焼結体スパッタリングターゲットに関する。   The present invention relates to an oxide sintered body, an oxide sputtering target, a conductive oxide thin film, and a method for producing an oxide sintered body, and in particular, forms an amorphous conductive oxide thin film with high transmittance and high refractive index. It is related with the oxide sintered compact sputtering target suitable for carrying out.

ディスプレイやタッチパネル等の各種光デバイスにおいて可視光を利用する場合、使用する材料は透明である必要があり、特に、可視光領域の全域において、高い透過率をもつことが望まれる。また、各種光デバイスでは、構成される膜材料や基板との界面での屈折率差による光損失が生じることがあり、これらの光損失を改善する方法として、屈折率や光学膜厚調整のための光学調整膜を導入するという方法がある。光学調整膜に求められる屈折率は、各種デバイスの構造によって異なるため、幅広い範囲の屈折率が必要とされる。また、使用される場所によっては、導電性が必要とされることもある。   When using visible light in various optical devices such as displays and touch panels, the material used needs to be transparent, and in particular, it is desired to have a high transmittance in the entire visible light region. In addition, optical loss may occur in various optical devices due to the difference in refractive index at the interface between the film material and the substrate, and as a method to improve these optical losses, the refractive index and optical film thickness adjustment There is a method of introducing an optical adjustment film. Since the refractive index required for the optical adjustment film varies depending on the structure of various devices, a wide range of refractive index is required. Moreover, depending on the place used, electrical conductivity may be required.

また、光学調整に必要とされる特性として、従来は、屈折率や消衰係数(高透過率)が主であったが、近年では、更なる高性能化のために、屈折率や消衰係数(高透過率)の他にも、導電性やエッチング性(エッチング可能)、耐水性、アモルファス膜といった、複数の特性の共存が求められている。このような複数の特性を共存させるためには、単体の酸化物膜では難しく、複数の酸化物を混合させた複合酸化物膜が必要である。特に、三元系以上の酸化物を混合させた複合酸化物膜が有効である。 Conventionally, the refractive index and extinction coefficient (high transmittance) have been mainly used as the characteristics required for the optical adjustment film. In addition to the attenuation coefficient (high transmittance), coexistence of a plurality of characteristics such as conductivity, etching property (etchable), water resistance, and amorphous film is required. In order to make such a plurality of characteristics coexist, it is difficult to use a single oxide film, and a complex oxide film in which a plurality of oxides are mixed is necessary. In particular, a composite oxide film in which an oxide of a ternary system or higher is mixed is effective.

一般に透明で導電性のある材料としては、ITO(酸化インジウム−酸化錫)、IZO(酸化インジウム−酸化亜鉛)、GZO(酸化ガリウム−酸化亜鉛)、AZO(酸化アルミニウム−酸化亜鉛)などが知られている。しかし、これらの材料は波長550nmにおける屈折率が1.95〜2.05程度の範囲に収まるものであり、光学調整のための高屈折率材(n>2.05)としては使用できない。また、ITOは、透過率を高めるために、成膜時に基板加熱するか、又は、成膜後にアニールが必要となるため、加熱できないプラスチック基板や有機ELデバイス用途などへの使用は難しいという問題がある。また、IZOは、短波長側に吸収をもつため、黄色を帯びた膜となってしまうという問題がある。  In general, ITO (indium oxide-tin oxide), IZO (indium oxide-zinc oxide), GZO (gallium oxide-zinc oxide), AZO (aluminum oxide-zinc oxide) and the like are known as transparent and conductive materials. ing. However, these materials have a refractive index in the range of about 1.95 to 2.05 at a wavelength of 550 nm, and cannot be used as a high refractive index material (n> 2.05) for optical adjustment. In addition, in order to increase the transmittance, ITO needs to be heated at the time of film formation or annealed after the film formation. is there. In addition, since IZO has absorption on the short wavelength side, there is a problem that it becomes a yellowish film.

このような問題に対して、本発明者は以前、組成調整した酸化物焼結体スパッタリングターゲットを用いて、高透過率かつ高屈折率の導電性アモルファス薄膜を形成することに成功した(特許文献1)。ところが研究を進めたところ、組成範囲の中には得られた薄膜が結晶化膜となる組成範囲を含んでおり、フレキシブルデバイスとして使用する場合や水分からの保護が必要な場合は、このような結晶化膜は適さないことがあった。なお、薄膜の用途によっては、結晶化膜である方が好ましい場合もあり、特許文献2では、薄膜トランジスタ用の場合、非晶質膜では安定した膜が得られないとされている。また従来では、透明導電膜としての広い組成範囲が知られていても(例えば、特許文献3)、膜の結晶質性についてまで、特に意識されることはなかった。  In response to such a problem, the present inventors have succeeded in forming a conductive amorphous thin film having a high transmittance and a high refractive index by using an oxide sintered sputtering target whose composition has been adjusted (Patent Document). 1). However, as a result of research, the composition range includes a composition range in which the obtained thin film becomes a crystallized film. When used as a flexible device or when protection from moisture is necessary, A crystallized film may not be suitable. Depending on the use of the thin film, a crystallized film may be preferable, and Patent Document 2 states that a stable film cannot be obtained with an amorphous film in the case of a thin film transistor. Conventionally, even if a wide composition range as a transparent conductive film is known (for example, Patent Document 3), there was no particular concern about the crystallinity of the film.

特願2013−220805Japanese Patent Application No. 2013-220805 国際公開WO2012/153507号International Publication WO2012 / 153507 特許第4994068号Japanese Patent No. 4999468 国際公開WO2010/058533号International Publication WO2010 / 058533

本発明は、可視光の高透過率と高屈折率を実現できる、導電性薄膜を得ることが可能な焼結体を提供することを課題とする。この薄膜は、透過率が高く、且つ、屈折率が高いため、ディスプレイやタッチパネルなどの光デバイス用の薄膜、特に光学調整用の薄膜として有用である。また、本発明は、相対密度が高く、体積抵抗率が低く、DCスパッタリングが可能なスパッタリングターゲットを提供することを課題とする。本発明は、光デバイスの特性の向上、設備コストの低減化、成膜の特性を大幅に改善することを目的とする。   It is an object of the present invention to provide a sintered body capable of obtaining a conductive thin film capable of realizing a high visible light transmittance and a high refractive index. Since this thin film has a high transmittance and a high refractive index, it is useful as a thin film for optical devices such as displays and touch panels, particularly as a thin film for optical adjustment. Another object of the present invention is to provide a sputtering target having a high relative density, a low volume resistivity, and capable of DC sputtering. An object of the present invention is to improve the characteristics of optical devices, reduce equipment costs, and greatly improve the characteristics of film formation.

上記の課題を解決するために、本発明者らは鋭意研究を行った結果、下記に提示する材料系を採用することで、高透過率かつ高屈折率の導電性、薄膜を得ることが可能となり、良好な光学特性を確保することができ、さらには、DCスパッタリングによる安定的な成膜が可能であり、該薄膜を使用する光デバイスの特性改善、生産性向上が可能であるとの知見を得た。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, by adopting the material system shown below, it is possible to obtain a highly transparent and high-conductivity conductive thin film. Knowledge that good optical characteristics can be secured, and further, stable film formation by DC sputtering is possible, and characteristics of optical devices using the thin film can be improved and productivity can be improved. Got.

本発明者はこの知見に基づき、下記の発明を提供する。
1)インジウム(In)、チタン(Ti)、亜鉛(Zn)、錫(Sn)、及び、酸素(O)からなり、Tiに対するInの含有量が原子数比で3.0≦In/Ti≦5.0、InとTiに対するZnとSnの含有量が原子数比で0.2≦(Zn+Sn)/(In+Ti)≦1.5、Snに対するZnの含有量が原子数比で0.5≦ Zn/Sn≦7.0、の関係式を満たすことを特徴とする酸化物焼結体。
2)相対密度が90%以上であることを特徴とする上記1)記載の酸化物焼結体。
3)体積抵抗率が10Ωcm以下であることを特徴とする上記1)又は2)記載の酸化物焼結体。
4)インジウム(In)、チタン(Ti)、亜鉛(Zn)、錫(Sn)、及び、酸素(O)からなり、Tiに対するInの含有量が原子数比で3.0≦In/Ti≦5.0、InとTiに対するZnとSnの含有量が原子数比で0.2≦(Zn+Sn)/(In+Ti)≦1.5、Snに対するZnの含有量が原子数比で0.5≦ Zn/Sn≦7.0、の関係式を満たすことを特徴とする膜。
5)波長550nmにおける屈折率が2.05以上であることを特徴とする上記4)記載の膜。
6)波長405nmにおける消衰係数が0.05以下であることを特徴とする上記4)又は5)記載の膜。
7)体積抵抗率が1MΩcm以下であることを特徴とする上記4)〜6)のいずれか一に記載の膜。
8)アモルファスであることを特徴とする上記4)〜7)のいずれか一に記載の膜。
9)上記1)〜3)のいずれか一に記載の酸化物焼結体の製造方法であって、原料粉末を不活性ガス又は真空雰囲気の下、900℃以上1300℃以下で加圧焼結するか又は原料粉末をプレス成形した後、この成形体を不活性ガス又は真空雰囲気の下、1000℃以上1500℃以下で常圧焼結することを特徴とする酸化物焼結体の製造方法。
Based on this finding, the present inventor provides the following invention.
1) It consists of indium (In), titanium (Ti), zinc (Zn), tin (Sn), and oxygen (O), and the content of In with respect to Ti is 3.0 ≦ In / Ti ≦ 5.0, the content of Zn and Sn with respect to In and Ti is 0.2 ≦ (Zn + Sn) / (In + Ti) ≦ 1.5 in atomic ratio, and the content of Zn with respect to Sn is 0.5 ≦ in atomic ratio An oxide sintered body satisfying a relational expression of Zn / Sn ≦ 7.0.
2) The oxide sintered body according to 1) above, wherein the relative density is 90% or more.
3) The oxide sintered body according to 1) or 2) above, wherein the volume resistivity is 10 Ωcm or less.
4) It consists of indium (In), titanium (Ti), zinc (Zn), tin (Sn), and oxygen (O), and the content of In with respect to Ti is 3.0 ≦ In / Ti ≦ 5.0, the content of Zn and Sn with respect to In and Ti is 0.2 ≦ (Zn + Sn) / (In + Ti) ≦ 1.5 in atomic ratio, and the content of Zn with respect to Sn is 0.5 ≦ in atomic ratio A film satisfying a relational expression of Zn / Sn ≦ 7.0.
5) The film according to 4) above, wherein the refractive index at a wavelength of 550 nm is 2.05 or more.
6) The film according to 4) or 5) above, wherein the extinction coefficient at a wavelength of 405 nm is 0.05 or less.
7) The film according to any one of 4) to 6) above, wherein the volume resistivity is 1 MΩcm or less.
8) The film according to any one of 4) to 7) above, which is amorphous.
9) The method for producing an oxide sintered body according to any one of 1) to 3) above, wherein the raw material powder is subjected to pressure sintering at 900 ° C. or higher and 1300 ° C. or lower in an inert gas or vacuum atmosphere. Or after the raw material powder is press-molded, the compact is subjected to atmospheric pressure sintering at 1000 ° C. or higher and 1500 ° C. or lower in an inert gas or vacuum atmosphere.

本発明によれば、上記に示す材料系を採用することにより、高透過率かつ高屈折率の導電性膜(特に、アモルファス膜)を得ることが可能となり、所望の光学特性を確保することができると共に、良好なエッチング性や高温高湿耐性を確保することができる。また、本発明は、各種光デバイスの特性の向上、設備コストの低減化、成膜速度の向上による生産性の大幅な改善という優れた効果を有する。  According to the present invention, by adopting the material system shown above, it becomes possible to obtain a conductive film (especially an amorphous film) having a high transmittance and a high refractive index, and to secure desired optical characteristics. In addition, good etching properties and high temperature and high humidity resistance can be secured. Further, the present invention has excellent effects such as improvement of characteristics of various optical devices, reduction of equipment cost, and significant improvement of productivity due to improvement of film formation speed.

本発明のスパッタリングで形成した膜のX線回折スペクトルを示す図である。It is a figure which shows the X-ray-diffraction spectrum of the film | membrane formed by sputtering of this invention.

本発明の酸化物焼結体は、インジウム(In)、チタン(Ti)、亜鉛(Zn)、錫(Sn)、及び、酸素(O)からなり、Tiに対するInの含有量が原子数比で3.0≦In/Ti≦5.0、InとTiに対するZnとSnの含有量が原子数比で0.2≦(Zn+Sn)/(In+Ti)≦1.5、Snに対するZnの含有量が原子数比で0.5≦ Zn/Sn≦7.0、の関係式を満たすことを特徴とするものである。
この酸化物焼結体からなるスパッタリングターゲットを用いることにより、高透過率かつ高屈折率であって、アモルファスの導電性酸化物膜を得ることができる。なお、本発明の材料は、インジウム(In)、チタン(Ti)、亜鉛(Zn)、錫(Sn)、及び、酸素(O)、を構成元素とするが、該材料中には、不可避的不純物も含まれる。
The oxide sintered body of the present invention is composed of indium (In), titanium (Ti), zinc (Zn), tin (Sn), and oxygen (O), and the content of In with respect to Ti is in atomic ratio. 3.0 ≦ In / Ti ≦ 5.0, the content of Zn and Sn with respect to In and Ti is 0.2 ≦ (Zn + Sn) / (In + Ti) ≦ 1.5 in atomic ratio, and the content of Zn with respect to Sn It is characterized by satisfying the relational expression of 0.5 ≦ Zn / Sn ≦ 7.0 in atomic ratio.
By using a sputtering target made of this oxide sintered body, an amorphous conductive oxide film having high transmittance and high refractive index can be obtained. Note that the material of the present invention contains indium (In), titanium (Ti), zinc (Zn), tin (Sn), and oxygen (O) as constituent elements, but this material is unavoidable. Impurities are also included.

In−Ti−Zn−O(酸化インジウム−酸化チタン−酸化亜鉛)の膜は、良導電性を有する組成領域では結晶化し易く、また、スパッタリング時(酸素導入あり)に高透過率化と低抵抗化が相反する特性となって、特性調整が難しいという問題がある。ZnOの含有量が多い場合、ZnOの酸素欠損による導電性が主であるが、この酸素欠損は導電性を発現させる(低抵抗化する)一方で、光吸収を生じさせてしまう(低透過率化)ためである。しかし、この系に所定の割合の錫(Sn)を添加することにより、IZTOのホモロガス構造を形成(結晶化)しようとするものの、スパッタリングのような急冷成膜の下では結晶化せず、アモルファス化することができる。また、このような錫の添加は、高透過率化と低抵抗化を両立させることができるため、特性の調整が容易になる。これは、錫添加によって上述した導電性機構が変化したためと考えられる。
さらに、所定の割合の錫添加は、良好なエッチング性や高温高湿耐性を付与するという副次的な作用効果を有する。
An In-Ti-Zn-O (indium oxide-titanium oxide-zinc oxide) film is easily crystallized in a composition region having good conductivity, and has high transmittance and low resistance during sputtering (with oxygen introduced). However, there is a problem that it is difficult to adjust the characteristics. When the content of ZnO is large, the conductivity due to oxygen vacancies in ZnO is mainly, but this oxygen vacancies develop conductivity (lower resistance), while causing light absorption (low transmittance). For). However, by adding a predetermined proportion of tin (Sn) to this system, the homologous structure of IZTO is to be formed (crystallized). Can be Further, such addition of tin makes it possible to achieve both high transmittance and low resistance, so that the adjustment of characteristics becomes easy. This is presumably because the above-described conductivity mechanism was changed by the addition of tin.
Furthermore, the addition of a predetermined proportion of tin has a secondary effect of imparting good etching properties and high temperature and high humidity resistance.

本発明において、Tiに対するInの含有量を原子数比で3.0≦In/Ti≦5.0の関係式を満たすようにする。この範囲を超えると、所望の光学的、電気的特性が得られず、特に、原子数比In/Tiが3.0未満であると高抵抗となり、一方、原子数比In/Tiが5.0を超えると光吸収が大きくなるとともに、高屈折率が得られないという問題がある。但し、上記の範囲を超える場合でもあっても、Tiに対するInの含有量が原子数比で2.5≦In/Ti≦7.0であれば、比較的良好な光学的、電気的特性が得られる。  In the present invention, the content of In with respect to Ti is set to satisfy the relational expression of 3.0 ≦ In / Ti ≦ 5.0 in terms of the atomic ratio. If this range is exceeded, the desired optical and electrical characteristics cannot be obtained. In particular, if the atomic ratio In / Ti is less than 3.0, the resistance becomes high, while the atomic ratio In / Ti is 5. If it exceeds 0, there are problems that light absorption increases and a high refractive index cannot be obtained. However, even if the above range is exceeded, if the In content relative to Ti is 2.5 ≦ In / Ti ≦ 7.0 in terms of the number of atoms, relatively good optical and electrical characteristics can be obtained. can get.

また、本発明において、InとTiの合計含有量に対するZnとSnの合計含有量を原子数比で0.1≦(Zn+Sn)/(In+Ti)≦3.0の関係式を満たすようにする。この範囲を超えると所望の光学的、電気的特性が得られないため好ましくない。特に、原子数比(Zn+Sn)/(In+Ti)が0.1未満であると高抵抗という問題があり、一方、原子数比(Zn+Sn)/(In+Ti)が3.0を超えると、膜が結晶化してしまい、また、光吸収が大きくなるという問題がある。但し、上記の範囲を超える場合でもあっても、InとTiの合計含有量に対するZnとSnの合計含有量を原子数比で0.1≦(Zn+Sn)/(In+Ti)≦3.5であれば、比較的良好な光学的、電気的特性が得られる。 In the present invention, the total content of Zn and Sn with respect to the total content of In and Ti is made to satisfy the relational expression of 0.1 ≦ (Zn + Sn) / (In + Ti) ≦ 3.0 in terms of the atomic ratio. Exceeding this range is not preferable because desired optical and electrical characteristics cannot be obtained. In particular, when the atomic ratio (Zn + Sn) / (In + Ti) is less than 0.1 , there is a problem of high resistance. On the other hand, when the atomic ratio (Zn + Sn) / (In + Ti) exceeds 3.0, the film is crystallized. In addition, there is a problem that light absorption increases. However, even if the above range is exceeded, the total content of Zn and Sn with respect to the total content of In and Ti should be 0.1 ≦ (Zn + Sn) / (In + Ti) ≦ 3.5 in terms of atomic ratio. Thus, relatively good optical and electrical characteristics can be obtained.

さらに、本発明において、Snに対するZnの含有量を原子数比で0.5≦ Zn/Sn≦7.0の関係式を満たすようにする。この範囲を超えると、所望の光学的、電気的特性が得られないため好ましくない。特に、原子数比Zn/Snが0.5未満であると高抵抗となり、一方、原子数比Zn/Snが7.0を超えると、膜が結晶化してしまい、また、光吸収が大きくなるという問題がある。但し、上記の範囲を超える場合でもあっても、Snに対するZnの含有量を原子数比で0.1≦ Zn/Sn≦10.0であれば、比較的良好な光学的、電気的特性が得られる。  Furthermore, in the present invention, the Zn content with respect to Sn is made to satisfy the relational expression of 0.5 ≦ Zn / Sn ≦ 7.0 in terms of the atomic ratio. Exceeding this range is not preferable because desired optical and electrical characteristics cannot be obtained. In particular, when the atomic ratio Zn / Sn is less than 0.5, the resistance becomes high. On the other hand, when the atomic ratio Zn / Sn exceeds 7.0, the film crystallizes and the light absorption increases. There is a problem. However, even if the above range is exceeded, if the Zn content with respect to Sn is 0.1 ≦ Zn / Sn ≦ 10.0 in terms of the atomic ratio, relatively good optical and electrical characteristics can be obtained. can get.

本発明の焼結体は、インジウム(In)、チタン(Ti)、亜鉛(Zn)、及び、錫(Sn)が上記の原子数比を満たすことを特徴とするものであるが、各成分の含有量は、In含有量がIn換算で5〜50mol%、Ti含有量がTiO換算で4〜40mol%、Zn含有量がZnO換算で4〜60mol%、Sn含有量がSnO換算で5〜40mol%とするのが好ましい。このような組成範囲の焼結体ターゲットは、優れた光学的特性や電気的特性の導電性薄膜を得るのに有効である。なお、上記では、焼結体中の各金属の含有量を酸化物換算で記載しているが、これは原料の配合を酸化物で調整するのに都合が良いからである。また、通常の分析装置においては、酸化物ではなく各金属元素の含有量(重量%)が特定可能である。したがって、ターゲットの各組成を特定するには、各金属元素の含有量を、各酸化物を想定して換算した量(mol%)で特定すればよい。 The sintered body of the present invention is characterized in that indium (In), titanium (Ti), zinc (Zn), and tin (Sn) satisfy the above atomic ratio, Content: In content is 5 to 50 mol% in terms of In 2 O 3 , Ti content is 4 to 40 mol% in terms of TiO 2 , Zn content is 4 to 60 mol% in terms of ZnO, and Sn content is in terms of SnO 5 to 40 mol% is preferable. A sintered compact target having such a composition range is effective for obtaining a conductive thin film having excellent optical characteristics and electrical characteristics. In the above description, the content of each metal in the sintered body is described in terms of oxide, which is convenient for adjusting the composition of raw materials with oxide. Moreover, in a normal analyzer, the content (% by weight) of each metal element can be specified instead of the oxide. Therefore, in order to specify each composition of a target, what is necessary is just to specify content of each metal element by the quantity (mol%) converted considering each oxide.

本発明の焼結体は、スパッタリングターゲットとして使用する場合、相対密度90%以上とすることが好ましい。密度の向上は、スパッタ膜の均一性を高め、またスパッタ時のパーティクルの発生を抑制することができるという効果を有する。相対密度90%以上は、後述する本発明の焼結体の製造方法により、実現することができる。
また、本発明の焼結体は、スパッタリングターゲットとして使用する場合、体積抵抗率10Ωcm以下とすることが好ましい。体積抵抗率の低下により、DCスパッタによる成膜が可能となる。DCスパッタはRFスパッタに比べて、成膜速度が速く、スパッタリング効率が優れており、スループットを向上できる。なお、製造条件によっては、RFスパッタを行う場合もあるが、その場合でも、成膜速度の向上がある。
When the sintered body of the present invention is used as a sputtering target, the relative density is preferably 90% or more. The improvement in density has the effect of improving the uniformity of the sputtered film and suppressing the generation of particles during sputtering. The relative density of 90% or more can be realized by the method for producing a sintered body of the present invention described later.
Moreover, when using the sintered compact of this invention as a sputtering target, it is preferable to set it as a volume resistivity of 10 ohm-cm or less. Due to the decrease in volume resistivity, film formation by DC sputtering becomes possible. Compared with RF sputtering, DC sputtering is faster in film formation, has better sputtering efficiency, and can improve throughput. Depending on the manufacturing conditions, RF sputtering may be performed, but even in that case, the film formation rate is improved.

本発明のスパッタリングによって作製される薄膜は、アモルファスであることを特徴とする。アモルファス膜は、フレキシブルデバイス用材料や水分低透過率(水分保護)の材料として特に適している。また、本発明の薄膜は、波長550nmにおける屈折率2.05以上を達成することができる。また、本発明の薄膜は、波長405nmにおける消衰係数0.05以下を達成することができる。さらに、本発明の薄膜は、体積抵抗率1MΩcm以下を達成することができる。このような高屈折率で透過率の高い導電性の薄膜は、光学調整用の薄膜として、ディスプレイやタッチパネルなどの光デバイス用に有用である。特に、本発明は、波長405nmにおける消衰係数が0.05以下と可視光の短波長域において吸収がほとんどない高屈折率の膜を得ることができるため、所望の光学特性を得るために優れた材料系といえる。  The thin film produced by sputtering of the present invention is amorphous. The amorphous film is particularly suitable as a material for a flexible device or a material having a low moisture permeability (moisture protection). The thin film of the present invention can achieve a refractive index of 2.05 or more at a wavelength of 550 nm. The thin film of the present invention can achieve an extinction coefficient of 0.05 or less at a wavelength of 405 nm. Furthermore, the thin film of the present invention can achieve a volume resistivity of 1 MΩcm or less. Such a conductive thin film having a high refractive index and a high transmittance is useful for optical devices such as displays and touch panels as a thin film for optical adjustment. In particular, the present invention can obtain a film having a high refractive index having an extinction coefficient of 0.05 or less at a wavelength of 405 nm and almost no absorption in the short wavelength region of visible light, and is excellent for obtaining desired optical characteristics. It can be said that the material system.

本発明の焼結体は、各構成金属の酸化物粉末からなる原料粉末を、不活性ガス雰囲気又は真空雰囲気の下、900℃以上1300℃以下で加圧焼結するか、又は原料粉末をプレス成形した後、この成形体を不活性ガス又は真空雰囲気の下、1000℃以上1500℃以下で常圧焼結することが望ましい。加圧焼結にて900℃未満、常圧焼結にて1000℃未満とすると、高密度の焼結体が得られず、一方、加圧焼結にて1300℃超、常圧焼結にて1500℃超とすると、材料の蒸発による組成ズレや密度の低下が生じるため、好ましくない。また、1300℃超で加圧焼結するとカーボン製の型と反応するおそれもある。プレス圧力は、150〜500kgf/cmとするのが好ましい。なお、特許文献4では、ZnとSnの両方を固溶したIn相を析出させるために2段焼結を行い、それによって、体積抵抗率を下げているが、本発明では、酸素欠損により導電性を付与するため、このような2段階焼結は行わない。
さらに密度を向上させるためには、原料粉末を秤量、混合した後、この混合粉末を仮焼(合成)し、その後、これを微粉砕したものを焼結用粉末として用いることが有効である。このように予め合成と微粉砕を行うことで均一微細な原料粉末を得ることができ、緻密な焼結体を作製することができる。微粉砕後の粒径については、平均粒径5μm以下、好ましくは、平均粒径2μm以下とする。また、仮焼温度は、好ましくは800℃以上1200℃以下とする。このような範囲とすることで、焼結性が良好となり、さらなる高密度化が可能となる。
In the sintered body of the present invention, the raw material powder composed of the oxide powder of each constituent metal is pressure sintered at 900 ° C. or higher and 1300 ° C. or lower in an inert gas atmosphere or a vacuum atmosphere, or the raw material powder is pressed. After molding, it is desirable to perform normal pressure sintering of the compact at 1000 ° C. or higher and 1500 ° C. or lower in an inert gas or vacuum atmosphere. If the pressure sintering is less than 900 ° C. and the pressure sintering is less than 1000 ° C., a high-density sintered body cannot be obtained. If the temperature exceeds 1500 ° C., composition deviation and density decrease due to evaporation of the material occur, which is not preferable. Moreover, when pressure-sintering exceeds 1300 degreeC, there exists a possibility of reacting with the carbon type | molds. The pressing pressure is preferably 150 to 500 kgf / cm 2 . In Patent Document 4, two-stage sintering is performed to precipitate an In 2 O 3 phase in which both Zn and Sn are dissolved, thereby reducing the volume resistivity. Such a two-step sintering is not performed in order to impart conductivity by the defect.
In order to further improve the density, it is effective to weigh and mix the raw material powders, then calcine (synthesize) the mixed powders, and then use the finely pulverized powders as sintering powders. Thus, by carrying out synthesis and pulverization in advance, a uniform fine raw material powder can be obtained, and a dense sintered body can be produced. The particle size after pulverization is set to an average particle size of 5 μm or less, preferably 2 μm or less. The calcining temperature is preferably 800 ° C. or higher and 1200 ° C. or lower. By setting it as such a range, sinterability becomes favorable and further densification becomes possible.

本発明(実施例、比較例を含む)における評価方法等は、以下の通りである。
(成分組成について)
装置:SII社製SPS3500DD
方法:ICP-OES(高周波誘導結合プラズマ発光分析法)
(密度測定について)
寸法測定(ノギス)、重量測定
(相対密度について)
下記、理論密度を用いて算出する。
相対密度(%)=寸法密度/理論密度×100
理論密度は、各金属元素の酸化物換算配合比から計算する。
InのIn換算重量をa(wt%)、TiのTiO換算重量をb(wt%)
ZnのZnO換算重量をc(wt%)、SnのSnO換算重量をd(wt%)
としたとき、
理論密度=100/(a/7.18+b/4.26+c/5.61+d/7.0)
また、各金属元素の酸化物換算密度は下記値を使用。
In:7.18g/cm、TiO:4.26g/cm
ZnO:5.61g/cm、SnO:7.0g/cm
(体積抵抗率、表面抵抗率について)
装置:NPS社製 抵抗率測定器 Σ−5+
方法:直流4探針法
なお、膜については、表面抵抗率を測定し、次式により体積抵抗率を算出する。
体積抵抗率(Ωcm)=表面抵抗率(Ω/sq)×膜厚(cm)
(屈折率、消衰係数について)
装置:SHIMADZU社製 分光光度計 UV−2450
方法:透過率、表裏面反射率から算出
(成膜方法、条件について)
装置:ANELVA SPL−500
基板:φ4inch
基板温度:室温
(結晶性評価について)
ガラス基板上に500〜1000nm成膜したサンプルについて、X線回折法(装置:リガク社製UltimaIV、Cu−Kα線、管電圧:40kV、電流:30mA、2θ−θ反射法、スキャン速度:8.0°/min、サンプリング間隔:0.02°)により解析を行う。2θ=10°〜60°に検出される最大ピーク強度IMAXに対して、バックグランド強度IBGとの比IMAX/IBGの値にて結晶性の評価を行う。なお、バックグランド強度については、IMAXの低角度側および高角度側のピークが観察されない領域の平均強度(範囲として2θ=1°〜10°)を用いる。例えば、IBG={(10°〜20°の平均強度)+(50°〜60°の平均強度)}/2のように求める。アモルファス膜の判定として、IMAX/IBG≦10の場合にアモルファス膜として判定する。
(エッチング性について)
成膜サンプルについて、エッチング液(各種酸)によりエッチング可能なものを〇、エッチングできない若しくは溶解し過ぎるものを×、と判断する。
(高温高湿耐性について)
温度80℃、湿度80%条件下にて、48時間保管後、光学定数及び抵抗測定を実施し、特性差が10%未満の場合には〇、10%以上の場合には×、と判断する。
Evaluation methods and the like in the present invention (including examples and comparative examples) are as follows.
(About component composition)
Device: SPS3500DD manufactured by SII
Method: ICP-OES (High Frequency Inductively Coupled Plasma Atomic Emission Analysis)
(About density measurement)
Dimension measurement (caliper), weight measurement (relative density)
Calculated using the theoretical density below.
Relative density (%) = Dimensional density / Theoretical density × 100
The theoretical density is calculated from the oxide conversion ratio of each metal element.
The In 2 O 3 equivalent weight of In is a (wt%), and the Ti equivalent weight of TiO 2 is b (wt%).
The terms of ZnO by weight of Zn c (wt%), the terms of SnO 2 weight Sn d (wt%)
When
Theoretical density = 100 / (a / 7.18 + b / 4.26 + c / 5.61 + d / 7.0)
In addition, the oxide conversion density of each metal element uses the following values.
In 2 O 3 : 7.18 g / cm 3 , TiO 2 : 4.26 g / cm 3 ,
ZnO: 5.61g / cm 3, SnO 2: 7.0g / cm 3,
(About volume resistivity and surface resistivity)
Apparatus: Resistivity measuring instrument Σ-5 + manufactured by NPS
Method: DC 4-probe method In addition, about a film | membrane, surface resistivity is measured and volume resistivity is computed by following Formula.
Volume resistivity (Ωcm) = surface resistivity (Ω / sq) × film thickness (cm)
(About refractive index and extinction coefficient)
Apparatus: Spectrophotometer UV-2450 manufactured by SHIMADZU
Method: Calculated from transmittance and front and back surface reflectance (deposition method and conditions)
Equipment: ANELVA SPL-500
Substrate: φ4inch
Substrate temperature: Room temperature (for crystallinity evaluation)
For a sample having a thickness of 500 to 1000 nm formed on a glass substrate, an X-ray diffraction method (apparatus: Ultimate IV, Cu-Kα ray, tube voltage: 40 kV, current: 30 mA, 2θ-θ reflection method, scan speed: 8. 0 ° / min, sampling interval: 0.02 °). For the maximum peak intensity I MAX detected at 2θ = 10 ° to 60 °, the crystallinity is evaluated by the value of the ratio I MAX / I BG with the background intensity I BG . As the background intensity, the average intensity (2θ = 1 ° to 10 ° as a range) of a region where peaks at the low angle side and the high angle side of I MAX are not observed is used. For example, I BG = {(average intensity of 10 ° to 20 °) + (average intensity of 50 ° to 60 °)} / 2. The amorphous film is determined as an amorphous film when I MAX / I BG ≦ 10.
(Etching property)
Regarding the film formation samples, those that can be etched with an etching solution (various acids) are judged as ◯, and those that cannot be etched or dissolved too much are judged as x.
(About high temperature and high humidity resistance)
After storage for 48 hours under conditions of temperature 80 ° C. and humidity 80%, optical constants and resistance measurements are carried out. If the characteristic difference is less than 10%, it is judged as “Yes”. .

以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。   Hereinafter, description will be made based on Examples and Comparative Examples. In addition, a present Example is an example to the last, and is not restrict | limited at all by this example. In other words, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.

(実施例1)
In粉、TiO粉、ZnO粉、SnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。次に、この混合粉末を大気中、温度1050℃で仮焼した後、湿式微粉砕(ZrOビーズ使用)にて平均粒径2μm以下に粉砕し、乾燥後、目開き150μmの篩で篩別を行った。その後、この微粉砕粉をアルゴン雰囲気下、温度1100℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。なお、スパッタリングターゲットの成分組成を分析した結果、原料粉末の配合比と同等になることを確認した。
次に、上記の仕上げ加工した直径6インチのターゲットを使用して、スパッタリングを行った。スパッタ条件は、DCスパッタ、スパッタパワー500W、酸素を2vol%含有するArガス圧0.5Paとし、膜厚5000Åに成膜した。なお、スパッタ時の基板加熱やスパッタ後のアニールは行わなかった。
以上の結果を表1に示す。表1に示す通り、スパッタリングターゲットは、相対密度が97.5%に達し、体積抵抗率は6.3mΩcmとなり、安定したDCスパッタができた。そして、スパッタ成膜した薄膜は、屈折率が2.11(波長550nm)、消衰係数が0.03(波長405nm)、体積抵抗率が4.9×10−1Ωcmであり、高屈折率かつ高透過率の導電性膜が得られた。また、結晶化評価の結果、図1に示すように、IMAX/IBG=4であり、アモルファス膜であることが確認された。
Example 1
In 2 O 3 powder, TiO 2 powder, ZnO powder, and SnO 2 powder were prepared, and these powders were blended at a blending ratio shown in Table 1 and mixed. Next, this mixed powder is calcined in the atmosphere at a temperature of 1050 ° C., then pulverized to a mean particle size of 2 μm or less by wet pulverization (using ZrO 2 beads), dried, and sieved with a sieve having an opening of 150 μm. Went. Then, this finely pulverized powder was hot-press sintered under the conditions of a temperature of 1100 ° C. and a pressure of 250 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape. In addition, as a result of analyzing the component composition of a sputtering target, it confirmed that it became equivalent to the compounding ratio of raw material powder.
Next, sputtering was carried out using the above-finished target having a diameter of 6 inches. The sputtering conditions were DC sputtering, sputtering power 500 W, Ar gas pressure 0.5 Pa containing 2 vol% oxygen, and a film thickness of 5000 mm. The substrate was not heated during sputtering or annealed after sputtering.
The results are shown in Table 1. As shown in Table 1, the sputtering target had a relative density of 97.5% and a volume resistivity of 6.3 mΩcm, and stable DC sputtering was possible. The sputtered thin film has a refractive index of 2.11 (wavelength 550 nm), an extinction coefficient of 0.03 (wavelength 405 nm), a volume resistivity of 4.9 × 10 −1 Ωcm, and a high refractive index. In addition, a highly transparent conductive film was obtained. As a result of crystallization evaluation, as shown in FIG. 1, I MAX / I BG = 4, and it was confirmed that the film was an amorphous film.

(実施例2)
In粉、TiO粉、ZnO粉、SnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。次に、この混合粉末を大気中、温度1050℃で仮焼した後、湿式微粉砕(ZrOビーズ使用)にて平均粒径2μm以下に粉砕し、乾燥後、目開き150μmの篩で篩別を行った。その後、この微粉砕粉をアルゴン雰囲気下、温度1150℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。次に、上記の仕上げ加工した直径6インチのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。
以上の結果を表1に示す。表1に示す通り、スパッタリングターゲットは、相対密度が97.7%に達し、体積抵抗率は4.4mΩcmとなり、安定したDCスパッタができた。そして、スパッタ成膜した薄膜は、屈折率が2.11(波長550nm)、消衰係数が0.02(波長405nm)、体積抵抗率が9.8Ωcmであり、高屈折率かつ高透過率の導電性膜が得られた。また、結晶化評価の結果、図1に示すように、IMAX/IBG=4であり、アモルファス膜であることが確認された。
(Example 2)
In 2 O 3 powder, TiO 2 powder, ZnO powder, and SnO 2 powder were prepared, and these powders were blended at a blending ratio shown in Table 1 and mixed. Next, this mixed powder is calcined in the atmosphere at a temperature of 1050 ° C., then pulverized to a mean particle size of 2 μm or less by wet pulverization (using ZrO 2 beads), dried, and sieved with a sieve having an opening of 150 μm. Went. Then, this finely pulverized powder was hot-press sintered under the conditions of a temperature of 1150 ° C. and a pressure of 250 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape. Next, sputtering was performed under the same conditions as in Example 1 by using the finished target having a diameter of 6 inches.
The results are shown in Table 1. As shown in Table 1, the sputtering target had a relative density of 97.7% and a volume resistivity of 4.4 mΩcm, and stable DC sputtering was possible. The sputtered thin film has a refractive index of 2.11 (wavelength 550 nm), an extinction coefficient of 0.02 (wavelength 405 nm), a volume resistivity of 9.8 Ωcm, a high refractive index and a high transmittance. A conductive film was obtained. As a result of crystallization evaluation, as shown in FIG. 1, I MAX / I BG = 4, and it was confirmed that the film was an amorphous film.

(実施例3)
In粉、TiO粉、ZnO粉、SnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。次に、この混合粉末を大気中、温度1050℃で仮焼した後、湿式微粉砕(ZrOビーズ使用)にて平均粒径2μm以下に粉砕し、乾燥後、目開き150μmの篩で篩別を行った。その後、この微粉砕粉をアルゴン雰囲気下、温度1150℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。次に、上記の仕上げ加工した直径6インチのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。
以上の結果を表1に示す。表1に示す通り、スパッタリングターゲットは、相対密度が99.5%に達し、体積抵抗率は3.7mΩcmとなり、安定したDCスパッタができた。そして、スパッタ成膜した薄膜は、屈折率が2.10(波長550nm)、消衰係数が0.02(波長405nm)、体積抵抗率が3.8×10Ωcmであり、高屈折率かつ高透過率の導電性膜が得られた。また、結晶化評価の結果、IMAX/IBG=4であり、アモルファス膜であることが確認された。
(Example 3)
In 2 O 3 powder, TiO 2 powder, ZnO powder, and SnO 2 powder were prepared, and these powders were blended at a blending ratio shown in Table 1 and mixed. Next, this mixed powder is calcined in the atmosphere at a temperature of 1050 ° C., then pulverized to a mean particle size of 2 μm or less by wet pulverization (using ZrO 2 beads), dried, and sieved with a sieve having an opening of 150 μm. Went. Then, this finely pulverized powder was hot-press sintered under the conditions of a temperature of 1150 ° C. and a pressure of 250 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape. Next, sputtering was performed under the same conditions as in Example 1 by using the finished target having a diameter of 6 inches.
The results are shown in Table 1. As shown in Table 1, the sputtering target had a relative density of 99.5% and a volume resistivity of 3.7 mΩcm, and stable DC sputtering was possible. The sputtered thin film has a refractive index of 2.10 (wavelength 550 nm), an extinction coefficient of 0.02 (wavelength 405 nm), a volume resistivity of 3.8 × 10 2 Ωcm, a high refractive index and A highly transparent conductive film was obtained. As a result of the crystallization evaluation, I MAX / I BG = 4, and it was confirmed that the film was an amorphous film.

(実施例4)
In粉、TiO粉、ZnO粉、SnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。次に、この混合粉末を大気中、温度1050℃で仮焼した後、湿式微粉砕(ZrOビーズ使用)にて平均粒径2μm以下に粉砕し、乾燥後、目開き150μmの篩で篩別を行った。その後、この微粉砕粉をアルゴン雰囲気下、温度1150℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。次に、上記の仕上げ加工した直径6インチのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。
以上の結果を表1に示す。表1に示す通り、スパッタリングターゲットは、相対密度が100.9%に達し、体積抵抗率は1.5mΩcmとなり、安定したDCスパッタができた。そして、スパッタ成膜した薄膜は、屈折率が2.11(波長550nm)、消衰係数が0.02(波長405nm)、体積抵抗率が1.6×10Ωcmであり、高屈折率かつ高透過率の導電性膜が得られた。また、結晶化評価の結果、IMAX/IBG=4であり、アモルファス膜であることが確認された。
Example 4
In 2 O 3 powder, TiO 2 powder, ZnO powder, and SnO 2 powder were prepared, and these powders were blended at a blending ratio shown in Table 1 and mixed. Next, this mixed powder is calcined in the atmosphere at a temperature of 1050 ° C., then pulverized to a mean particle size of 2 μm or less by wet pulverization (using ZrO 2 beads), dried, and sieved with a sieve having an opening of 150 μm. Went. Then, this finely pulverized powder was hot-press sintered under the conditions of a temperature of 1150 ° C. and a pressure of 250 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape. Next, sputtering was performed under the same conditions as in Example 1 by using the finished target having a diameter of 6 inches.
The results are shown in Table 1. As shown in Table 1, the sputtering target reached a relative density of 100.9%, the volume resistivity was 1.5 mΩcm, and stable DC sputtering was possible. The sputtered thin film has a refractive index of 2.11 (wavelength 550 nm), an extinction coefficient of 0.02 (wavelength 405 nm), a volume resistivity of 1.6 × 10 3 Ωcm, a high refractive index and A highly transparent conductive film was obtained. As a result of the crystallization evaluation, I MAX / I BG = 4, and it was confirmed that the film was an amorphous film.

(実施例5)
In粉、TiO粉、ZnO粉、SnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。次に、この混合粉末を大気中、温度1050℃で仮焼した後、湿式微粉砕(ZrOビーズ使用)にて平均粒径2μm以下に粉砕し、乾燥後、目開き150μmの篩で篩別を行った。その後、この微粉砕粉をアルゴン雰囲気下、温度1150℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。次に、上記の仕上げ加工した直径6インチのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。
以上の結果を表1に示す。表1に示す通り、スパッタリングターゲットは、相対密度が100.3%に達し、体積抵抗率は1.7mΩcmとなり、安定したDCスパッタができた。そして、スパッタ成膜した薄膜は、屈折率が2.11(波長550nm)、消衰係数が0.02(波長405nm)、体積抵抗率が3.6×10Ωcmであり、高屈折率かつ高透過率の導電性膜が得られた。また、結晶化評価の結果、IMAX/IBG=4であり、アモルファス膜であることが確認された。
(Example 5)
In 2 O 3 powder, TiO 2 powder, ZnO powder, and SnO 2 powder were prepared, and these powders were blended at a blending ratio shown in Table 1 and mixed. Next, this mixed powder is calcined in the atmosphere at a temperature of 1050 ° C., then pulverized to a mean particle size of 2 μm or less by wet pulverization (using ZrO 2 beads), dried, and sieved with a sieve having an opening of 150 μm. Went. Then, this finely pulverized powder was hot-press sintered under the conditions of a temperature of 1150 ° C. and a pressure of 250 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape. Next, sputtering was performed under the same conditions as in Example 1 by using the finished target having a diameter of 6 inches.
The results are shown in Table 1. As shown in Table 1, the sputtering target reached a relative density of 100.3%, the volume resistivity was 1.7 mΩcm, and stable DC sputtering was possible. The sputtered thin film has a refractive index of 2.11 (wavelength 550 nm), an extinction coefficient of 0.02 (wavelength 405 nm), a volume resistivity of 3.6 × 10 3 Ωcm, a high refractive index and A highly transparent conductive film was obtained. As a result of the crystallization evaluation, I MAX / I BG = 4, and it was confirmed that the film was an amorphous film.

(比較例1)
In粉、TiO粉、SnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。なお、ZnO粉は添加しなかった。次に、この混合粉をアルゴン雰囲気下、温度1050℃、圧力350kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。
次に、上記の仕上げ加工した直径6インチのターゲットを使用して、スパッタリングを行った。但し、比較例1は、ターゲット(焼結体)の体積抵抗率が500kΩcm超と高く、DCスパッタは不可であった。そのため、RFスパッタを用いてスパッタリングを行った。パワー等の条件はDCスパッタと同様とした。その結果、スパッタ成膜した薄膜は、体積抵抗率が1MΩcm超と高抵抗となり、所望の導電性膜は得られなかった。
(Comparative Example 1)
In 2 O 3 powder, TiO 2 powder, and SnO 2 powder were prepared, and these powders were blended at a blending ratio described in Table 1 and mixed. ZnO powder was not added. Next, this mixed powder was hot-press sintered under the conditions of a temperature of 1050 ° C. and a pressure of 350 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape.
Next, sputtering was carried out using the above-finished target having a diameter of 6 inches. However, in Comparative Example 1, the volume resistivity of the target (sintered body) was as high as over 500 kΩcm, and DC sputtering was not possible. Therefore, sputtering was performed using RF sputtering. Conditions such as power were the same as those for DC sputtering. As a result, the sputtered thin film had a high volume resistivity of more than 1 MΩcm, and a desired conductive film could not be obtained.

(比較例2)
In粉、TiO粉、ZnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。なお、SnO粉は添加しなかった。次に、この混合粉をアルゴン雰囲気下、温度1050℃、圧力350kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。次に、上記の仕上げ加工した直径6インチのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、スパッタ成膜した薄膜は、図1に示すように、IMAX/IBG=101であり、アモルファス膜とはならず、また、消衰係数が0.05超(波長405nm)と低波長域において光の吸収が生じ、所望の高透過率膜が得られなかった。
(Comparative Example 2)
In 2 O 3 powder, TiO 2 powder, and ZnO powder were prepared, and these powders were blended at a blending ratio described in Table 1 and mixed. In addition, SnO 2 powder was not added. Next, this mixed powder was hot-press sintered under the conditions of a temperature of 1050 ° C. and a pressure of 350 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape. Next, sputtering was performed under the same conditions as in Example 1 by using the finished target having a diameter of 6 inches. As a result, as shown in FIG. 1, the thin film formed by sputtering has I MAX / I BG = 101, does not become an amorphous film, and has an extinction coefficient exceeding 0.05 (wavelength 405 nm). Absorption of light occurred in the low wavelength region, and the desired high transmittance film could not be obtained.

(比較例3)
In粉、TiO粉、ZnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。なお、SnO添加しなかった。次に、この混合粉をアルゴン雰囲気下、温度1150℃、圧力250kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。次に、上記の仕上げ加工した直径6インチのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、スパッタ成膜した薄膜は、体積抵抗率が1MΩcm超と高抵抗となり、所望の導電性膜が得られなかった。また、結晶化評価の結果、アモルファス膜であることが確認された。
(Comparative Example 3)
In 2 O 3 powder, TiO 2 powder, and ZnO powder were prepared, and these powders were blended at a blending ratio described in Table 1 and mixed. In addition, SnO 2 powder was not added. Next, this mixed powder was hot-press sintered under the conditions of a temperature of 1150 ° C. and a pressure of 250 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape. Next, sputtering was performed under the same conditions as in Example 1 by using the finished target having a diameter of 6 inches. As a result, a thin film formed by sputtering has a volume resistivity becomes 1 M.OMEGA cm greater and a high resistance, the desired conductive film could not be obtained. Further, as a result of crystallization evaluation, it was confirmed that the film was an amorphous film.

(比較例4)
In粉、TiO粉、ZnO粉、SnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。なお、Tiに対するInの含有量が規定よりも多くなるように配合した。次に、この混合粉をアルゴン雰囲気下、温度1050℃、圧力350kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。次に、上記の仕上げ加工した直径6インチのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、スパッタ成膜した薄膜は、消衰係数が0.05超(波長405nm)となり、所望の透過率の膜が得られなかった。
(Comparative Example 4)
In 2 O 3 powder, TiO 2 powder, ZnO powder, and SnO 2 powder were prepared, and these powders were blended at a blending ratio shown in Table 1 and mixed. In addition, it mix | blended so that content of In with respect to Ti might become more than regulation. Next, this mixed powder was hot-press sintered under the conditions of a temperature of 1050 ° C. and a pressure of 350 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape. Next, sputtering was performed under the same conditions as in Example 1 by using the finished target having a diameter of 6 inches. As a result, the sputtered thin film had an extinction coefficient exceeding 0.05 (wavelength 405 nm), and a film having a desired transmittance could not be obtained.

(比較例5)
In粉、TiO粉、ZnO粉、SnO粉を準備し、これらの粉末を表1に記載される配合比で調合し、混合した。なお、InとTiに対するZnとSnの合計含有量が規定よりも多くなるように配合した。次に、この混合粉をアルゴン雰囲気下、温度1050℃、圧力350kgf/cmの条件でホットプレス焼結した。その後、この焼結体を機械加工してターゲット形状に仕上げた。次に、上記の仕上げ加工した直径6インチのターゲットを使用して、実施例1と同様の条件でスパッタリングを行った。その結果、スパッタ成膜した薄膜は、アモルファス膜とならず、また、消衰係数が0.05超(波長405nm)となり、低波長域において光の吸収が生じ、所望の高透過率膜が得られなかった。
(Comparative Example 5)
In 2 O 3 powder, TiO 2 powder, ZnO powder, and SnO 2 powder were prepared, and these powders were blended at a blending ratio shown in Table 1 and mixed. In addition, it mix | blended so that the total content of Zn and Sn with respect to In and Ti might become more than regulation. Next, this mixed powder was hot-press sintered under the conditions of a temperature of 1050 ° C. and a pressure of 350 kgf / cm 2 in an argon atmosphere. Thereafter, the sintered body was machined to finish the target shape. Next, sputtering was performed under the same conditions as in Example 1 by using the finished target having a diameter of 6 inches. As a result, the sputtered thin film does not become an amorphous film, and the extinction coefficient exceeds 0.05 (wavelength 405 nm), light absorption occurs in a low wavelength region, and a desired high transmittance film is obtained. It was not obtained.

本発明のスパッタリングによって形成される薄膜は、ディスプレイやタッチパネルにおける光学調整用の薄膜や光ディスクの構造の一部を形成して、透過率、屈折率、導電性において、極めて優れた特性を有するという効果がある。
また、本発明の焼結体からなるスパッタリングターゲットは、体積抵抗率値が低く、高密度であることから、安定したDCスパッタを可能とする。そして、このDCスパッタリングの特徴であるスパッタの制御性を容易にし、成膜速度を上げ、スパッタリング効率を向上させることができるという著しい効果がある。また、成膜の際にスパッタ時に発生するパーティクルを低減し、膜の品質を向上させることができる。
The thin film formed by sputtering according to the present invention forms a part of the structure of an optical adjustment thin film or an optical disk in a display or touch panel, and has extremely excellent characteristics in transmittance, refractive index, and conductivity. There is.
Moreover, since the sputtering target made of the sintered body of the present invention has a low volume resistivity value and a high density, stable DC sputtering is possible. And there is a remarkable effect that the controllability of sputtering, which is a feature of this DC sputtering, can be facilitated, the film forming speed can be increased, and the sputtering efficiency can be improved. In addition, particles generated during sputtering during film formation can be reduced, and film quality can be improved.

Claims (9)

インジウム(In)、チタン(Ti)、亜鉛(Zn)、錫(Sn)、及び、酸素(O)からなり、Tiに対するInの含有量が原子数比で3.0≦In/Ti≦5.0、InとTiに対するZnとSnの含有量が原子数比で0.5≦(Zn+Sn)/(In+Ti)≦1.5、Snに対するZnの含有量が原子数比で0.5≦Zn/Sn≦7.0、の関係式を満たすことを特徴とする光学調整膜形成用酸化物焼結体。 It consists of indium (In), titanium (Ti), zinc (Zn), tin (Sn), and oxygen (O), and the content of In with respect to Ti is 3.0 ≦ In / Ti ≦ 5. 0, Zn and Sn content relative to In and Ti are 0.5 ≦ (Zn + Sn) / (In + Ti) ≦ 1.5 in atomic ratio, and Zn content relative to Sn is 0.5 ≦ Zn / An oxide sintered body for forming an optical adjustment film, characterized by satisfying a relational expression of Sn ≦ 7.0. 相対密度が90%以上であることを特徴とする請求項1記載の光学調整膜形成用酸化物焼結体。  2. The oxide sintered body for forming an optical adjustment film according to claim 1, wherein the relative density is 90% or more. 体積抵抗率が10Ωcm以下であることを特徴とする請求項1又は2記載の光学調整膜形成用酸化物焼結体。  3. The oxide sintered body for forming an optical adjustment film according to claim 1, wherein the volume resistivity is 10 Ωcm or less. インジウム(In)、チタン(Ti)、亜鉛(Zn)、錫(Sn)、及び、酸素(O)からなり、Tiに対するInの含有量が原子数比で3.0≦In/Ti≦5.0、InとTiに対するZnとSnの含有量が原子数比で0.5≦(Zn+Sn)/(In+Ti)≦1.5、Snに対するZnの含有量が原子数比で0.5≦Zn/Sn≦7.0、の関係式を満たすことを特徴とする光学調整膜。 It consists of indium (In), titanium (Ti), zinc (Zn), tin (Sn), and oxygen (O), and the content of In with respect to Ti is 3.0 ≦ In / Ti ≦ 5. 0, Zn and Sn content relative to In and Ti are 0.5 ≦ (Zn + Sn) / (In + Ti) ≦ 1.5 in atomic ratio, and Zn content relative to Sn is 0.5 ≦ Zn / An optical adjustment film satisfying a relational expression of Sn ≦ 7.0. 波長550nmにおける屈折率が2.05以上であることを特徴とする請求項4記載の光学調整膜。  5. The optical adjustment film according to claim 4, wherein the refractive index at a wavelength of 550 nm is 2.05 or more. 波長405nmにおける消衰係数が0.05以下であることを特徴とする請求項4又は5記載の光学調整膜。  6. The optical adjustment film according to claim 4, wherein the extinction coefficient at a wavelength of 405 nm is 0.05 or less. 体積抵抗率が1MΩcm以下であることを特徴とする請求項4〜6のいずれか一項に記載の光学調整膜。  The optical resistivity film according to any one of claims 4 to 6, wherein the volume resistivity is 1 MΩcm or less. アモルファスであることを特徴とする請求項4〜7のいずれか一項に記載の光学調整膜。  It is amorphous, The optical adjustment film | membrane as described in any one of Claims 4-7 characterized by the above-mentioned. 請求項1〜3のいずれ一項に記載の焼結体の製造方法であって、原料粉末を不活性ガス又は真空雰囲気の下、900℃以上1300℃以下で加圧焼結するか又は原料粉末をプレス成形した後、この成形体を不活性ガス又は真空雰囲気の下、1000℃以上1500℃以下で常圧焼結することを特徴とする酸化物焼結体の製造方法。  It is a manufacturing method of the sintered compact as described in any one of Claims 1-3, Comprising: Raw material powder is pressure-sintered at 900 degreeC or more and 1300 degrees C or less under inert gas or a vacuum atmosphere, or raw material powder After press-molding, this molded body is subjected to atmospheric pressure sintering at 1000 ° C. or higher and 1500 ° C. or lower in an inert gas or vacuum atmosphere.
JP2015012019A 2014-10-06 2015-01-26 Oxide sintered body, oxide sputtering target, conductive oxide thin film, and method for producing oxide sintered body Active JP5876172B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015012019A JP5876172B1 (en) 2014-10-06 2015-01-26 Oxide sintered body, oxide sputtering target, conductive oxide thin film, and method for producing oxide sintered body
TW104127113A TWI537404B (en) 2014-10-06 2015-08-20 Oxide sintered body, oxide sputtering target, and method for producing conductive oxide film and oxide sintered body
KR1020150139701A KR101668963B1 (en) 2014-10-06 2015-10-05 Oxide sintered compact and method of producing same, oxide sputtering target, and conductive oxide film
CN201510646309.2A CN105481352A (en) 2014-10-06 2015-10-08 Oxide sintering body, oxide sputtering target, conductive oxide thin film and method for manufacturing oxide sintering body
CN201811061549.6A CN109437856A (en) 2014-10-06 2015-10-08 The manufacturing method of oxidate sintered body, oxide sputtering target and electroconductive oxide film and oxidate sintered body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014205403 2014-10-06
JP2014205403 2014-10-06
JP2015012019A JP5876172B1 (en) 2014-10-06 2015-01-26 Oxide sintered body, oxide sputtering target, conductive oxide thin film, and method for producing oxide sintered body

Publications (2)

Publication Number Publication Date
JP5876172B1 true JP5876172B1 (en) 2016-03-02
JP2016074579A JP2016074579A (en) 2016-05-12

Family

ID=55434716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015012019A Active JP5876172B1 (en) 2014-10-06 2015-01-26 Oxide sintered body, oxide sputtering target, conductive oxide thin film, and method for producing oxide sintered body

Country Status (4)

Country Link
JP (1) JP5876172B1 (en)
KR (1) KR101668963B1 (en)
CN (2) CN109437856A (en)
TW (1) TWI537404B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7086080B2 (en) * 2017-08-08 2022-06-17 三井金属鉱業株式会社 Oxide sintered body and sputtering target
JP2019131866A (en) * 2018-01-31 2019-08-08 住友金属鉱山株式会社 Oxide sputtering film, method for producing oxide sputtering film, oxide sintered body and transparent resin substrate
TWI819633B (en) * 2022-05-31 2023-10-21 光洋應用材料科技股份有限公司 Indium titanium zinc oxide sputtering target material, its thin film and its preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971860A (en) * 1995-06-28 1997-03-18 Idemitsu Kosan Co Ltd Target and its production
WO2010058533A1 (en) * 2008-11-20 2010-05-27 出光興産株式会社 ZnO-SnO2-In2O3 BASED SINTERED OXIDE AND AMORPHOUS TRANSPARENT CONDUCTIVE FILM
WO2012153507A1 (en) * 2011-05-10 2012-11-15 出光興産株式会社 In2O3-SnO2-ZnO SPUTTERING TARGET
JP2014109071A (en) * 2012-12-03 2014-06-12 Solar Applied Materials Technology Corp Sputtering target
JP2014111818A (en) * 2012-11-09 2014-06-19 Idemitsu Kosan Co Ltd Sputtering target, oxide semiconductor thin film, and production method of them

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141186B2 (en) * 2002-10-29 2006-11-28 Sumitomo Metal Mining Co., Ltd. Oxide sintered body and sputtering target, and manufacturing method for transparent conductive oxide film as electrode
JP4933756B2 (en) * 2005-09-01 2012-05-16 出光興産株式会社 Sputtering target
JP4994068B2 (en) 2006-08-09 2012-08-08 出光興産株式会社 Oxide conductive material and manufacturing method thereof
JP2013220805A (en) 2012-04-19 2013-10-28 Toyota Boshoku Corp Air outlet structure of cabin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971860A (en) * 1995-06-28 1997-03-18 Idemitsu Kosan Co Ltd Target and its production
WO2010058533A1 (en) * 2008-11-20 2010-05-27 出光興産株式会社 ZnO-SnO2-In2O3 BASED SINTERED OXIDE AND AMORPHOUS TRANSPARENT CONDUCTIVE FILM
WO2012153507A1 (en) * 2011-05-10 2012-11-15 出光興産株式会社 In2O3-SnO2-ZnO SPUTTERING TARGET
JP2014111818A (en) * 2012-11-09 2014-06-19 Idemitsu Kosan Co Ltd Sputtering target, oxide semiconductor thin film, and production method of them
JP2014109071A (en) * 2012-12-03 2014-06-12 Solar Applied Materials Technology Corp Sputtering target

Also Published As

Publication number Publication date
TWI537404B (en) 2016-06-11
TW201614084A (en) 2016-04-16
KR101668963B1 (en) 2016-10-24
KR20160041013A (en) 2016-04-15
CN109437856A (en) 2019-03-08
CN105481352A (en) 2016-04-13
JP2016074579A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
TWI525060B (en) An oxide sintered body, a sputtering target, a thin film, and an oxide sintered body
KR101600261B1 (en) Oxide sintered compact, sputtering target and oxide thin film
JP5876172B1 (en) Oxide sintered body, oxide sputtering target, conductive oxide thin film, and method for producing oxide sintered body
JP6023920B1 (en) Oxide sintered body, oxide sputtering target, and oxide thin film
JP6064895B2 (en) Indium oxide-based oxide sintered body and method for producing the same
TW201413024A (en) Composite oxide sintered object and transparent conductive oxide film
JP5913523B2 (en) Oxide sintered body, oxide sputtering target, high refractive index conductive oxide thin film, and method for producing oxide sintered body
JPWO2014010383A1 (en) Sintered body and amorphous film
JP6134368B2 (en) Sintered body, sputtering target comprising the sintered body, and thin film formed using the sputtering target
JP2017014534A (en) Sputtering target and production method thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150818

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160120

R150 Certificate of patent or registration of utility model

Ref document number: 5876172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250