JPH0971860A - Target and its production - Google Patents
Target and its productionInfo
- Publication number
- JPH0971860A JPH0971860A JP7241064A JP24106495A JPH0971860A JP H0971860 A JPH0971860 A JP H0971860A JP 7241064 A JP7241064 A JP 7241064A JP 24106495 A JP24106495 A JP 24106495A JP H0971860 A JPH0971860 A JP H0971860A
- Authority
- JP
- Japan
- Prior art keywords
- target
- oxide
- sintered body
- sintering
- volume resistivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ターゲットおよび
その製造方法に関する。TECHNICAL FIELD The present invention relates to a target and a method for manufacturing the target.
【0002】[0002]
【従来の技術】近年、表示装置の発展は目覚ましく、液
晶表示装置やEL表示装置等、種々の表示装置がパソコ
ンやワープロ等のOA機器へ活発に導入されている。こ
れらの表示装置は、いずれも表示素子を透明導電膜で挾
み込んだサンドイッチ構造を有している。2. Description of the Related Art In recent years, the development of display devices has been remarkable, and various display devices such as liquid crystal display devices and EL display devices have been actively introduced into office automation equipment such as personal computers and word processors. Each of these display devices has a sandwich structure in which a display element is sandwiched by a transparent conductive film.
【0003】透明電極は透明基板上に透明導電膜が形成
された構造をしており、従来は透明基板としてガラスが
用いられていたが、近年の携帯機器の市場拡大に伴い、
軽くて割れないというメリットを生かしフィルム等のプ
ラスチック基板が一部用いられている。The transparent electrode has a structure in which a transparent conductive film is formed on a transparent substrate. Conventionally, glass was used as the transparent substrate, but with the recent market expansion of portable devices,
Some plastic substrates such as films are used, taking advantage of their lightness and unbreakability.
【0004】通常、透明導電膜は、焼結体ターゲットを
用い、スパッタリング法等により形成される。従来、タ
ーゲット材料には、得られる透明導電膜が高透過率、低
抵抗値を示すことから、ITOが用いられていた。Usually, the transparent conductive film is formed by a sputtering method using a sintered target. Conventionally, ITO has been used as the target material because the resulting transparent conductive film exhibits high transmittance and low resistance.
【0005】[0005]
【発明が解決しようとする課題】製膜用基板にフィルム
等のプラスチック基板を用いる場合には、製膜時の温度
を十分に上げることができず、低抵抗膜が得られないと
いう問題があった。When a plastic substrate such as a film is used as the film-forming substrate, there is a problem that the temperature during film formation cannot be sufficiently raised and a low resistance film cannot be obtained. It was
【0006】これに対し、最近ではプラスチック基板上
でも低抵抗膜が得られるターゲット材料が開発されてい
るが、このターゲット材料は、体積抵抗率が高いため熱
伝導率が低く、スパッタリング時に異常放電等が起こ
り、ターゲットの割れが生じやすい等の問題があった。
特殊な製造方法[HIP(熱間静水圧)焼結や不活性ガ
ス中での常圧焼結]を用いれば、体積抵抗率をある程度
下げることは可能であるが、市販の高密度ITOターゲ
ットに比べるとまだ1ケタ以上高く、異常放電によるタ
ーゲットの割れが改善されたとは言い難い。さらに、製
造コストが高いため商業的製造方法としては不向きであ
った。On the other hand, recently, a target material that can obtain a low resistance film even on a plastic substrate has been developed. However, this target material has a high volume resistivity and thus a low thermal conductivity, resulting in abnormal discharge during sputtering. However, there is a problem that the target is easily cracked.
It is possible to reduce the volume resistivity to some extent by using a special manufacturing method [HIP (hot isostatic pressing) sintering or normal pressure sintering in an inert gas], but it is possible to use a commercially available high-density ITO target. Compared to this, it is still more than one digit higher, and it cannot be said that the cracking of the target due to abnormal discharge has been improved. Furthermore, the high manufacturing cost makes it unsuitable as a commercial manufacturing method.
【0007】従って、本発明の第1の目的は、フィルム
等のプラスチック基板への製膜に特に適した、製膜使用
時に異常放電や割れのないターゲット材料を提供するこ
とにあり、また第2の目的は、このようなターゲットを
安価に製造する方法を提供することにある。Accordingly, a first object of the present invention is to provide a target material which is particularly suitable for forming a film on a plastic substrate such as a film and which is free from abnormal discharge or cracking when the film is used. The purpose of is to provide a method for manufacturing such a target at low cost.
【0008】[0008]
【課題を解決するための手段】本発明者らは上記目的達
成のため鋭意検討した結果、原料として酸化インジウム
および酸化亜鉛を所望により正三価以上の原子価を有す
る元素の酸化物とともに用い、これらの酸化物原料を混
合、成型、焼結した後、アニーリングすることにより体
積抵抗率が10-2Ωcm以下のターゲットが得られること
を見い出した。またこのようにして得られたターゲット
においては、このターゲットを用いるスパッタリングな
どの製膜時に出力を上げても異常放電や、ターゲットの
割れは認められず、ターゲット寿命が大幅に改善される
ことを見い出した。さらに上記ターゲットの製造方法に
よれば、酸化物原料を用いることなどからターゲットを
安価に得ることができることを見い出した。Means for Solving the Problems As a result of intensive studies for achieving the above-mentioned objects, the present inventors have used indium oxide and zinc oxide as raw materials together with an oxide of an element having a valence of positive trivalence or more, if desired. It was found that a target having a volume resistivity of 10 -2 Ωcm or less can be obtained by mixing, molding, and sintering the oxide raw materials of 1), and then annealing. In addition, in the target obtained in this way, no abnormal discharge or cracking of the target was observed even when the output was increased during film formation such as sputtering using this target, and it was found that the target life was significantly improved. It was Furthermore, it has been found that the target manufacturing method can obtain the target at a low cost by using an oxide raw material.
【0009】本発明はこれらの知見に基づいて完成され
たものであり、(I)一般式In2O3(ZnO)m(m
=2〜7)で表される六方晶層状化合物を含み、かつI
nとZnの原子比[In/(In+Zn)]が0.2〜
0.9である酸化物の焼結体からなり、体積抵抗率が1
0-2Ωcm以下であることを特徴とするターゲット(以下
ターゲットT1という)、(II)一般式In2O3(Zn
O)m(m=2〜7)で表される六方晶層状化合物を含
み、更に全カチオン元素に対して20at%以下の正三価
以上の原子価を有する第三元素の酸化物を含み、かつI
nとZnの原子比[In/(In+Zn)]が0.2〜
0.9である酸化物の焼結体からなり、体積抵抗率が1
0-2Ωcm以下であることを特徴とするターゲット(以下
ターゲットT2という)、(III)酸化インジウムと酸化
亜鉛とを混合する工程と、前記工程で得られた混合物を
成型する工程と、前記工程で得られた成型物を焼結する
工程と、前記工程で得られた焼結物をアニーリングする
工程とを含むことを特徴とする前記(I)に記載のター
ゲットの製造方法(以下製法P1という)、および(I
V)酸化インジウムと酸化亜鉛に、正三価以上の原子価
を有する第三元素の酸化物を加えて混合する工程と、前
記工程で得られた混合物を成型する工程と、前記工程で
得られた成型物を成型し焼結する工程と、前記工程で得
られた焼結物をアニーリングする工程とを含むことを特
徴とする前記(II)に記載のターゲットの製造方法(以
下製法P2という)を要旨とする。The present invention has been completed on the basis of these findings, and (I) the general formula In 2 O 3 (ZnO) m (m
= 2 to 7), the hexagonal layered compound is included, and
The atomic ratio [In / (In + Zn)] of n and Zn is 0.2 to
It consists of a sintered oxide of 0.9 and has a volume resistivity of 1
A target characterized in that it is 0 -2 Ωcm or less (hereinafter referred to as target T1), (II) general formula In 2 O 3 (Zn
O) m (m = 2 to 7) represented by a hexagonal layered compound, further containing an oxide of a third element having a valence of positive trivalence of 20 at% or less with respect to all cationic elements, and I
The atomic ratio [In / (In + Zn)] of n and Zn is 0.2 to
It consists of a sintered oxide of 0.9 and has a volume resistivity of 1
A target characterized in that it is 0 -2 Ωcm or less (hereinafter referred to as target T2); (III) a step of mixing indium oxide and zinc oxide; a step of molding the mixture obtained in the above step; The method for producing a target according to (I) above, which comprises a step of sintering the molded product obtained in step 1 and a step of annealing the sintered product obtained in the step (hereinafter referred to as production method P1). ), And (I
V) a step of adding an oxide of a third element having a valence of at least positive trivalence to indium oxide and zinc oxide and mixing, a step of molding the mixture obtained in the step, and a step obtained in the step A target manufacturing method (hereinafter referred to as manufacturing method P2) according to (II), which comprises a step of molding and sintering a molded product and a step of annealing the sintered product obtained in the process. Use as a summary.
【0010】以下、本発明を詳細に説明する。まず、本
発明のターゲットT1は、上述したように(i)一般式In
2O3(ZnO)m(m=2〜7)で表される六方晶層状
化合物を含み、かつInとZnの原子比[In/(In
+Zn)]が0.2〜0.9である酸化物の焼結体から
なり、(ii)体積抵抗率が10-2Ωcm以下であることを特
徴とするものである。Hereinafter, the present invention will be described in detail. First, as described above, the target T1 of the present invention includes (i) the general formula In
2 O 3 (ZnO) m (m = 2 to 7) is included, and the atomic ratio of In and Zn [In / (In
+ Zn)] is 0.2 to 0.9, and (ii) the volume resistivity is 10 −2 Ωcm or less.
【0011】先ず上記要件(i)について説明すると、六
方晶層状化合物を含む酸化物の焼結体とは、X線回折測
定で、六方晶層状化合物に帰属されるX線回折パターン
を示す物質からなる酸化物の焼結体または六方晶層状化
合物に帰属されるX線回折パターンを示す物質ととも
に、他の構造に帰属されるX線回折パターンを示す物
質、非晶質物質を含む酸化物の焼結体を意味する。First, the above-mentioned requirement (i) will be explained. A sintered body of an oxide containing a hexagonal layered compound is defined as a substance showing an X-ray diffraction pattern assigned to the hexagonal layered compound by X-ray diffraction measurement. A sintered body of an oxide of the above or a substance showing an X-ray diffraction pattern belonging to a hexagonal layered compound, as well as a substance showing an X-ray diffraction pattern belonging to another structure, and an oxide containing an amorphous substance. Means union.
【0012】より具体的には、この焼結体は、六方晶層
状化合物を5重量%以上、好ましくは10重量%以上、
より好ましくは20重量%以上含み、他の成分はIn2
O3またはZnOからなるものであり、その好ましい例
として以下のものが挙げられる。More specifically, the sintered body contains the hexagonal layered compound in an amount of 5% by weight or more, preferably 10% by weight or more,
More preferably, the content is 20% by weight or more, and the other component is In 2
It is composed of O 3 or ZnO, and preferable examples thereof include the following.
【0013】(a).In2O3(ZnO)m(m=2〜7)
の六方晶層状化合物 (b).In2O3(ZnO)m(m=2〜7)の六方晶層状
化合物とIn2O3との混合物 (c).In2O3(ZnO)m(m=2〜7)の六方晶層状
化合物とZnOとの混合物 ここで(b),(c)中のIn2O3,ZnOは特定の結晶構造
を有している。(A). In 2 O 3 (ZnO) m (m = 2 to 7)
Hexagonal layered compound (b). A mixture of a hexagonal layered compound of In 2 O 3 (ZnO) m (m = 2 to 7) and In 2 O 3 (c). A mixture of a hexagonal layered compound of In 2 O 3 (ZnO) m (m = 2 to 7) and ZnO where In 2 O 3 and ZnO in (b) and (c) have a specific crystal structure. ing.
【0014】上記一般式においてmを2〜7に限定する
理由は、mが7を超えると六方晶層状化合物の体積抵抗
率が高くなり、結果としてターゲットの体積抵抗率が高
くなり、ターゲットを製膜に使用したとき異常放電やタ
ーゲットの割れが生じやすく、またmが1のときは六方
晶層状化合物とならないからである。The reason why m is limited to 2 to 7 in the above general formula is that when m exceeds 7, the volume resistivity of the hexagonal layered compound becomes high, and as a result, the volume resistivity of the target becomes high and the target is manufactured. This is because abnormal discharge and cracking of the target are likely to occur when used in the film, and when m is 1, the compound does not become a hexagonal layered compound.
【0015】本発明のターゲットT1において、Inと
Znの原子比[In/(In+Zn)]は0.2〜0.
9に限定され、好ましくは、0.5〜0.9、特に好ま
しくは0.8〜0.9である。その理由は、0.2未満
ではターゲットから得られる透明導電膜の導電性が低く
なり、0.9を超えると透明導電膜の耐湿熱性が低下す
るからである。In the target T1 of the present invention, the atomic ratio [In / (In + Zn)] of In and Zn is 0.2 to 0.
It is limited to 9, preferably 0.5 to 0.9, and particularly preferably 0.8 to 0.9. The reason is that if it is less than 0.2, the conductivity of the transparent conductive film obtained from the target is low, and if it exceeds 0.9, the wet heat resistance of the transparent conductive film is lowered.
【0016】上記のInとZnの原子比は焼結前の酸化
インジウムと酸化亜鉛の混合比を調整することにより得
られ、焼結前の混合比により、化学的量論比率に見合う
酸化インジウムと酸化亜鉛からなる六方晶層状化合物が
生成し、残りの酸化インジウムと酸化亜鉛が結晶性物質
として存在するものと推定される。The above atomic ratio of In and Zn is obtained by adjusting the mixing ratio of indium oxide and zinc oxide before sintering, and the indium oxide and indium oxide matching the stoichiometric ratio can be obtained by the mixing ratio before sintering. It is presumed that a hexagonal layered compound composed of zinc oxide was produced, and the remaining indium oxide and zinc oxide were present as crystalline substances.
【0017】本発明のターゲットT1は、上記した「一
般式In2O3(ZnO)m(m=2〜7)で表される六
方晶層状化合物を含み、かつInとZnの原子比[In
/(In+Zn)]が0.2〜0.9である酸化物の焼
結体からなる」という要件(i)とともに、「体積抵抗率
が10-2Ωcm以下である」という要件(ii)を必須要件と
する。このパラメータ要件は後記するように焼結後のア
ニーリング処理によってはじめて達成される新規要件で
あり、本発明のターゲットT1は、この新規要件を有す
ることにより、製膜使用時の異常放電およびターゲット
の割れが防止されるという顕著な効果を奏する。製膜使
用時の異常放電およびターゲットの割れの防止の観点か
ら体積抵抗率は7×10-3Ωcm以下が好ましく、5×1
0-3Ωcm以下が特に好ましい。The target T1 of the present invention contains the hexagonal layered compound represented by the above-mentioned "general formula In 2 O 3 (ZnO) m (m = 2 to 7), and the atomic ratio of In and Zn [In
/ (In + Zn)] is 0.2 to 0.9, which is a sintered body of an oxide, and a requirement (ii) that "volume resistivity is 10 -2 Ωcm or less". Mandatory requirement. This parameter requirement is a new requirement that is first achieved by an annealing treatment after sintering as will be described later, and the target T1 of the present invention has this novel requirement, whereby abnormal discharge and cracking of the target during use of film formation are achieved. Has the remarkable effect of being prevented. The volume resistivity is preferably 7 × 10 −3 Ωcm or less, and 5 × 1 from the viewpoint of preventing abnormal discharge and cracking of the target during film formation.
It is particularly preferably 0 -3 Ωcm or less.
【0018】本発明のターゲットT1を構成する焼結体
の相対密度は80%以上であることが好ましく、より好
ましくは90%以上であり、更に好ましくは95%以上
である。焼結体の密度が80%未満である場合、製膜速
度が遅くなり、又ターゲットおよびそれから得られる膜
が黒化しやすくなる。密度の高い焼結体を得るために
は、CIP(冷間静水圧)等で成型後、HIP(熱間静
水圧)等により焼結することが好ましい。ここに相対密
度とは、酸化物の組成から計算した理論密度に対する焼
結体の実際の密度を面分率で示したものである。The relative density of the sintered body constituting the target T1 of the present invention is preferably 80% or more, more preferably 90% or more, and further preferably 95% or more. When the density of the sintered body is less than 80%, the film forming rate becomes slow, and the target and the film obtained therefrom are likely to be blackened. In order to obtain a sintered body having a high density, it is preferable to perform molding by CIP (cold isostatic pressure) or the like and then sinter by HIP (hot isostatic pressure) or the like. Here, the relative density indicates the actual density of the sintered body with respect to the theoretical density calculated from the composition of the oxide in terms of area fraction.
【0019】本発明のターゲットT1は、上述したよう
に一般式In2O3(ZnO)m(m=2〜7)で表され
る六方晶層状化合物を含み、かつInとZnの原子比
[In/(In+Zn)]が0.2〜0.9である酸化
物の焼結体からなるという要件(i)を有することから、
導電性および耐湿性に優れている。また本発明のターゲ
ットT1は、上述したように体積抵抗率が10-2Ωcm以
下であるという要件(ii)を有することから、このターゲ
ットを用いる製膜時に異常放電やターゲットの割れの問
題がない。従って本発明のターゲットT1は、液晶表示
素子用透明導電膜、EL表示素子用透明導電膜、太陽電
池用透明導電膜等、種々の用途の透明導電膜をスパッタ
リング法により得るためのターゲットとして好適であ
る。本発明のターゲットT1を用いた場合には、ITO
膜よりも耐湿熱性に優れるとともにITO膜と同等の導
電性および光透過率を有する透明導電膜を得ることがで
きる。The target T1 of the present invention contains the hexagonal layered compound represented by the general formula In 2 O 3 (ZnO) m (m = 2 to 7) as described above, and the atomic ratio of In to Zn [[ In / (In + Zn)] has a requirement (i) of being a sintered body of an oxide having a ratio of 0.2 to 0.9,
Excellent conductivity and moisture resistance. Further, since the target T1 of the present invention has the requirement (ii) that the volume resistivity is 10 -2 Ωcm or less as described above, there is no problem of abnormal discharge or cracking of the target during film formation using this target. . Therefore, the target T1 of the present invention is suitable as a target for obtaining a transparent conductive film for various uses such as a transparent conductive film for a liquid crystal display element, a transparent conductive film for an EL display element and a transparent conductive film for a solar cell by a sputtering method. is there. When the target T1 of the present invention is used, ITO
It is possible to obtain a transparent conductive film that is more resistant to heat and humidity than the film and has the same conductivity and light transmittance as the ITO film.
【0020】本発明のターゲットT1は種々の方法によ
り製造することが可能であるが、後述する本発明のター
ゲットの製法P1により製造することが好ましい。The target T1 of the present invention can be manufactured by various methods, but it is preferable to manufacture it by the target manufacturing method P1 of the present invention described later.
【0021】次に、本発明のターゲットT2について説
明する。このターゲットT2は、前記ターゲットT1にお
ける酸化物の焼結体が前記六方晶層状化合物を含むとと
もに、正三価以上の原子価を有する第三元素(例えばA
l,Zr,Ga,Ge,Sn,Ti,Si)の酸化物を
全カチオン元素に対して20at%以下の割合で含有して
いる点でのみ、前記ターゲットT1と異なる。本発明の
ターゲットT2において、一般式In2O3(ZnO)
m(m=2〜7)で示される六方晶層状化合物と正三価
以上の原子価を有する第三元素の酸化物とは、六方晶層
状化合物に第三元素の酸化物が内包された状態または六
方晶層状化合物と第三元素の酸化物とが別々の状態で存
在する。本発明のターゲットT2において、全カチオン
元素に対する第三元素の割合を20at%以下に限定する
理由は、20at%を超えると、このターゲットから得ら
れる透明導電膜においてイオンの散乱が起こり、導電性
が低下し過ぎるからである。第三元素の割合は0.1〜
15at%が好ましく、0.5〜10at%が特に好まし
い。Next, the target T2 of the present invention will be described. In this target T2, the oxide sintered body in the target T1 contains the hexagonal layered compound and the third element (for example, A
It differs from the target T1 only in that it contains an oxide of (1, Zr, Ga, Ge, Sn, Ti, Si) in a proportion of 20 at% or less with respect to all the cation elements. In the target T2 of the present invention, the general formula In 2 O 3 (ZnO)
The hexagonal layered compound represented by m (m = 2 to 7) and the oxide of the third element having a valence of at least positive trivalence are a state in which the oxide of the third element is included in the hexagonal layered compound or The hexagonal layered compound and the oxide of the third element exist in separate states. In the target T2 of the present invention, the reason for limiting the ratio of the third element to the total cation element to 20 at% or less is that when it exceeds 20 at%, ion scattering occurs in the transparent conductive film obtained from this target, and the conductivity becomes low. This is because it is too low. The ratio of the third element is 0.1
15 at% is preferable, and 0.5 to 10 at% is particularly preferable.
【0022】特に第三元素がチタンである場合、全カチ
オン元素に対するチタンの割合は0.5〜10at%とす
るのが極めて好ましい。その理由は、ターゲットにおけ
る全カチオン元素に対するチタンの割合が10at%を超
えると、得られた導電膜が酸化チタン特有の褐色を呈す
るようになり、透明電極膜としての機能を果たしにくく
なるからである。また、チタンの割合が0.5at%未満
では、従来公知のターゲット焼結時における焼結助剤と
しての役割を果たすのみにとどまり、後述するような、
製膜雰囲気に依存せずに導電膜の抵抗の均一性が保持さ
れるという効果が発現しなくなるからである。チタンの
より好ましい割合は、全カチオン元素に対して1〜8at
%である。Particularly when the third element is titanium, it is extremely preferable that the ratio of titanium to all the cation elements is 0.5 to 10 at%. The reason is that when the ratio of titanium to all the cation elements in the target exceeds 10 at%, the obtained conductive film exhibits a brown color peculiar to titanium oxide, and it becomes difficult to function as a transparent electrode film. . Further, when the proportion of titanium is less than 0.5 at%, it only serves as a sintering aid at the time of conventionally known target sintering, and as will be described later,
This is because the effect of maintaining the resistance uniformity of the conductive film does not appear regardless of the film forming atmosphere. A more preferable ratio of titanium is 1 to 8 at with respect to all cationic elements.
%.
【0023】本発明のターゲットT2は、ターゲットを
構成する酸化物の焼結体が第三元素の酸化物を含むとい
う点を除けば、ターゲットT1と同一であり、従って下
記要件 (i)ターゲットを構成する酸化物の焼結体が、一般式
In2O3(ZnO)m(m=2〜7)で表される六方晶
層状化合物を含み、InとZnの原子比[In/(In
+Zn)]が0.2〜0.9である。 (ii)ターゲットの体積抵抗率が10-2Ωcm以下であ
る。 を必須要件とする。The target T2 of the present invention is the same as the target T1 except that the oxide sintered body forming the target contains the oxide of the third element. Therefore, the following requirement (i) The constituent oxide sintered body contains the hexagonal layered compound represented by the general formula In 2 O 3 (ZnO) m (m = 2 to 7), and the atomic ratio [In / (In
+ Zn)] is 0.2 to 0.9. (Ii) The target has a volume resistivity of 10 -2 Ωcm or less. Is an essential requirement.
【0024】上記要件(i)および(ii)については、
ターゲットT1において詳述したので、ここでは繰り返
し説明しないが、本発明のターゲットT2は、要件
(i)を満足することにより、得られる透明導電膜の導
電性および耐湿熱性に優れ、また要件(ii)を満足する
ことにより、製膜使用時に異常放電やターゲットの割れ
の問題がない。また本発明のターゲットT2は、前記タ
ーゲットT1と異なり、正三価以上の原子価を有する第
三元素の酸化物を含むため、得られる透明導電膜が前記
ターゲットT1を用いて得られる透明導電膜よりも導電
性に優れている。Regarding the above requirements (i) and (ii),
Since the target T1 has been described in detail, it will not be repeatedly described here, but the target T2 of the present invention satisfies the requirement (i), so that the transparent conductive film obtained has excellent conductivity and wet heat resistance, and the requirement (ii). By satisfying the condition (1), there is no problem of abnormal discharge or cracking of the target when using film formation. Further, unlike the target T1, the target T2 of the present invention contains an oxide of a third element having a valence of positive trivalence or more, and thus the obtained transparent conductive film is more transparent than the transparent conductive film obtained by using the target T1. Also has excellent conductivity.
【0025】特に、本発明のターゲットT2が第三元素
の酸化物としてチタン(Ti)の酸化物を含む場合に
は、要件(i)および(ii)に由来する上述の技術的効果お
よび第三元素の酸化物を含むことに由来する上述の技術
的効果とともに、製膜雰囲気の変動に拘らず、抵抗値の
一定な透明導電膜が得られるという顕著な技術的効果が
得られる。この技術的効果を以下に詳しく説明する。In particular, when the target T2 of the present invention contains an oxide of titanium (Ti) as the oxide of the third element, the above technical effects and the third effect derived from the requirements (i) and (ii) are obtained. In addition to the above-described technical effect derived from the inclusion of the elemental oxide, a remarkable technical effect that a transparent conductive film having a constant resistance value can be obtained regardless of the fluctuation of the film forming atmosphere. This technical effect will be described in detail below.
【0026】従来、プラスチック基板上に製膜される透
明電極膜の抵抗値の制御は、製膜時の雰囲気中の酸素濃
度を制御することにより行なっているが、雰囲気中の酸
素濃度を制御すること自体、きわめて正確性を要求され
る煩雑な操作であり、しかもプラスチック基板からの脱
離ガスの影響もあって、雰囲気中の酸素濃度の変動は不
可避であり、必ずしも一定の抵抗値の電極膜が再現性良
く得られるとは言い難かった。Conventionally, the resistance value of the transparent electrode film formed on the plastic substrate is controlled by controlling the oxygen concentration in the atmosphere during film formation, but the oxygen concentration in the atmosphere is controlled. This is a complicated operation that requires extremely high accuracy, and due to the influence of the desorbed gas from the plastic substrate, it is inevitable that the oxygen concentration in the atmosphere will fluctuate. It was hard to say that was obtained with good reproducibility.
【0027】これに対して、本発明のターゲットT2が
チタンの酸化物を含む場合、後述する実施例からも明ら
かなように、製膜時の雰囲気中の酸素濃度にほとんど依
存せずに広範囲に亘って抵抗値が均一かつ制御された透
明導電膜を得ることができる。On the other hand, when the target T2 of the present invention contains an oxide of titanium, as will be apparent from the examples described later, the target T2 does not substantially depend on the oxygen concentration in the atmosphere during film formation and can be widely used. A transparent conductive film having a uniform and controlled resistance value can be obtained.
【0028】すなわち、本発明のターゲットT2がチタ
ンの酸化物を含む場合、製膜時の雰囲気中の酸素濃度の
制御を厳密に行う必要がないだけでなく、得られた透明
導電膜の抵抗値が均一であるという二重の技術的効果が
得られる。That is, when the target T2 of the present invention contains an oxide of titanium, it is not necessary to strictly control the oxygen concentration in the atmosphere during film formation, and the resistance value of the obtained transparent conductive film is not only strictly controlled. Has the dual technical effect of being uniform.
【0029】なお、本発明のターゲットT2を構成する
焼結体の相対密度は、ターゲットT1の場合と同様の理
由により、80%以上であることが好ましく、より好ま
しくは90%以上であり、更に好ましくは95%以上で
ある。The relative density of the sintered body constituting the target T2 of the present invention is preferably 80% or more, more preferably 90% or more, for the same reason as in the case of the target T1. It is preferably at least 95%.
【0030】本発明のターゲットT2は、液晶表示素子
用透明導電膜、EL表示素子用透明導電膜、太陽電池用
透明導電膜等、種々の用途の透明導電膜をスパッタリン
グ法により得るためのターゲットとして好適である。こ
のターゲットT2を用いた場合にも、ITO膜よりも耐
湿性に優れるとともにITO膜と同等の導電性および光
透過率を有する透明導電膜を得ることができる。特にチ
タン酸化物を含むターゲットT2は、抵抗の均一性が厳
しく要求されるタッチパネル電極膜をスパッタリング法
により得るためのターゲットとして特に好適である。The target T2 of the present invention is a target for obtaining a transparent conductive film for various uses such as a transparent conductive film for liquid crystal display elements, a transparent conductive film for EL display elements, a transparent conductive film for solar cells, etc. by a sputtering method. It is suitable. Even when this target T2 is used, it is possible to obtain a transparent conductive film which is superior in moisture resistance to the ITO film and has the same conductivity and light transmittance as the ITO film. In particular, the target T2 containing titanium oxide is particularly suitable as a target for obtaining a touch panel electrode film by a sputtering method that requires strict uniformity of resistance.
【0031】ターゲットT2も種々の方法により製造す
ることが可能であるが、後述する本発明のターゲットの
製法P2により製造することが好ましい。Although the target T2 can be manufactured by various methods, it is preferably manufactured by the target manufacturing method P2 of the present invention described later.
【0032】次に、本発明のターゲットの製法P1およ
びP2について説明する。まずターゲットT1を得るため
の本発明の製法P1は、酸化インジウムと酸化亜鉛とを
混合する工程と、前記工程で得られた混合物を成型する
工程と、前記工程で得られた成型物を焼結する工程と、
前記工程で得られた焼結物をアニーリングする工程とを
含むことを特徴とする。Next, the manufacturing method P1 and P2 of the target of the present invention will be described. First, the manufacturing method P1 of the present invention for obtaining the target T1 is the step of mixing indium oxide and zinc oxide, the step of molding the mixture obtained in the above step, and the step of sintering the molded article obtained in the above step. And the process of
A step of annealing the sintered product obtained in the above step.
【0033】製法P1において原料として用いる酸化イ
ンジウムおよび酸化亜鉛の純度は99%以上であるのが
好ましく、より好ましくは99.9%以上、特に好まし
くは99.99%以上である。99%未満では焼結して
も緻密な焼結体が得られず、また得られたターゲットの
体積抵抗率が高い等の問題を生ずる。The purity of indium oxide and zinc oxide used as raw materials in the production method P1 is preferably 99% or more, more preferably 99.9% or more, and particularly preferably 99.99% or more. If it is less than 99%, a dense sintered body cannot be obtained even if it is sintered, and the obtained target has a high volume resistivity.
【0034】また、酸化インジウムおよび酸化亜鉛の平
均粒径は0.01〜10μmであるのが好ましく、より
好ましくは0.05〜5μm、特に好ましくは0.1〜
5μmである。0.01μm未満では凝集しやすく、10
μmを超えると酸化インジウムと酸化亜鉛の混合性が悪
く、焼結しても、緻密な焼結体が得られない。The average particle size of indium oxide and zinc oxide is preferably 0.01 to 10 μm, more preferably 0.05 to 5 μm, and particularly preferably 0.1 to 5 μm.
5 μm. If it is less than 0.01 μm, it easily aggregates.
If it exceeds μm, the mixing property of indium oxide and zinc oxide is poor, and a dense sintered body cannot be obtained even if sintered.
【0035】なお、原料粉末の粒径が10μmを超える
場合には、ボールミル、ロールミル、パールミル、ジェ
ットミル等を用い、平均粒径が上記範囲内に入るように
調整して用いることもできる。When the particle size of the raw material powder exceeds 10 μm, a ball mill, a roll mill, a pearl mill, a jet mill or the like may be used to adjust the average particle size to fall within the above range.
【0036】以下、混合工程、成型工程、焼結工程およ
びアニーリング工程の順で説明する。The mixing step, molding step, sintering step and annealing step will be described below in this order.
【0037】(1)混合工程 混合は、酸化インジウムと酸化亜鉛の粉末をボールミ
ル、ジェットミル、パールミル等の混合器に入れ、これ
らを混ぜ合せることにより行うのが好ましい。混合時間
は1〜100時間が好ましく、より好ましくは5〜50
時間、特に好ましくは10〜50時間である。1時間未
満では混合が十分ではなく、100時間を超えると経済
的でない。混合温度は特に制限はなく、室温が好まし
い。(1) Mixing Step Mixing is preferably carried out by placing powders of indium oxide and zinc oxide in a mixer such as a ball mill, jet mill or pearl mill and mixing them. The mixing time is preferably 1 to 100 hours, more preferably 5 to 50 hours.
The time is particularly preferably 10 to 50 hours. If it is less than 1 hour, the mixing is not sufficient, and if it exceeds 100 hours, it is not economical. The mixing temperature is not particularly limited, and room temperature is preferable.
【0038】混合後の酸化インジウムと酸化亜鉛の混合
粉末は六方晶層状化合物の生成を促進するため仮焼処理
してもよい。仮焼温度は800〜1500℃が好まし
く、より好ましくは900〜1400℃、特に好ましく
は1000〜1300℃である。800℃未満では六方
晶層状化合物が生成せず、1500℃を超えると酸化イ
ンジウム又は酸化亜鉛の蒸発が起こる。仮焼時間は1〜
100時間が好ましく、より好ましくは2〜50時間、
特に好ましくは3〜30時間である。1時間未満では六
方晶層状化合物の生成が十分起こらず、100時間を超
えると経済的でない。The mixed powder of indium oxide and zinc oxide after mixing may be subjected to a calcination treatment in order to promote the formation of the hexagonal layered compound. The calcination temperature is preferably 800 to 1500 ° C, more preferably 900 to 1400 ° C, and particularly preferably 1000 to 1300 ° C. When the temperature is lower than 800 ° C, a hexagonal layered compound is not formed, and when the temperature exceeds 1500 ° C, indium oxide or zinc oxide is evaporated. Calcination time is 1
100 hours is preferable, more preferably 2 to 50 hours,
Particularly preferably, it is 3 to 30 hours. If it is less than 1 hour, the hexagonal layered compound is not sufficiently formed, and if it exceeds 100 hours, it is not economical.
【0039】仮焼物は粒径を上記0.01〜10μmの
範囲にするため、粉砕を行うのが好ましい。粉砕は混合
と同じ方法で行う。また、六方晶層状化合物の生成を促
進する為、仮焼と粉砕を繰り返した方がよい。The calcined product is preferably pulverized so that the particle size is in the range of 0.01 to 10 μm. Grinding is done in the same way as mixing. Moreover, it is better to repeat the calcination and the pulverization in order to promote the formation of the hexagonal layered compound.
【0040】酸化インジウムと酸化亜鉛の混合粉末又は
仮焼粉末は成型時の流動性や充填性の改善のため造粒処
理してもよい。造粒はスプレードライヤー等の常法で行
う。スプレードライ法で行う場合には粉末の水溶液又は
アルコール溶液等を用いて行い、溶液に混ぜるバインダ
ーとしてはポリビニルアルコール等を用いる。造粒条件
は溶液濃度、バインダーの添加量によっても異なるが、
造粒物の平均粒径が1〜100μm、好ましくは5〜1
00μm、特に好ましくは10〜100μmになるように
調節する。造粒物の平均粒径が100μmを超えると成
型時の流動性や充填性が悪く、造粒の効果がない。The mixed powder of indium oxide and zinc oxide or the calcined powder may be granulated to improve the fluidity and the filling property during molding. Granulation is performed by a conventional method such as a spray dryer. When the spray drying method is used, an aqueous solution of powder or an alcohol solution is used, and polyvinyl alcohol or the like is used as a binder to be mixed with the solution. Granulation conditions vary depending on the solution concentration and the amount of binder added,
The average particle size of the granulated product is 1 to 100 μm, preferably 5 to 1
The thickness is adjusted to 00 μm, particularly preferably 10 to 100 μm. When the average particle size of the granulated product exceeds 100 μm, the fluidity and filling property during molding are poor and the granulation effect is not obtained.
【0041】(2)成型工程 酸化インジウムと酸化亜鉛の混合粉末、仮焼粉末または
造粒粉末の成型は、金型成型、鋳込み成型または射出成
型等により行われるが、焼結密度の高い焼結体を得るた
めにはCIP(冷間静水圧)等で成型する。成型体の形
状はターゲットとして好適な各種形状とすることが出来
る。また、成型助剤にポリビニルアルコール、メチルセ
ルロース、ポリワックス、オレイン酸等を用いてもよ
い。成型圧力は、10kg/cm2〜100t/cm2が好まし
く、より好ましくは100kg/cm2〜100t/cm2であ
る。また成型時間は10分〜10時間が好ましい。成型
圧力が10kg/cm2未満である場合、成型時間が10分
未満である場合には、焼結後に得られる焼結体の密度を
高めることができない。(2) Forming Step The mixed powder of indium oxide and zinc oxide, the calcined powder or the granulated powder is formed by die molding, casting molding, injection molding or the like, but with high sintering density. In order to obtain a body, it is molded by CIP (cold isostatic pressure) or the like. The shape of the molded body can be various shapes suitable as a target. Further, polyvinyl alcohol, methyl cellulose, polywax, oleic acid or the like may be used as a molding aid. The molding pressure is preferably 10 kg / cm 2 to 100 t / cm 2 , and more preferably 100 kg / cm 2 to 100 t / cm 2 . The molding time is preferably 10 minutes to 10 hours. When the molding pressure is less than 10 kg / cm 2 and the molding time is less than 10 minutes, the density of the sintered body obtained after sintering cannot be increased.
【0042】(3)焼結工程 成型物の焼結は常圧焼成で行うのが好ましい。他の焼結
方法としてHIP(熱間静水圧)焼結、ホットプレス焼
結等があるが、経済性の面で常圧焼結の方が優れてい
る。(3) Sintering Step Sintering of the molded product is preferably performed by normal pressure firing. Other sintering methods include HIP (hot isostatic pressing) sintering and hot press sintering, but atmospheric pressure sintering is superior in terms of economy.
【0043】焼結温度は1200〜1600℃が好まし
く、より好ましくは1250〜1550℃、更に好まし
くは1300〜1500℃である。1200℃未満では
六方晶層状化合物In2O3(ZnO)m(m=2〜7)
が生成せず、1600℃を超えると酸化インジウム又は
酸化亜鉛が昇華し、組成のずれを生じたり、生成する六
方晶層状化合物In2O3(ZnO)mのmが7より大き
くなり、得られる焼結体の体積抵抗率が増加する。The sintering temperature is preferably 1200 to 1600 ° C, more preferably 1250 to 1550 ° C, and further preferably 1300 to 1500 ° C. If the temperature is less than 1200 ° C., the hexagonal layered compound In 2 O 3 (ZnO) m (m = 2 to 7)
Is not generated and indium oxide or zinc oxide is sublimated at a temperature higher than 1600 ° C., compositional deviation occurs, or m of hexagonal layered compound In 2 O 3 (ZnO) m generated is larger than 7 and obtained. The volume resistivity of the sintered body increases.
【0044】焼結時間は焼結温度にもよるが、1〜50
時間が好ましく、より好ましくは2〜30時間、特に好
ましくは3〜20時間である。1時間未満では六方晶層
状化合物の生成及び焼結が十分に行われず、50時間を
超えると経済的でない。焼結時の雰囲気は空気中または
還元雰囲気である。還元雰囲気としては、H2、メタ
ン、CO等の還元性ガス、Ar、N2等の不活性ガスの
雰囲気が挙げられる。Although the sintering time depends on the sintering temperature, it is 1 to 50.
The time is preferably, more preferably 2 to 30 hours, particularly preferably 3 to 20 hours. If it is less than 1 hour, the formation and sintering of the hexagonal layered compound are not sufficiently performed, and if it exceeds 50 hours, it is not economical. The atmosphere during sintering is air or a reducing atmosphere. Examples of the reducing atmosphere include reducing gas atmospheres such as H 2 , methane and CO, and inert gas atmospheres such as Ar and N 2 .
【0045】(4)アニーリング工程 本アニーリング工程は、前工程で得られた焼結物の体積
抵抗率を低下させ、体積抵抗率が10-2Ωcm以下である
ターゲットを得るために必須の工程であり、本発明の製
法P1における特徴的工程である。このアニーリング工
程は、焼結炉、ホットプレス還元炉などの炉中で真空又
は還元雰囲気で行われる。(4) Annealing Step This annealing step is an essential step for lowering the volume resistivity of the sintered product obtained in the previous step and obtaining a target having a volume resistivity of 10 -2 Ωcm or less. Yes, this is a characteristic step in the manufacturing method P1 of the present invention. This annealing step is performed in a furnace such as a sintering furnace or a hot press reduction furnace in a vacuum or a reducing atmosphere.
【0046】還元雰囲気としては、H2、メタン、CO
等の還元性ガス、Ar、N2等の不活性ガスの雰囲気が
挙げられる。アニーリング温度は200〜1000℃が
好ましく、より好ましくは300〜1000℃、更に好
ましくは400〜1000℃である。200℃未満では
十分な還元が行われず、1000℃を超えると経済的で
ない。アニーリング時間は1〜50時間が好ましく、よ
り好ましくは2〜30時間、更に好ましくは3〜20時
間である。1時間未満では十分な還元が行われず、50
時間を超えると経済的でない。As the reducing atmosphere, H 2 , methane, CO
Examples of the atmosphere include a reducing gas such as Ar and N, an inert gas such as Ar and N 2 . The annealing temperature is preferably 200 to 1000 ° C, more preferably 300 to 1000 ° C, and further preferably 400 to 1000 ° C. If it is less than 200 ° C, sufficient reduction is not carried out, and if it exceeds 1000 ° C, it is not economical. The annealing time is preferably 1 to 50 hours, more preferably 2 to 30 hours, and further preferably 3 to 20 hours. In less than 1 hour, sufficient reduction is not performed
It is not economical when it exceeds time.
【0047】また、真空中でアニーリングを行う場合の
アニーリング温度は、200〜1000℃が好ましく、
より好ましくは200〜700℃、更に好ましくは20
0〜500℃である。200℃未満では十分な還元が行
われず1000℃を超えると、焼結体中のZnOあるい
はIn2O3の蒸発が起り、組成のずれを生じる。アニー
リングを真空中で行う場合の時間は上記と同様に1〜5
0時間が好ましく、より好ましくは2〜30時間、更に
好ましくは3〜20時間である。The annealing temperature for annealing in vacuum is preferably 200 to 1000 ° C.,
More preferably 200 to 700 ° C., still more preferably 20.
0-500 ° C. If the temperature is lower than 200 ° C., sufficient reduction is not performed, and if the temperature exceeds 1000 ° C., ZnO or In 2 O 3 in the sintered body is evaporated, resulting in a composition shift. When annealing is performed in vacuum, the time is 1 to 5 as above.
It is preferably 0 hours, more preferably 2 to 30 hours, further preferably 3 to 20 hours.
【0048】アニーリング処理後の焼結体は、アニーリ
ング前に比べ色が黒色化する。The color of the sintered body after the annealing treatment becomes blacker than that before the annealing.
【0049】このアニーリング処理により、体積抵抗率
が10-2Ωcm以下であり、製膜使用時に異常放電や割れ
の問題が生じない本発明のターゲットT1が得られる。
製法P1により得られたターゲットT1は体積抵抗率が1
0-2Ωcm以下であり、上記異常放電やターゲットの割れ
の問題を解消しているとともに、ターゲットを構成する
酸化物の焼結体が、一般式In2O3(ZnO)m(m=
2〜7)で表される六方晶層状化合物を含み、InとZ
nの原子比[In/(In+Zn)]が0.2〜0.9
であることから、このターゲットを用いて得られる透明
導電膜の導電性および耐湿熱性に優れていることは既に
述べたとおりである。By this annealing treatment, the target T1 of the present invention having a volume resistivity of 10 -2 Ωcm or less and free from problems such as abnormal discharge and cracking during the use of film formation can be obtained.
The target T1 obtained by the manufacturing method P1 has a volume resistivity of 1
It is 0 -2 Ωcm or less, which solves the above-mentioned problems of abnormal discharge and cracking of the target, and the sintered body of the oxide constituting the target has a general formula of In 2 O 3 (ZnO) m (m =
2 to 7) containing a hexagonal layered compound, and In and Z
The atomic ratio [In / (In + Zn)] of n is 0.2 to 0.9.
Therefore, it is already described that the transparent conductive film obtained by using this target is excellent in conductivity and resistance to moist heat.
【0050】次に、本発明の製法P2について説明す
る。ターゲットT2を得るための本発明の製法P2は、混
合工程において酸化インジウムと酸化亜鉛に、正三価以
上の原子価を有する第三元素の酸化物を加えて混合させ
て混合物を得る点でのみ上記製法P1と基本的に異な
り、他は上記製法P1と同様に行うものである。Next, the manufacturing method P2 of the present invention will be described. The manufacturing method P2 of the present invention for obtaining the target T2 is described above only in the point that a mixture of indium oxide and zinc oxide is mixed with an oxide of a third element having a valence of positive trivalence or more to obtain a mixture. Basically, the manufacturing method is different from the manufacturing method P1 except that the manufacturing method P1 is the same.
【0051】従って原料として第三元素の酸化物を用い
る点についてのみ詳しく説明し、混合工程、成型工程、
焼結工程およびアニーリング工程の説明は省略する。Therefore, only the point of using the oxide of the third element as the raw material will be described in detail, and the mixing step, molding step,
The description of the sintering process and the annealing process is omitted.
【0052】製法P2において原料として酸化インジウ
ムおよび酸化亜鉛とともに用いる第三元素の酸化物は正
三価以上の原子価を有する元素の酸化物であり、その具
体例として、Al、Zr、Ga、Ge、Sn、Ti、S
iなどの酸化物が挙げられる。The oxide of the third element used together with indium oxide and zinc oxide as a raw material in the manufacturing method P2 is an oxide of an element having a valence of positive trivalence or more, and specific examples thereof include Al, Zr, Ga, Ge, Sn, Ti, S
Examples thereof include oxides such as i.
【0053】第三元素の酸化物の純度は99%以上が好
ましく、より好ましくは99.9%以上、特に好ましく
は99.99%以上である。99%未満では焼結しても
緻密な焼結体が得られず、得られたターゲットの体積抵
抗率が高い等の問題を生ずる。The purity of the oxide of the third element is preferably 99% or more, more preferably 99.9% or more, and particularly preferably 99.99% or more. If it is less than 99%, a dense sintered body cannot be obtained even if it is sintered, and problems such as high volume resistivity of the obtained target occur.
【0054】また、第三元素の酸化物の平均粒径は0.
01〜10μmが好ましく、より好ましくは0.05〜
5μm、特に好ましくは0.1〜5μmである。0.01
μm未満では凝集しやすく、10μmを超えると混合性が
悪く、焼結しても、緻密な焼結体が得られない。なお、
原料粉末の粒径が10μmを超える場合には、ボールミ
ル、ロールミル、パールミル、ジェットミル等を用い、
平均粒径が上記範囲内に入るように調整して用いること
もできる。The average particle size of the oxide of the third element is 0.
01 to 10 μm is preferable, and more preferably 0.05 to
It is 5 μm, particularly preferably 0.1 to 5 μm. 0.01
If it is less than μm, it tends to aggregate, and if it exceeds 10 μm, the mixing property is poor, and a dense sintered body cannot be obtained even if it is sintered. In addition,
If the particle size of the raw material powder exceeds 10 μm, use a ball mill, roll mill, pearl mill, jet mill, etc.
It can also be used by adjusting so that the average particle diameter falls within the above range.
【0055】酸化インジウムおよび酸化亜鉛に対する第
三元素の酸化物の添加量は、得られたターゲットにおけ
る全カチオン元素に対して第三元素が20at%以下とな
るような量に定められる。その理由は、既に述べたよう
にターゲットにおける全カチオン元素に対する第三元素
の割合が20at%を超えると、ターゲットから得られる
透明導電膜においてイオンの散乱が起こり、導電性が低
下し過ぎるからである。The amount of the oxide of the third element added to indium oxide and zinc oxide is determined so that the content of the third element is 20 at% or less with respect to all the cation elements in the obtained target. The reason is that, as described above, when the ratio of the third element to all the cation elements in the target exceeds 20 at%, scattering of ions occurs in the transparent conductive film obtained from the target, resulting in too low conductivity. .
【0056】第三元素の酸化物の添加量は、ターゲット
における全カチオン元素に対する第三元素の割合が0.
1〜15at%となる量にするのが好ましく、0.5〜1
0at%となる量にするのが特に好ましい。The amount of the third element oxide added is such that the ratio of the third element to all the cation elements in the target is 0.
The amount is preferably 1 to 15 at%, 0.5 to 1
An amount of 0 at% is particularly preferable.
【0057】特に第三元素の酸化物としてチタンの酸化
物を用いる場合には、チタンの酸化物の添加量は、得ら
れたターゲットにおける全カチオン元素に対してチタン
が0.5〜10at%となる量がきわめて好ましい。チタ
ンの酸化物の添加量として上記範囲がきわめて好ましい
理由は、既に述べたように、全カチオン元素に対するチ
タンの割合が0.5〜10at%の範囲にあると製膜雰囲
気に依存せずに抵抗の均一な透明導電膜が得られるから
である。チタンの酸化物の添加量は、チタンが全カチオ
ン元素に対して1〜8at%にある量がさらに好ましい。Particularly when titanium oxide is used as the third element oxide, the amount of titanium oxide added is 0.5 to 10 at% of titanium with respect to all the cation elements in the obtained target. Is highly preferred. The reason why the above range is extremely preferable as the amount of titanium oxide added is that, as described above, when the ratio of titanium to the total cation elements is in the range of 0.5 to 10 at%, the resistance is independent of the film forming atmosphere. The reason is that a uniform transparent conductive film can be obtained. The amount of titanium oxide added is more preferably 1 to 8 at% of titanium with respect to all cationic elements.
【0058】製法P2により得られたターゲットT2は、
既に述べたように、ターゲットを構成する酸化物の焼結
体が、一般式In2O3(ZnO)m(m=2〜7)で表
される六方晶層状化合物を含み、InとZnの原子比
[In/(In+Zn)]が0.2〜0.9であるとい
う要件をも有するので、このターゲットから得られる透
明導電膜は導電性および耐湿熱性に優れている。また正
三価以上の原子価を有する第三元素の酸化物を、全カチ
オン元素に対して第三元素が20at%以下の割合となる
ように含むため、得られる透明導電膜が前記ターゲット
T1を用いて得られる透明導電膜よりも導電性に優れて
いる。さらに体積抵抗率が10-2Ωcm以下であるため、
製膜使用時に異常放電やターゲットの割れの問題がない
という利点を有する。The target T2 obtained by the manufacturing method P2 is
As described above, the sintered body of the oxide constituting the target contains the hexagonal layered compound represented by the general formula In 2 O 3 (ZnO) m (m = 2 to 7) and is composed of In and Zn. Since it also has a requirement that the atomic ratio [In / (In + Zn)] is 0.2 to 0.9, the transparent conductive film obtained from this target has excellent conductivity and wet heat resistance. Further, since the oxide of the third element having a valence of positive trivalence or more is contained so that the ratio of the third element is 20 at% or less with respect to all the cation elements, the obtained transparent conductive film uses the target T1. It is superior in conductivity to the transparent conductive film obtained by the above. Furthermore, since the volume resistivity is 10 -2 Ωcm or less,
It has an advantage that there is no problem of abnormal discharge or cracking of the target when the film is used.
【0059】また製法P2により得られたターゲットT2
が、第三元素の酸化物としてチタンの酸化物を含む場
合、透明導電膜製膜時の雰囲気中の酸素濃度に殆ど影響
されずに、抵抗値の均一性に優れた透明導電膜が得られ
るという利点を有する。The target T2 obtained by the manufacturing method P2
However, when a titanium oxide is contained as the oxide of the third element, a transparent conductive film having excellent resistance uniformity can be obtained without being substantially affected by the oxygen concentration in the atmosphere during the formation of the transparent conductive film. Has the advantage.
【0060】[0060]
【実施例】以下実施例により本発明をさらに説明する
が、予め、実施例において用いた組成分析方法、結晶構
造の確認方法、体積抵抗率の測定方法およびターゲット
を製膜に使用したときの異常放電、ターゲットの割れの
観察方法を説明しておく。EXAMPLES The present invention will be further described with reference to the following examples. The composition analysis method, the crystal structure confirmation method, the volume resistivity measurement method, and the abnormality when the target was used for film formation were used in the examples in advance. The method of observing discharge and target cracking will be described.
【0061】〈組成分析〉セイコー電子工業(株)製S
PS−1500VRを用いたICP分析(誘導結合プラ
ズマ発光分光分析)により行った。<Composition analysis> S manufactured by Seiko Instruments Inc.
It was performed by ICP analysis (inductively coupled plasma optical emission spectroscopy) using PS-1500VR.
【0062】〈結晶構造の確認〉リガク(株)製のX線
回折測定装置を用いて行った。<Confirmation of Crystal Structure> This was carried out using an X-ray diffraction measuring device manufactured by Rigaku Corporation.
【0063】〈体積抵抗率の測定方法〉20mm×40mm
×5mmの焼結体のテストピースを作成し、4端子法によ
り測定した。<Measurement method of volume resistivity> 20 mm × 40 mm
A test piece of a sintered body of × 5 mm was prepared and measured by the 4-terminal method.
【0064】〈ターゲット製膜使用時の異常放電、割れ
の観察方法〉4インチターゲットを用いDCスパッタリ
ング装置により5W/cm2で製膜を行い、異常放電の有
無、ターゲットの割れの有無を観察した。<Method of Observing Abnormal Electric Discharge and Crack when Using Target Film Formation> Film formation was performed with a DC sputtering apparatus at 5 W / cm 2 using a 4-inch target, and the presence or absence of abnormal discharge and the presence or absence of cracks in the target were observed. .
【0065】(ターゲット製造例1)純度99.99%
の酸化インジウム粉末(平均粒径1μm)260gと純
度99.99%の酸化亜鉛粉末(平均粒径1μm)40
gをエタノール、アルミナボールと共にポリイミド製ポ
ットに入れ、遊星ボールミルで2時間混合した。得られ
た混合粉末を金型に入れ、金型プレス成型機で100kg
/cm2の圧力で予備成型を行った。次に冷間静水圧プレ
ス成型機により、4t/cm2の圧力で圧密化した後、焼
結炉で空気雰囲気中1300℃で4時間焼結した。得ら
れた焼結体を真空焼結炉を用い真空中500℃で更に2
時間熱処理してアニーリングした。得られた焼結体の結
晶構造をX線回折により測定したところ、In2O3(Z
nO)3の六方晶層状化合物と、In2O3の生成が認め
られた。また、ICP分析により組成分析を行ったとこ
ろ、原子比In/(In+Zn)は0.80であった。
また、焼結体密度は95%であった。(Target production example 1) Purity 99.99%
Oxide powder (average particle size 1 μm) 260 g and zinc oxide powder with a purity of 99.99% (average particle size 1 μm) 40
g was put in a polyimide pot together with ethanol and alumina balls, and mixed for 2 hours with a planetary ball mill. Put the resulting mixed powder in a mold and press the mold press machine for 100kg.
Preforming was performed at a pressure of / cm 2 . Next, the product was consolidated with a cold isostatic press molding machine at a pressure of 4 t / cm 2 , and then sintered in an air atmosphere at 1300 ° C. for 4 hours in a sintering furnace. The obtained sintered body is further subjected to 2 at 500 ° C. in a vacuum using a vacuum sintering furnace.
Annealed by heat treatment for a period of time. When the crystal structure of the obtained sintered body was measured by X-ray diffraction, In 2 O 3 (Z
Formation of a hexagonal layered compound of nO) 3 and In 2 O 3 was observed. Further, when the composition was analyzed by ICP analysis, the atomic ratio In / (In + Zn) was 0.80.
The density of the sintered body was 95%.
【0066】(ターゲット製造例2)純度99.99%
の酸化インジウム粉末(平均粒径1μm)260gと純
度99.99%の酸化亜鉛粉末(平均粒径1μm)40
gをエタノール、アルミナボールと共にポリイミド製ポ
ットに入れ、遊星ボールミルで2時間混合した。得られ
た混合粉末を1000℃で5時間焼成後、再度遊星ボー
ルミルで2時間混合した。得られた混合粉末を金型に入
れ、金型プレス成型機で100kg/cm2の圧力で予備成
型を行った。次に冷間静水圧プレス成型機により、4t
/cm2の圧力で圧密化した後、焼結炉で空気雰囲気中1
300℃で4時間焼結した。得られた焼結体を真空焼結
炉を用い真空中500℃で更に2時間熱処理してアニー
リングした。得られた焼結体の結晶構造をX線回折によ
り測定したところ、In2O3(ZnO)3の六方晶層状
化合物と、In2O3の生成が認められた。また、ICP
分析により組成分析を行ったところ、原子比In/(I
n+Zn)は0.81であった。また、焼結体密度は9
5%であった。(Target production example 2) Purity 99.99%
Oxide powder (average particle size 1 μm) 260 g and zinc oxide powder with a purity of 99.99% (average particle size 1 μm) 40
g was put in a polyimide pot together with ethanol and alumina balls, and mixed for 2 hours with a planetary ball mill. The obtained mixed powder was fired at 1000 ° C. for 5 hours and then mixed again for 2 hours with a planetary ball mill. The obtained mixed powder was put into a mold and pre-molded by a mold press molding machine at a pressure of 100 kg / cm 2 . Next, with a cold isostatic press molding machine, 4t
1) in a sintering furnace in an air atmosphere after consolidation at a pressure of / cm 2
Sintered at 300 ° C. for 4 hours. The obtained sintered body was annealed by further heat-treating it in vacuum at 500 ° C. for 2 hours using a vacuum sintering furnace. When the crystal structure of the obtained sintered body was measured by X-ray diffraction, formation of In 2 O 3 (ZnO) 3 hexagonal layered compound and In 2 O 3 were confirmed. Also, ICP
When the composition analysis was performed by analysis, the atomic ratio In / (I
n + Zn) was 0.81. Also, the density of the sintered body is 9
5%.
【0067】(ターゲット製造例3)純度99.99%
の酸化インジウム粉末(平均粒径1μm)260gと純
度99.99%の酸化亜鉛粉末(平均粒径1μm)40
gをエタノール、アルミナボールと共にポリイミド製ポ
ットに入れ、遊星ボールミルで2時間混合した。得られ
た混合粉末を1000℃で5時間焼成後、再度遊星ボー
ルミルで2時間混合した。得られた混合粉末に水とポリ
ビニルアルコールを添加し、混合後、スプレードライヤ
ーで造粒した。得られた造粒物は平均粒径10μmの球
状粉末であった。得られた造粒粉末を金型に入れ、金型
プレス成型機で100kg/cm2の圧力で予備成型を行っ
た。次に冷間静水圧プレス成型機により、4t/cm2の
圧力で圧密化した後、焼結炉で空気雰囲気中1300℃
で4時間焼結した。得られた焼結体を真空焼結炉を用い
真空中500℃で更に2時間熱処理してアニーリングし
た。得られた焼結体の結晶構造をX線回折により測定し
たところ、In2O3(ZnO)3の六方晶層状化合物
と、In2O3の生成が認められた。また、ICP分析に
より組成分析を行ったところ、原子比In/(In+Z
n)は0.81であった。また、焼結体密度は97%で
あった。(Target production example 3) Purity 99.99%
Oxide powder (average particle size 1 μm) 260 g and zinc oxide powder with a purity of 99.99% (average particle size 1 μm) 40
g was put in a polyimide pot together with ethanol and alumina balls, and mixed for 2 hours with a planetary ball mill. The obtained mixed powder was fired at 1000 ° C. for 5 hours and then mixed again for 2 hours with a planetary ball mill. Water and polyvinyl alcohol were added to the obtained mixed powder, and after mixing, the mixture was granulated with a spray dryer. The obtained granulated product was a spherical powder having an average particle size of 10 μm. The obtained granulated powder was put in a mold and pre-molded by a mold press molding machine at a pressure of 100 kg / cm 2 . Next, after compacting with a pressure of 4 t / cm 2 by a cold isostatic press molding machine, 1300 ° C. in an air atmosphere in a sintering furnace.
Sintered for 4 hours. The obtained sintered body was annealed by further heat-treating it in vacuum at 500 ° C. for 2 hours using a vacuum sintering furnace. When the crystal structure of the obtained sintered body was measured by X-ray diffraction, formation of In 2 O 3 (ZnO) 3 hexagonal layered compound and In 2 O 3 were confirmed. In addition, when the composition was analyzed by ICP analysis, the atomic ratio In / (In + Z
n) was 0.81. The density of the sintered body was 97%.
【0068】(ターゲット製造例4)純度99.99%
の酸化インジウム粉末(平均粒径1μm)254gと純
度99.99%の酸化亜鉛粉末(平均粒径1μm)39
gと純度99.99%の酸化スズ粉末(平均粒径1μ
m)7gをエタノール、アルミナボールと共にポリイミ
ド製ポットに入れ、遊星ボールミルで2時間混合した。
得られた混合粉末を金型に入れ、金型プレス成型機で1
00kg/cm2の圧力で予備成型を行った。次に冷間静水
圧プレス成型機により、4t/cm2の圧力で圧密化した
後、焼結炉で空気雰囲気中1300℃で4時間焼結し
た。得られた焼結体を真空焼結炉を用い真空中500℃
で更に2時間熱処理してアニーリングした。得られた焼
結体の結晶構造をX線回折により測定したところ、In
2O3(ZnO)3の六方晶層状化合物と、In2O3の生
成が認められた。また、ICP分析により組成分析を行
ったところ、原子比In/(In+Zn)は0.80で
あった。また全カチオン元素に対するSnの割合は4at
%であった。焼結体密度は95%であった。(Target production example 4) Purity 99.99%
254 g of indium oxide powder (average particle size 1 μm) and zinc oxide powder with a purity of 99.99% (average particle size 1 μm) 39
g and 99.99% purity tin oxide powder (average particle size 1μ
m) 7 g was put into a polyimide pot together with ethanol and alumina balls, and mixed for 2 hours with a planetary ball mill.
The obtained mixed powder is put into a mold, and the mixture is pressed with a mold press molding machine.
Preforming was performed at a pressure of 00 kg / cm 2 . Next, the product was consolidated with a cold isostatic press molding machine at a pressure of 4 t / cm 2 , and then sintered in an air atmosphere at 1300 ° C. for 4 hours in a sintering furnace. The obtained sintered body is vacuumed at 500 ° C. in a vacuum sintering furnace.
Then, it was annealed by further heat-treating for 2 hours. The crystal structure of the obtained sintered body was measured by X-ray diffraction.
The formation of hexagonal layered compound of 2 O 3 (ZnO) 3 and In 2 O 3 was observed. Further, when the composition was analyzed by ICP analysis, the atomic ratio In / (In + Zn) was 0.80. The ratio of Sn to all cation elements is 4 at
%Met. The sintered body density was 95%.
【0069】上記ターゲット製造例1〜4で得られたタ
ーゲットの結晶構造、組成および焼結体密度を表1に示
す。Table 1 shows the crystal structure, composition and sintered body density of the targets obtained in the above Target Production Examples 1 to 4.
【0070】[0070]
【表1】 [Table 1]
【0071】(ターゲット製造例5〜16)表2に示す
ようにIn2O3、ZnOおよび第三元素酸化物を所定量
用いた以外は、表2に示すようにターゲット製造例1〜
4のいずれかの方法を用いてターゲットを製造した。表
2に原料の使用量、製造方法およびターゲットの物性を
示す。Target Production Examples 5 to 16 Target Production Examples 1 to 1 as shown in Table 2 except that a predetermined amount of In 2 O 3 , ZnO and a third element oxide were used as shown in Table 2.
A target was manufactured by using any one of the methods of 4 above. Table 2 shows the amount of raw materials used, the production method, and the physical properties of the target.
【0072】[0072]
【表2】 [Table 2]
【0073】(比較ターゲット製造例1)純度99.9
9%の酸化インジウム粉末(平均粒径1μm)30gと
純度99.99%の酸化亜鉛粉末(平均粒径1μm)2
70gをエタノール、アルミナボールと共にポリイミド
製ポットに入れ、遊星ボールミルで2時間混合した。得
られた混合粉末を金型に入れ、金型プレス成型機で10
0kg/cm2の圧力で予備成型を行った。次に冷間静水圧
プレス成型機により、4t/cm2の圧力で圧密化した
後、焼結炉で空気雰囲気中1300℃で4時間焼結し
た。得られた焼結体を真空焼結炉を用い真空中500℃
で更に2時間熱処理してアニーリングした。得られた焼
結体の結晶構造をX線回折により測定したところ、In
2O3(ZnO)5およびIn2O3(ZnO)7の六方晶層
状化合物と、In2O3の生成が認められた。また、IC
P分析により組成分析を行ったところ、原子比In/
(In+Zn)は0.15であった。また、焼結体密度
は95%であった。(Comparative Target Production Example 1) Purity 99.9
30 g of 9% indium oxide powder (average particle size 1 μm) and 99.99% pure zinc oxide powder (average particle size 1 μm) 2
70 g of ethanol and alumina balls were put in a polyimide pot and mixed for 2 hours with a planetary ball mill. The obtained mixed powder is put into a mold, and is pressed by a mold press molding machine.
Preforming was performed at a pressure of 0 kg / cm 2 . Next, the product was consolidated with a cold isostatic press molding machine at a pressure of 4 t / cm 2 , and then sintered in an air atmosphere at 1300 ° C. for 4 hours in a sintering furnace. The obtained sintered body is vacuumed at 500 ° C. in a vacuum sintering furnace.
Then, it was annealed by further heat-treating for 2 hours. The crystal structure of the obtained sintered body was measured by X-ray diffraction.
Formation of hexagonal layered compounds of 2 O 3 (ZnO) 5 and In 2 O 3 (ZnO) 7 and In 2 O 3 was observed. Also, IC
When the composition was analyzed by P analysis, the atomic ratio In /
(In + Zn) was 0.15. The density of the sintered body was 95%.
【0074】(比較ターゲット製造例2)純度99.9
9%の酸化インジウム粉末(平均粒径1μm)260g
と純度99.99%の酸化亜鉛粉末(平均粒径1μm)
40gをエタノール、アルミナボールと共にポリイミド
製ポットに入れ、遊星ボールミルで2時間混合した。得
られた混合粉末を金型に入れ、金型プレス成型機で10
0kg/cm2の圧力で予備成型を行った。次に冷間静水圧
プレス成型機により、4t/cm2の圧力で圧密化した
後、焼結炉で空気雰囲気中1300℃で4時間焼結し
た。本比較例では焼結物のアニーリングは行わなかっ
た。得られた焼結体の結晶構造をX線回折により測定し
たところ、In2O3(ZnO)3の六方晶層状化合物
と、In2O3の生成が認められた。また、ICP分析に
より組成分析を行ったところ、原子比In/(In+Z
n)は0.80であった。また、焼結体密度は95%で
あった。(Comparative Target Production Example 2) Purity 99.9
260 g of 9% indium oxide powder (average particle size 1 μm)
And 99.99% pure zinc oxide powder (average particle size 1 μm)
40 g was put in a polyimide pot together with ethanol and alumina balls, and mixed for 2 hours with a planetary ball mill. The obtained mixed powder is put into a mold, and is pressed by a mold press molding machine.
Preforming was performed at a pressure of 0 kg / cm 2 . Next, the product was consolidated with a cold isostatic press molding machine at a pressure of 4 t / cm 2 , and then sintered in an air atmosphere at 1300 ° C. for 4 hours in a sintering furnace. In this comparative example, the sintered product was not annealed. When the crystal structure of the obtained sintered body was measured by X-ray diffraction, formation of In 2 O 3 (ZnO) 3 hexagonal layered compound and In 2 O 3 were confirmed. In addition, when the composition was analyzed by ICP analysis, the atomic ratio In / (In + Z
n) was 0.80. The density of the sintered body was 95%.
【0075】(比較ターゲット製造例3)純度99.9
9%の酸化インジウム粉末(平均粒径1μm)260g
と純度99.99%の酸化亜鉛粉末(平均粒径1μm)
40gをエタノール、アルミナボールと共にポリイミド
製ポットに入れ、遊星ボールミルで2時間混合した。得
られた混合粉末を金型に入れ、金型プレス成型機で10
0kg/cm2の圧力で予備成型を行った。次に冷間静水圧
プレス成型機により、4t/cm2の圧力で圧密化した
後、焼結炉で空気雰囲気中1700℃で4時間焼結し
た。更に得られた焼結体を真空焼成炉を用い真空中50
0℃で更に熱処理してアニーリングした。得られた焼結
体の結晶構造をX線回折により測定したところ、In2
O3(ZnO)m(m=9)の六方晶層状化合物と、In
2O3の生成が認められた。また、ICP分析により組成
分析を行ったところ、原子比In/(In+Zn)は
0.70であった。また、焼結体密度は94%であっ
た。(Comparative Target Production Example 3) Purity 99.9
260 g of 9% indium oxide powder (average particle size 1 μm)
And 99.99% pure zinc oxide powder (average particle size 1 μm)
40 g was put in a polyimide pot together with ethanol and alumina balls, and mixed for 2 hours with a planetary ball mill. The obtained mixed powder is put into a mold, and is pressed by a mold press molding machine.
Preforming was performed at a pressure of 0 kg / cm 2 . Next, after cold-pressing with a cold isostatic press molding machine at a pressure of 4 t / cm 2 , it was sintered in an air atmosphere at 1700 ° C. for 4 hours in a sintering furnace. Further, the obtained sintered body is heated in vacuum using a vacuum firing furnace.
Further heat treatment was performed at 0 ° C. for annealing. The crystal structure of the obtained sintered body was measured by X-ray diffraction, an In 2
A hexagonal layered compound of O 3 (ZnO) m (m = 9) and In
Formation of 2 O 3 was observed. Further, when the composition was analyzed by ICP analysis, the atomic ratio In / (In + Zn) was 0.70. The density of the sintered body was 94%.
【0076】表3に比較ターゲット製造例1〜3におけ
る原料の使用量およびターゲットの物性を示す。Table 3 shows the amounts of the raw materials used and the physical properties of the targets in Comparative Target Production Examples 1 to 3.
【0077】[0077]
【表3】 [Table 3]
【0078】(注)比較製造例1においては、得られた
ターゲットにおけるIn/(In+Zn)=0.15で
あり、本発明の範囲外である。(Note) In Comparative Production Example 1, In / (In + Zn) = 0.15 in the obtained target, which is outside the scope of the present invention.
【0079】比較製造例2においては、アニーリング工
程を行なっていないため、後掲の表4に示すように体積
抵抗率が10-2Ωcmを超え、本発明の範囲外である。In Comparative Production Example 2, since the annealing step was not performed, the volume resistivity exceeded 10 -2 Ωcm as shown in Table 4 below, which is outside the range of the present invention.
【0080】比較製造例3においては、In2O3(Zn
O)mにおけるm=9であり、本発明の範囲外である。In Comparative Production Example 3, In 2 O 3 (Zn
O) m = 9 in m, which is outside the scope of the present invention.
【0081】(試験例)ターゲット製造例1〜16およ
び比較ターゲット製造例1〜3で製造した焼結体を20
mm×40mm×5mmに切り出し、四端子法により体積抵抗
率を測定した。結果を表4に示す。(Test Example) 20 sintered bodies produced in Target Production Examples 1 to 16 and Comparative Target Production Examples 1 to 3 were produced.
mm × 40 mm × 5 mm was cut out, and the volume resistivity was measured by the four-terminal method. The results are shown in Table 4.
【0082】また、ターゲット製造例1〜16および比
較ターゲット製造例1〜3と同様の方法で4インチφ×
5mmの円形焼結体を製造し、銅製パッキングプレートと
ボンディング材としてインジウム金属を用いてスパッタ
リング用ターゲットを作成した。Further, in the same manner as in Target Production Examples 1 to 16 and Comparative Target Production Examples 1 to 3, 4 inches φ ×
A 5 mm circular sintered body was manufactured, and a sputtering target was prepared by using a copper packing plate and indium metal as a bonding material.
【0083】このスパッタリング用ターゲットを用いて
出力5W/cm2でDCスパッタ法によりターゲットの寿
命評価を行った。結果を表4に示す。Using this sputtering target, the life of the target was evaluated by the DC sputtering method at an output of 5 W / cm 2 . The results are shown in Table 4.
【0084】[0084]
【表4】 [Table 4]
【0085】表4より明らかなようにターゲット製造例
1〜16により得られたターゲットは、体積抵抗率がい
ずれも10-2Ωcm以下であり、製膜使用時に異常放電お
よびターゲットの割れが観察されなかった。As is clear from Table 4, the targets obtained in Target Production Examples 1 to 16 all had a volume resistivity of 10 -2 Ωcm or less, and abnormal discharge and cracking of the target were observed during film formation. There wasn't.
【0086】これに対して比較製造例1〜3で得られた
ターゲットはいずれも体積抵抗率が10-2Ωcmを超え、
製膜使用20〜30時間後に異常放電およびターゲット
の割れが観察された。On the other hand, the targets obtained in Comparative Production Examples 1 to 3 all have a volume resistivity of more than 10 -2 Ωcm,
Abnormal discharge and cracking of the target were observed 20 to 30 hours after using the film.
【0087】また製造例1〜16で得られたターゲット
を用いて得られた透明導電膜は導電性および耐湿熱性に
優れていた。The transparent conductive films obtained by using the targets obtained in Production Examples 1 to 16 were excellent in conductivity and wet heat resistance.
【0088】(ターゲット製造例17)混合する原料酸
化物粉末として、純度99.99%のIn2O3粉末(平
均粒径1μm)254gと純度99.99%の酸化亜鉛
粉末(平均粒径1μm)40g、および純度99.99
%の酸化チタン粉末(平均粒径1μm)6gを用いた以
外は、ターゲット製造例1と同様にしてターゲットを製
造した。得られた焼結体の結晶構造をX線回折により測
定したところ、In2O3(ZnO)3の六方晶層状化合
物とIn2O3の生成のみ認められた。また、ICP分析
により組成分析を行ったところ、原子比[In/(In
+Zn)]は0.79であった。また、焼結体密度は9
6%であり、体積抵抗率は0.22×10-2Ω・cmで
あった。(Target Production Example 17) As raw material oxide powders to be mixed, 254 g of In 2 O 3 powder having a purity of 99.99% (average particle size 1 μm) and zinc oxide powder having a purity of 99.99% (average particle size 1 μm) ) 40 g, and purity 99.99
A target was manufactured in the same manner as in Target Manufacturing Example 1 except that 6 g of titanium oxide powder (average particle diameter 1 μm) of 6% was used. When the crystal structure of the obtained sintered body was measured by X-ray diffraction, only the hexagonal layered compound of In 2 O 3 (ZnO) 3 and In 2 O 3 were found to be formed. In addition, when the composition was analyzed by ICP analysis, the atomic ratio [In / (In
+ Zn)] was 0.79. Also, the density of the sintered body is 9
The volume resistivity was 6% and the volume resistivity was 0.22 × 10 -2 Ω · cm.
【0089】(製膜例)ターゲット製造例17で得られ
たIn2O3−ZnO−TiO2系ターゲットを用い、表
5に示す条件で透明電極膜を製膜した。(Film Forming Example) Target Using the In 2 O 3 —ZnO—TiO 2 type target obtained in Manufacturing Example 17, a transparent electrode film was formed under the conditions shown in Table 5.
【0090】[0090]
【表5】 [Table 5]
【0091】上記条件で導入ガス中の酸素濃度を変えて
膜厚800〜1000オングストロームの透明電極膜を
得た。このようにして得られた前記透明電極膜の比抵抗
の酸素分圧依存性を表6に示す。Under the above conditions, the oxygen concentration in the introduced gas was changed to obtain a transparent electrode film having a film thickness of 800 to 1000 Å. Table 6 shows the oxygen partial pressure dependence of the specific resistance of the transparent electrode film thus obtained.
【0092】比較のため、ターゲット比較製造例3によ
り得られたIn2O3(ZnO)系ターゲットを用い、上
記製膜例に記載の方法と同様の製膜、評価を行った結果
を表6に示す。For comparison, using the In 2 O 3 (ZnO) -based target obtained in Target Comparative Production Example 3, the same film formation and evaluation as the method described in the above film formation example were carried out. Shown in.
【0093】[0093]
【表6】 [Table 6]
【0094】表6により明らかなように、ターゲット製
造例17により得たターゲットを製膜して得た透明電極
膜は酸素濃度が0〜10%の範囲で比抵抗が20.2〜
21.8×10-4Ω・cmの範囲内にあり、酸素濃度や
導入ガスの流れの厳密な制御を行なわなくても安定して
均一な導電膜を得ることができる。As is clear from Table 6, the transparent electrode film obtained by forming the target obtained in Target Production Example 17 had a specific resistance of 20.2 to 0 in the oxygen concentration range of 0 to 10%.
It is in the range of 21.8 × 10 −4 Ω · cm, and a stable and uniform conductive film can be obtained without strict control of the oxygen concentration and the flow of the introduced gas.
【0095】これに対してターゲット製造比較例3で得
たターゲットを製膜して得た透明電極膜は酸素濃度が0
〜10%の範囲で比抵抗が5.3〜35.5×10-4Ω
・cmまで変化するため、安定して均一な導電膜を得る
ためには酸素濃度や導入ガスの流れの厳密な制御が必要
である。On the other hand, the transparent electrode film obtained by forming the target obtained in Comparative Example 3 for target production had an oxygen concentration of 0.
The specific resistance is 5.3 to 35.5 × 10 -4 Ω in the range of -10%
Since it varies up to cm, it is necessary to strictly control the oxygen concentration and the flow of introduced gas in order to obtain a stable and uniform conductive film.
【0096】従って酸化チタンを含む本発明のターゲッ
トを用いれば、抵抗均一性を厳しく要求される表示材料
用透明導電膜や、タッチパネル入力装置用電極膜を容易
に作製することが可能となる。Therefore, when the target of the present invention containing titanium oxide is used, it is possible to easily produce a transparent conductive film for display materials and a touch panel input device electrode film which are required to have a uniform resistance.
【0097】[0097]
【発明の効果】本発明によれば、製膜に使用して得られ
る透明導電膜の導電性、耐湿熱性に優れているだけでな
く、製膜使用時に異常放電および割れのないターゲット
およびその製造方法が提供された。According to the present invention, not only is the transparent conductive film obtained by use for film formation excellent in conductivity and resistance to moist heat, but there is no abnormal discharge or cracking during the use of the film and its production. A method was provided.
【0098】さらに本発明によれば、第三元素の酸化物
としてチタンの酸化物を用いることにより、フィルム等
のプラスチック基板上に均一かつ安定した抵抗値を有す
る透明導電膜が容易に得られるターゲットおよびその製
造方法が提供された。Further, according to the present invention, by using titanium oxide as the oxide of the third element, it is possible to easily obtain a transparent conductive film having a uniform and stable resistance value on a plastic substrate such as a film. And a method for manufacturing the same.
Claims (11)
7)で表される六方晶層状化合物を含み、かつInとZ
nの原子比[In/(In+Zn)]が0.2〜0.9
である酸化物の焼結体からなり、体積抵抗率が10-2Ω
cm以下であることを特徴とするターゲット。1. The general formula In 2 O 3 (ZnO) m (m = 2 to
7) containing the hexagonal layered compound and containing In and Z
The atomic ratio [In / (In + Zn)] of n is 0.2 to 0.9.
Made of a sintered oxide of oxide with a volume resistivity of 10 -2 Ω
A target characterized by being less than or equal to cm.
7)で表される六方晶層状化合物を含み、更に全カチオ
ン元素に対して20at%以下の正三価以上の原子価を有
する第三元素の酸化物を含み、かつInとZnの原子比
[In/(In+Zn)]が0.2〜0.9である酸化
物の焼結体からなり、体積抵抗率が10-2Ωcm以下であ
ることを特徴とするターゲット。2. The general formula In 2 O 3 (ZnO) m (m = 2 to
7) which includes a hexagonal layered compound, further contains an oxide of a third element having a valence of positive trivalence of 20 at% or less with respect to all cationic elements, and has an atomic ratio of In to Zn [In / (In + Zn)] is 0.2 to 0.9, which is a sintered body of an oxide, and has a volume resistivity of 10 -2 Ωcm or less.
ム、ガリウム、ゲルマニウム、スズおよびケイ素からな
る群から選ばれる、請求項2に記載のターゲット。3. The target according to claim 2, wherein the third element is selected from the group consisting of aluminum, zirconium, gallium, germanium, tin and silicon.
載のターゲット。4. The target according to claim 2, wherein the third element is titanium.
して0.5〜10at%である、請求項4に記載のターゲ
ット。5. The target according to claim 4, wherein the composition ratio of titanium is 0.5 to 10 at% with respect to all cationic elements.
工程と、前記工程で得られた混合物を成型する工程と、
前記工程で得られた成型物を焼結する工程と、前記工程
で得られた焼結物をアニーリングする工程とを含むこと
を特徴とする請求項1に記載のターゲットの製造方法。6. A step of mixing indium oxide and zinc oxide, and a step of molding the mixture obtained in the above step,
The method for manufacturing a target according to claim 1, comprising a step of sintering the molded product obtained in the step, and a step of annealing the sintered product obtained in the step.
上の原子価を有する第三元素の酸化物を加えて混合する
工程と、前記工程で得られた混合物を成型する工程と、
前記工程で得られた成型物を成型し焼結する工程と、前
記工程で得られた焼結物をアニーリングする工程とを含
むことを特徴とする請求項2に記載のターゲットの製造
方法。7. A step of adding to and mixing indium oxide and zinc oxide with an oxide of a third element having a valence of positive trivalence or higher, and a step of molding the mixture obtained in the step.
The method for producing a target according to claim 2, comprising a step of molding and sintering the molded product obtained in the step, and a step of annealing the sintered product obtained in the process.
亜鉛および第三元素の酸化物の純度が99%以上であ
る、請求項6または7に記載の方法。8. The method according to claim 6, wherein the purity of the oxides of indium oxide, zinc oxide and the third element used as the raw material is 99% or more.
酸化亜鉛を必要に応じて第三元素の酸化物とともに混合
後、仮焼処理および/または造粒処理を行なう、請求項
6または7に記載の方法。9. The method according to claim 6, wherein in the mixing step, indium oxide and zinc oxide are mixed together with an oxide of the third element, if necessary, and then calcination treatment and / or granulation treatment is performed.
度で行なう、請求項6または7に記載の方法。10. The method according to claim 6, wherein the sintering step is performed at a temperature of 1200 to 1600 ° C.
℃の温度で行なう、請求項10に記載の方法。11. The annealing process is performed in the range of 200 to 1000.
The method according to claim 10, which is carried out at a temperature of ° C.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24106495A JP3746094B2 (en) | 1995-06-28 | 1995-09-20 | Target and manufacturing method thereof |
PCT/JP1996/001800 WO1997001853A1 (en) | 1995-06-28 | 1996-06-28 | Transparent conductive laminate and touch panel made by using the same |
TW85108502A TW302556B (en) | 1995-06-28 | 1996-07-13 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16200895 | 1995-06-28 | ||
JP7-162008 | 1995-06-28 | ||
JP24106495A JP3746094B2 (en) | 1995-06-28 | 1995-09-20 | Target and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0971860A true JPH0971860A (en) | 1997-03-18 |
JP3746094B2 JP3746094B2 (en) | 2006-02-15 |
Family
ID=26487947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24106495A Expired - Lifetime JP3746094B2 (en) | 1995-06-28 | 1995-09-20 | Target and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3746094B2 (en) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1033355A1 (en) * | 1998-08-31 | 2000-09-06 | Idemitsu Kosan Company Limited | Target for transparent electroconductive film, transparent electroconductive material, transparent electroconductive glass and transparent electroconductive film |
US6201346B1 (en) | 1997-10-24 | 2001-03-13 | Nec Corporation | EL display device using organic EL element having a printed circuit board |
WO2001038599A1 (en) * | 1999-11-25 | 2001-05-31 | Idemitsu Kosan Co., Ltd. | Sputtering target, transparent conductive oxide, and method for preparing sputtering target |
WO2001056927A1 (en) * | 2000-02-04 | 2001-08-09 | Otsuka Chemical Co., Ltd. | Hexagonal lamellar compound based on indium-zinc oxide and process for producing the same |
WO2002040422A1 (en) * | 2000-11-17 | 2002-05-23 | Furuya Metal Co.,Ltd. | Material for forming transparent electroconductive film and method for production thereof |
WO2003008661A1 (en) * | 2001-07-17 | 2003-01-30 | Idemitsu Kosan Co., Ltd. | Sputtering target and transparent conductive film |
WO2003029512A1 (en) * | 2001-09-27 | 2003-04-10 | Idemitsu Kosan Co., Ltd. | Sputtering target and transparent electroconductive film |
DE10306925A1 (en) * | 2003-02-19 | 2004-09-02 | GfE Gesellschaft für Elektrometallurgie mbH | PVD coating material |
AU2003252783B2 (en) * | 2002-10-04 | 2005-12-01 | Sumitomo Metal Mining Co., Ltd. | Transparent Oxide Electrode Film and Manufacturing Method Thereof, Transparent Electroconductive Base Material, Solar Cell and Photo Detection Element |
KR100626700B1 (en) * | 2002-10-29 | 2006-09-22 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Oxide sintered body and sputtering target and manufacturing method for transparent oxide etectrode film |
WO2007004473A1 (en) * | 2005-07-01 | 2007-01-11 | Idemitsu Kosan Co., Ltd. | Process for producing izo sputtering target |
JP2007008781A (en) * | 2005-07-01 | 2007-01-18 | Idemitsu Kosan Co Ltd | Manufacturing method of izo sputtering target |
JP2007008780A (en) * | 2005-07-01 | 2007-01-18 | Idemitsu Kosan Co Ltd | Manufacturing method of izo sputtering target |
JP2007073312A (en) * | 2005-09-06 | 2007-03-22 | Canon Inc | Sputtering target, and method of forming thin film using the target |
CN1316057C (en) * | 1999-05-10 | 2007-05-16 | 日矿金属株式会社 | Sputtering target and production method therefor |
JP2008001554A (en) * | 2006-06-22 | 2008-01-10 | Idemitsu Kosan Co Ltd | Sintered body, film, and organic electroluminescent element |
JP2009108413A (en) * | 2008-11-17 | 2009-05-21 | Idemitsu Kosan Co Ltd | Organic-electroluminescence element |
EP2096188A1 (en) | 2006-12-13 | 2009-09-02 | Idemitsu Kosan Co., Ltd. | Sputtering target and oxide semiconductor film |
JP2009228034A (en) * | 2008-03-19 | 2009-10-08 | Iwate Univ | ZnO-BASED TARGET, MANUFACTURING METHOD THEREFOR, METHOD FOR MANUFACTURING ELECTROCONDUCTIVE THIN FILM, AND ELECTROCONDUCTIVE THIN FILM |
KR101024177B1 (en) * | 2001-08-02 | 2011-03-22 | 이데미쓰 고산 가부시키가이샤 | Sputtering target, transparent conductive film, and their manufacturing method |
WO2011058882A1 (en) * | 2009-11-13 | 2011-05-19 | Semiconductor Energy Laboratory Co., Ltd. | Sputtering target and manufacturing method thereof, and transistor |
US8093800B2 (en) | 2002-08-02 | 2012-01-10 | Idemitsu Kosan Co., Ltd. | Sputtering target, sintered article, conductive film fabricated by utilizing the same, organic EL device, and substrate for use therein |
US8207949B2 (en) | 2007-03-26 | 2012-06-26 | Ulvac, Inc. | Touch panel, and method for manufacturing touch panel |
JP2013144821A (en) * | 2012-01-13 | 2013-07-25 | Mitsubishi Materials Corp | Oxide sputtering target and protective film for optical recording medium |
JP2014029032A (en) * | 2007-12-13 | 2014-02-13 | Idemitsu Kosan Co Ltd | Sputtering target and method for manufacturing the same |
WO2014038204A1 (en) * | 2012-09-07 | 2014-03-13 | 出光興産株式会社 | Sputtering target |
JP2014043598A (en) * | 2012-08-24 | 2014-03-13 | Ulvac Japan Ltd | METHOD FOR MANUFACTURING InZnO BASED SPUTTERING TARGET |
JP2014099493A (en) * | 2012-11-14 | 2014-05-29 | Idemitsu Kosan Co Ltd | Sputtering target, oxide semiconductor thin film, and methods for producing the same |
US9058914B2 (en) | 2010-11-16 | 2015-06-16 | Kobelco Research Institute, Inc. | Oxide sintered compact and sputtering target |
JP5876172B1 (en) * | 2014-10-06 | 2016-03-02 | Jx金属株式会社 | Oxide sintered body, oxide sputtering target, conductive oxide thin film, and method for producing oxide sintered body |
JP6078189B1 (en) * | 2016-03-31 | 2017-02-08 | Jx金属株式会社 | IZO sintered compact sputtering target and manufacturing method thereof |
JP2018044248A (en) * | 2017-12-21 | 2018-03-22 | Jx金属株式会社 | Sintered body, sputtering target and manufacturing method therefor |
KR20180123597A (en) | 2015-09-16 | 2018-11-16 | 스미토모덴키고교가부시키가이샤 | Oxide sintered body, method for producing same, sputtering target and method for manufacturing semiconductor device |
KR20190033522A (en) | 2016-07-25 | 2019-03-29 | 스미토모덴키고교가부시키가이샤 | Oxide sintered body, manufacturing method thereof, sputter target, and manufacturing method of semiconductor device |
KR20190078577A (en) | 2016-11-04 | 2019-07-04 | 스미토모덴키고교가부시키가이샤 | Oxide sintered body, manufacturing method thereof, sputter target, and manufacturing method of semiconductor device |
KR20190120752A (en) | 2017-02-20 | 2019-10-24 | 스미토모덴키고교가부시키가이샤 | Oxide sintered body, its manufacturing method, sputter target, and semiconductor device manufacturing method |
KR20190122670A (en) | 2017-02-20 | 2019-10-30 | 스미토모덴키고교가부시키가이샤 | Oxide sintered body, its manufacturing method, sputter target, and manufacturing method of semiconductor device |
KR20200009007A (en) | 2017-05-16 | 2020-01-29 | 스미토모덴키고교가부시키가이샤 | Oxide sintered body, its manufacturing method, sputter target, oxide semiconductor film, and manufacturing method of semiconductor device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5883367B2 (en) | 2012-09-14 | 2016-03-15 | 株式会社コベルコ科研 | Oxide sintered body, sputtering target, and manufacturing method thereof |
JP5883368B2 (en) | 2012-09-14 | 2016-03-15 | 株式会社コベルコ科研 | Oxide sintered body and sputtering target |
-
1995
- 1995-09-20 JP JP24106495A patent/JP3746094B2/en not_active Expired - Lifetime
Cited By (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6201346B1 (en) | 1997-10-24 | 2001-03-13 | Nec Corporation | EL display device using organic EL element having a printed circuit board |
EP1033355A1 (en) * | 1998-08-31 | 2000-09-06 | Idemitsu Kosan Company Limited | Target for transparent electroconductive film, transparent electroconductive material, transparent electroconductive glass and transparent electroconductive film |
EP1033355A4 (en) * | 1998-08-31 | 2010-12-01 | Idemitsu Kosan Co | Target for transparent electroconductive film, transparent electroconductive material, transparent electroconductive glass and transparent electroconductive film |
CN1316057C (en) * | 1999-05-10 | 2007-05-16 | 日矿金属株式会社 | Sputtering target and production method therefor |
JP2011068993A (en) * | 1999-11-25 | 2011-04-07 | Idemitsu Kosan Co Ltd | Sputtering target, transparent conductive oxide, and method for preparing sputtering target |
KR100849258B1 (en) * | 1999-11-25 | 2008-07-29 | 이데미쓰 고산 가부시키가이샤 | Sputtering target and transparent conductive oxide |
JP4850378B2 (en) * | 1999-11-25 | 2012-01-11 | 出光興産株式会社 | Sputtering target, transparent conductive oxide, and method for producing sputtering target |
US6669830B1 (en) | 1999-11-25 | 2003-12-30 | Idemitsu Kosan Co., Ltd. | Sputtering target, transparent conductive oxide, and process for producing the sputtering target |
KR100774778B1 (en) * | 1999-11-25 | 2007-11-07 | 이데미쓰 고산 가부시키가이샤 | Sputtering target, transparent conductive oxide, and method for preparing sputtering target |
WO2001038599A1 (en) * | 1999-11-25 | 2001-05-31 | Idemitsu Kosan Co., Ltd. | Sputtering target, transparent conductive oxide, and method for preparing sputtering target |
KR101139203B1 (en) * | 1999-11-25 | 2012-04-26 | 이데미쓰 고산 가부시키가이샤 | Sputtering target and transparent conductive oxide |
WO2001056927A1 (en) * | 2000-02-04 | 2001-08-09 | Otsuka Chemical Co., Ltd. | Hexagonal lamellar compound based on indium-zinc oxide and process for producing the same |
WO2002040422A1 (en) * | 2000-11-17 | 2002-05-23 | Furuya Metal Co.,Ltd. | Material for forming transparent electroconductive film and method for production thereof |
US6998070B2 (en) | 2001-07-17 | 2006-02-14 | Idemitsu Kosan Co., Ltd. | Sputtering target and transparent conductive film |
WO2003008661A1 (en) * | 2001-07-17 | 2003-01-30 | Idemitsu Kosan Co., Ltd. | Sputtering target and transparent conductive film |
KR101024177B1 (en) * | 2001-08-02 | 2011-03-22 | 이데미쓰 고산 가부시키가이샤 | Sputtering target, transparent conductive film, and their manufacturing method |
WO2003029512A1 (en) * | 2001-09-27 | 2003-04-10 | Idemitsu Kosan Co., Ltd. | Sputtering target and transparent electroconductive film |
US8093800B2 (en) | 2002-08-02 | 2012-01-10 | Idemitsu Kosan Co., Ltd. | Sputtering target, sintered article, conductive film fabricated by utilizing the same, organic EL device, and substrate for use therein |
AU2003252783B2 (en) * | 2002-10-04 | 2005-12-01 | Sumitomo Metal Mining Co., Ltd. | Transparent Oxide Electrode Film and Manufacturing Method Thereof, Transparent Electroconductive Base Material, Solar Cell and Photo Detection Element |
KR100626700B1 (en) * | 2002-10-29 | 2006-09-22 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Oxide sintered body and sputtering target and manufacturing method for transparent oxide etectrode film |
DE10306925A1 (en) * | 2003-02-19 | 2004-09-02 | GfE Gesellschaft für Elektrometallurgie mbH | PVD coating material |
JP2007008780A (en) * | 2005-07-01 | 2007-01-18 | Idemitsu Kosan Co Ltd | Manufacturing method of izo sputtering target |
JP2007008781A (en) * | 2005-07-01 | 2007-01-18 | Idemitsu Kosan Co Ltd | Manufacturing method of izo sputtering target |
WO2007004473A1 (en) * | 2005-07-01 | 2007-01-11 | Idemitsu Kosan Co., Ltd. | Process for producing izo sputtering target |
JP2007073312A (en) * | 2005-09-06 | 2007-03-22 | Canon Inc | Sputtering target, and method of forming thin film using the target |
JP2008001554A (en) * | 2006-06-22 | 2008-01-10 | Idemitsu Kosan Co Ltd | Sintered body, film, and organic electroluminescent element |
EP2096188A1 (en) | 2006-12-13 | 2009-09-02 | Idemitsu Kosan Co., Ltd. | Sputtering target and oxide semiconductor film |
US8784700B2 (en) | 2006-12-13 | 2014-07-22 | Idemitsu Kosan Co., Ltd. | Sputtering target and oxide semiconductor film |
US8207949B2 (en) | 2007-03-26 | 2012-06-26 | Ulvac, Inc. | Touch panel, and method for manufacturing touch panel |
JP2014029032A (en) * | 2007-12-13 | 2014-02-13 | Idemitsu Kosan Co Ltd | Sputtering target and method for manufacturing the same |
JP2009228034A (en) * | 2008-03-19 | 2009-10-08 | Iwate Univ | ZnO-BASED TARGET, MANUFACTURING METHOD THEREFOR, METHOD FOR MANUFACTURING ELECTROCONDUCTIVE THIN FILM, AND ELECTROCONDUCTIVE THIN FILM |
JP2009108413A (en) * | 2008-11-17 | 2009-05-21 | Idemitsu Kosan Co Ltd | Organic-electroluminescence element |
JP2015061953A (en) * | 2009-11-13 | 2015-04-02 | 株式会社半導体エネルギー研究所 | Sputtering target and method for manufacturing the same |
JP2017152742A (en) * | 2009-11-13 | 2017-08-31 | 株式会社半導体エネルギー研究所 | Manufacture method of semiconductor device |
JP2011122238A (en) * | 2009-11-13 | 2011-06-23 | Semiconductor Energy Lab Co Ltd | Sputtering target and manufacturing method thereof, and transistor |
US8937020B2 (en) | 2009-11-13 | 2015-01-20 | Semiconductor Energy Laboratory Co., Ltd. | Sputtering target and manufacturing method thereof, and transistor |
WO2011058882A1 (en) * | 2009-11-13 | 2011-05-19 | Semiconductor Energy Laboratory Co., Ltd. | Sputtering target and manufacturing method thereof, and transistor |
US10083823B2 (en) | 2009-11-13 | 2018-09-25 | Semiconductor Energy Laboratory Co., Ltd. | Sputtering target and manufacturing method thereof, and transistor |
US9058914B2 (en) | 2010-11-16 | 2015-06-16 | Kobelco Research Institute, Inc. | Oxide sintered compact and sputtering target |
JP2013144821A (en) * | 2012-01-13 | 2013-07-25 | Mitsubishi Materials Corp | Oxide sputtering target and protective film for optical recording medium |
JP2014043598A (en) * | 2012-08-24 | 2014-03-13 | Ulvac Japan Ltd | METHOD FOR MANUFACTURING InZnO BASED SPUTTERING TARGET |
WO2014038204A1 (en) * | 2012-09-07 | 2014-03-13 | 出光興産株式会社 | Sputtering target |
JP2014051714A (en) * | 2012-09-07 | 2014-03-20 | Idemitsu Kosan Co Ltd | Sputtering target |
US11443943B2 (en) | 2012-11-14 | 2022-09-13 | Idemitsu Kosam Co., Ltd. | Sputtering target, oxide semiconductor thin film, and method for producing these |
JP2014099493A (en) * | 2012-11-14 | 2014-05-29 | Idemitsu Kosan Co Ltd | Sputtering target, oxide semiconductor thin film, and methods for producing the same |
JP5876172B1 (en) * | 2014-10-06 | 2016-03-02 | Jx金属株式会社 | Oxide sintered body, oxide sputtering target, conductive oxide thin film, and method for producing oxide sintered body |
JP2016074579A (en) * | 2014-10-06 | 2016-05-12 | Jx金属株式会社 | Oxide sintered body, oxide sputtering target and conductive oxide thin membrane and manufacturing method of oxide sintered body |
US10655213B2 (en) | 2015-09-16 | 2020-05-19 | Sumitomo Electric Industries, Ltd. | Oxide sintered material, method of producing oxide sintered material, sputtering target, and method of producing semiconductor device |
KR20180123597A (en) | 2015-09-16 | 2018-11-16 | 스미토모덴키고교가부시키가이샤 | Oxide sintered body, method for producing same, sputtering target and method for manufacturing semiconductor device |
KR20170128479A (en) | 2016-03-31 | 2017-11-22 | 제이엑스금속주식회사 | Izo sintered compact sputtering target and method for producing same |
JP6078189B1 (en) * | 2016-03-31 | 2017-02-08 | Jx金属株式会社 | IZO sintered compact sputtering target and manufacturing method thereof |
KR20190033522A (en) | 2016-07-25 | 2019-03-29 | 스미토모덴키고교가부시키가이샤 | Oxide sintered body, manufacturing method thereof, sputter target, and manufacturing method of semiconductor device |
US10822276B2 (en) | 2016-07-25 | 2020-11-03 | Sumitomo Electric Industries, Ltd. | Oxide sintered material and method of manufacturing the same, sputtering target, and method of manufacturing semiconductor device |
KR20190078577A (en) | 2016-11-04 | 2019-07-04 | 스미토모덴키고교가부시키가이샤 | Oxide sintered body, manufacturing method thereof, sputter target, and manufacturing method of semiconductor device |
US10894744B2 (en) | 2016-11-04 | 2021-01-19 | Sumitomo Electric Industries, Ltd. | Oxide sintered material and method for manufacturing the same, sputtering target, and method for manufacturing semiconductor device |
KR20190120752A (en) | 2017-02-20 | 2019-10-24 | 스미토모덴키고교가부시키가이샤 | Oxide sintered body, its manufacturing method, sputter target, and semiconductor device manufacturing method |
US11616148B2 (en) | 2017-02-20 | 2023-03-28 | Mitsui Mining & Smelting Co., Ltd. | Oxide sintered material, method of producing oxide sintered material, sputtering target, and method of producing semiconductor device |
KR20190122670A (en) | 2017-02-20 | 2019-10-30 | 스미토모덴키고교가부시키가이샤 | Oxide sintered body, its manufacturing method, sputter target, and manufacturing method of semiconductor device |
US11492694B2 (en) | 2017-02-20 | 2022-11-08 | Sumitomo Electric Industries, Ltd. | Oxide sintered material, method of producing oxide sintered material, sputtering target, and method of producing semiconductor device |
KR20200009007A (en) | 2017-05-16 | 2020-01-29 | 스미토모덴키고교가부시키가이샤 | Oxide sintered body, its manufacturing method, sputter target, oxide semiconductor film, and manufacturing method of semiconductor device |
JP2018044248A (en) * | 2017-12-21 | 2018-03-22 | Jx金属株式会社 | Sintered body, sputtering target and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP3746094B2 (en) | 2006-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3746094B2 (en) | Target and manufacturing method thereof | |
JP4234006B2 (en) | Sputtering target and transparent conductive film | |
EP2428500B1 (en) | Indium oxide sintered body, indium oxide transparent conductive film, and method for manufacturing the transparent conductive film | |
JP3803132B2 (en) | Target and manufacturing method thereof | |
KR101294986B1 (en) | In Sm OXIDE SPUTTERING TARGET | |
JPH06234565A (en) | Target and its production | |
KR20110039449A (en) | Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film | |
KR20100012040A (en) | Amorphous composite oxide film,crystalline composite oxide film,process for producing amorphous composite oxide film,process for producing crystalline composite oxide film,and composite oxide sinter | |
GB2482544A (en) | Making high density indium tin oxide sputtering targets | |
US20190389772A1 (en) | Oxide sintered body | |
JPH0754132A (en) | Ito sintered compact and sputtering target | |
JP2001098359A (en) | MANUFACTURE OF Mg-CONTAINING ITO SPUTTERING TARGET AND Mg-CONTAINING ITO EVAPORATION MATERIAL | |
TWI778100B (en) | Oxide sintered body and sputtering target | |
JP4724330B2 (en) | Tin-antimony oxide sintered compact target and method for producing the same | |
JPH08246139A (en) | Oxide sintered compact | |
JPWO2019187269A1 (en) | Oxide sintered body, sputtering target and transparent conductive film | |
JP4997665B2 (en) | Method for producing transparent conductive film | |
JP2904358B2 (en) | Manufacturing method of ITO sintered body | |
JP5999049B2 (en) | Deposition tablet, method for producing the same, and method for producing oxide film | |
TW201326082A (en) | Sintered oxide article and method for manufacture thereof, and transparent oxide conductive film | |
JP2023124649A (en) | Sputtering target member and method for producing sputtering target member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050711 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050829 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051031 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051121 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081202 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091202 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091202 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101202 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111202 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121202 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131202 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |