JP4724330B2 - Tin-antimony oxide sintered compact target and method for producing the same - Google Patents

Tin-antimony oxide sintered compact target and method for producing the same Download PDF

Info

Publication number
JP4724330B2
JP4724330B2 JP2001271734A JP2001271734A JP4724330B2 JP 4724330 B2 JP4724330 B2 JP 4724330B2 JP 2001271734 A JP2001271734 A JP 2001271734A JP 2001271734 A JP2001271734 A JP 2001271734A JP 4724330 B2 JP4724330 B2 JP 4724330B2
Authority
JP
Japan
Prior art keywords
tin
antimony oxide
target
sintered
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001271734A
Other languages
Japanese (ja)
Other versions
JP2003073819A (en
Inventor
優 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2001271734A priority Critical patent/JP4724330B2/en
Publication of JP2003073819A publication Critical patent/JP2003073819A/en
Application granted granted Critical
Publication of JP4724330B2 publication Critical patent/JP4724330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、錫−アンチモン酸化物焼結体ターゲット及びその製造方法に関し、特にスパッタリング法により透明導電性薄膜を形成するための原料として用いられる錫−アンチモン酸化物焼結体ターゲット及びその製造方法に関する。
【0002】
【従来の技術】
近年、ディスプレイ機器の透明電極や太陽電池等の分野において、多岐にわたって透明導電性薄膜の需要が高まっている。透明導電性薄膜には、可視光線の透過率が高く、電気抵抗率が低いという特性が要求され、そのような機能を持つ薄膜を形成するための原料の一つに錫−アンチモン酸化物ターゲットがある。このような透明導電性薄膜は、蒸着法、スパッタリング法、CVD法等により形成するのが一般的である。中でも、安定した膜を大きな面積で製作できるスパッタリング法が主流になっている。
【0003】
スパッタリング法による成膜法とは、スパッタリングターゲットに主にアルゴンイオンを衝突させ、スパッタによりターゲット材と同じ材料を基板に付着、堆積させる成膜法である。従って、錫−アンチモン酸化物膜を得るために、スパッタリング法では錫−アンチモン酸化物の焼結体をスパッタリングターゲットとして用いる。ところが、錫−アンチモン酸化物焼結体の場合、酸化錫の焼結性が悪いため、プレス成形(コールドプレス法)して焼結させるだけでは低密度のものしか製作できず、高密度の焼結体を得ることは困難であった。そこで、このような難焼結材に対しては、一般に、加熱中プレス成形して焼結させること(ホットプレス法)により密度の高い焼結体を得ている。
【0004】
【発明が解決しようとする課題】
しかし、ホットプレス法はバッチ式であるために生産性が悪く、しかも、この方法では、真空装置、加熱装置、加圧装置が一体化された装置を用いることが必要であり、コストも高くなる。例えば、特開2001−39771号公報には、硫化亜鉛と二酸化ケイ素とを主成分とし、これに酸化亜鉛を加えた混合粉末を用いて、ホットプレス法により焼結体スパッタリングターゲットを製作する方法が開示されているが、この方法には上記のような問題がある。
また、コールドプレス法による成形後、焼結して得られる従来の錫−アンチモン酸化物焼結体ターゲットは、低密度であることが大きく影響して電気抵抗が高い。そのため、このターゲットを用いた場合、スパッタ量が多くなり、成膜速度が速いDCスパッタに利用するのは困難であるという問題がある。
【0005】
本発明の課題は、上記従来技術の問題点を解決することにあり、密度が高く、かつ、比抵抗の低い透明導電性薄膜形成用錫−アンチモン酸化物焼結体ターゲット、及びこのターゲットを、大掛かりなホットプレス法を用いずに、原料酸化物粉末を混合、成形、加熱焼結を行って製造する方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者は、錫−アンチモン酸化物にドープする第三元素について鋭意検討を重ねた結果、特定量の酸化亜鉛をドープして、コールドプレス法や泥漿鋳込み法等により成形体を形成し、その後に焼結する方法を用いれば、密度及び比抵抗の両方について満足の得られる錫−アンチモン酸化物焼結体ターゲットが得られることを見出し、本発明を完成するに至った。
本発明の錫−アンチモン酸化物焼結体ターゲットは、酸化錫及び酸化アンチモンを主成分とする焼結体ターゲットにおいて、該焼結体ターゲット重量基準で5〜20重量%、好ましくは5〜15重量%の酸化亜鉛を含んでいるものである。この焼結体ターゲットの比抵抗は50mΩ・cm以下であり、かつ、その相対密度は90%以上である。
【0007】
酸化亜鉛の含有量が5重量%未満であると、満足な密度が得られず、また、比抵抗も高くなる傾向がある。この含有量が20重量%を越えると、得られる焼結体ターゲット表面付近に酸化亜鉛の偏析が起こり、表層と内部とで組成にずれが生じるようになり、深さ方向の組成が均一でないターゲットとなり好ましくない。
また、本発明のターゲット製造方法は、酸化錫及び酸化アンチモンを主成分とする錫−アンチモン酸化物焼結体ターゲットの製造方法において、酸化錫粉末及び酸化アンチモン粉末と、混合粉末中の含有量が5〜20重量%、好ましくは5〜15重量%である酸化亜鉛粉末とを混合し、得られた混合粉末を公知のコールドプレス法又は泥漿鋳込み法により既知の成形条件下で成形した後、この成形体を焼成して焼結体を得ることからなる。得られた焼結体ターゲットの比抵抗及び相対密度は上記の通りである。
【0008】
【実施例】
以下、本発明を実施例及び比較例に基づいて詳細に説明する。
(実施例1)
市販の酸化錫、酸化アンチモン、酸化亜鉛の粉末を、それぞれ、重量%で89:6:5になるように計500g秤量し、φ10mmのジルコニアボール500gと共にナイロン製ポットに入れ、ボールミルで20時間混合した。得られた混合粉末をナイロン製ポットより取り出し、オーブンで乾燥した後、再度ナイロン製ポットを用いて乾式で10時間ボールミル粉砕を行った。粉砕された粉末を500μmのふるいで分級した後、φ150mmのゴム型に充填し、室温において2ton/cmの圧力で加圧成形を行って成形体を得た。その後、1500℃で5時間焼成して焼結体を得た。この時の焼結体の比重は、6.0g/mlで、密度100%に対する比重の相対密度は90%であり、比抵抗は30mΩ・cmであった。
【0009】
(実施例2)
実施例1と同じ市販の酸化錫、酸化アンチモン、酸化亜鉛の粉末を、それぞれ、重量%で89:6:5になるように計500g秤量し、φ10mmのジルコニアボール500gと共にナイロン製ポットに入れ、ボールミルで20時間混合した。得られた混合粉末に分散剤(中京油脂(株)製、商品名:セルナD−305、2.5g)とバインダー(三井化学(株)製、商品名:バインドセラムWA610、5.0g)とを加えた後、さらに10時間混合した。得られた泥漿を鋳込み用型に鋳込み、成形体を得た。この成形体をオーブンで乾燥した後、1500℃で5時間焼成し、焼結体を得た。この時の焼結体の比重は、6.1g/mlで、密度100%に対する比重の相対密度は91%であり、比抵抗は10mΩ・cmであった。
【0010】
(実施例3)
実施例1と同じ市販の酸化錫、酸化アンチモン、酸化亜鉛の粉末を、それぞれ、重量%で84:6:10になるように計500g秤量し、φ10mmのジルコニアボール500gと共にナイロン製ポットに入れ、ボールミルで20時間混合した。得られた混合粉末をナイロン製ポットより取り出し、オーブンで乾燥した後、再度ナイロン製ポットを用いて乾式で10時間ボールミル粉砕を行った。粉砕された粉末を500μmのふるいで分級した後、φ150mmのゴム型に充填し、室温において2ton/cmの圧力で加圧成形を行って成形体を得た。その後、1500℃で5時間焼成して焼結体を得た。この時の焼結体の比重は、6.0g/mlで、密度100%に対する比重の相対密度は90%であり、比抵抗は12mΩ・cmであった。
【0011】
(実施例4)
実施例1と同じ市販の酸化錫、酸化アンチモン、酸化亜鉛の粉末を、それぞれ、重量%で84:6:10になるように計500g秤量し、φ10mmのジルコニアボール500gと共にナイロン製ポットに入れ、ボールミルで20時間混合した。得られた混合粉末に分散剤(中京油脂(株)製、商品名:セルナD−305、2.5g)とバインダー(三井化学(株)製、商品名:バインドセラムWA610、5.0g)とを加えた後、さらに10時間混合した。得られた泥漿を鋳込み用型に鋳込み、成形体を得た。この成形体を乾燥後、1500℃で5時間焼成して焼結体を得た。この時の焼結体の比重は、6.2g/mlで、密度100%に対する比重の相対密度は93%であり、比抵抗は3mΩ・cmであった。
【0012】
(実施例5)
市販の酸化錫、酸化アンチモン、酸化亜鉛の粉末を、それぞれ、重量%で79:6:15になるように計500g秤量し、φ10mmのジルコニアボール500gと共にナイロン製ポットに入れ、ボールミルで20時間混合した。得られた混合粉末をナイロン製ポットより取り出し、オーブンで乾燥した後、再度ナイロン製ポットを用いて乾式で10時間ボールミル粉砕を行った。粉砕された粉末を500μmのふるいで分級した後、φ150mmのゴム型に充填し、室温において2ton/cmの圧力で加圧成形を行って成形体を得た。その後、1500℃で5時間焼成して焼結体を得た。この時の焼結体の比重は、6.1g/mlで、密度100%に対する比重の相対密度は93%であり、比抵抗は9mΩ・cmであった。
【0013】
(実施例6)
実施例1と同じ市販の酸化錫、酸化アンチモン、酸化亜鉛の粉末を、それぞれ、重量%で79:6:15になるように計500g秤量し、φ10mmのジルコニアボール500gと共にナイロン製ポットに入れ、ボールミルで20時間混合した。得られた混合粉末に分散剤(中京油脂(株)製、商品名:セルナD−305、2.5g)とバインダー(三井化学(株)製、商品名:バインドセラムWA610、5.0g)とを加えた後、さらに10時間混合した。得られた泥漿を鋳込み用型に鋳込み、成形体を得た。この成形体を乾燥後、1500℃で5時間焼成して焼結体を得た。この時の焼結体の比重は、6.2g/mlで、密度100%に対する比重の相対密度は95%であり、比抵抗は2mΩ・cmであった。
【0014】
(比較例1)
実施例1と同じ市販の酸化錫、酸化アンチモンの粉末を、それぞれ、重量%で94:6になるように計500g秤量し、φ10mmのジルコニアボール500gと共にナイロン製ポットに入れ、ボールミルで20時間混合した。得られた混合粉末をナイロン製ポットより取り出し、オーブンで乾燥した後、再度ナイロン製ポットを用いて乾式で10時間ボールミル粉砕を行った。粉砕された粉末を500μmのふるいで分級した後、φ150mmのゴム型に充填し、室温において2ton/cmの圧力で加圧成形を行って成形体を得た。その後、1500℃で5時間焼成して焼結体を得た。この時の焼結体の比重は、3.8g/mlで、密度100%に対する比重の相対密度は57%であり、比抵抗は∞であった。
【0015】
(比較例2)
実施例1と同じ市販の酸化錫、酸化アンチモンの粉末を、それぞれ、重量%で94:6になるように計500g秤量し、φ10mmのジルコニアボール500gと共にナイロン製ポットに入れ、ボールミルで20時間混合した。得られた混合粉末に分散剤(中京油脂(株)製、商品名:セルナD−305、2.5g)とバインダー(三井化学(株)製、商品名:バインドセラムWA610、5.0g)とを加えた後、さらに10時間混合した。得られた泥漿を鋳込み用型に鋳込み、成形体を得た。この成形体を乾燥後、1500℃で5時間焼成して焼結体を得た。この時の焼結体の比重は、4.0g/mlで、密度100%に対する比重の相対密度は60%であり、比抵抗は∞であった。
【0016】
(比較例3)
実施例1と同じ市販の酸化錫、酸化アンチモン、酸化亜鉛の粉末を、それぞれ、重量%で93:6:1になるように計500g秤量し、φ10mmのジルコニアボール500gと共にナイロン製ポットに入れ、ボールミルで20時間混合した。得られた混合粉末をナイロン製ポットより取り出し、オーブンで乾燥した後、再度ナイロン製ポットを用いて乾式で10時間ボールミル粉砕を行った。粉砕された粉末を500μmのふるいで分級した後、φ150mmのゴム型に充填し、室温において2ton/cmの圧力で加圧成形を行って成形体を得た。その後、1500℃で5時間焼成して焼結体を得た。この時の焼結体の比重は、5.8g/mlで、密度100%に対する比重の相対密度は86%であり、比抵抗は500mΩ・cmであった。
【0017】
(比較例4)
実施例1と同じ市販の酸化錫、酸化アンチモン、酸化亜鉛の粉末を、それぞれ、重量%で93:6:1になるように計500g秤量し、φ10mmのジルコニアボール500gと共にナイロン製ポットに入れ、ボールミルで20時間混合した。得られた混合粉末に分散剤(中京油脂(株)製、商品名:セルナD−305、2.5g)とバインダー(三井化学(株)製、商品名:バインドセラムWA610、5.0g)とを加えた後、さらに10時間混合した。得られた泥漿を鋳込み用型に鋳込み、成形体を得た。この成形体を乾燥後、1500℃で5時間焼成して焼結体を得た。この時の焼結体の比重は、5.9g/mlで、密度100%に対する比重の相対密度は88%であり、比抵抗は400mΩ・cmであった。
【0018】
上記実施例及び比較例の結果をまとめて表1に示す。
(表1)

Figure 0004724330
【0019】
表1から明らかなように、酸化亜鉛の含有量の多い方が焼結体の密度が高く、また、比抵抗が小さくなる。しかし、酸化亜鉛の含有量が20重量%を越えると、焼結体ターゲット表面付近に酸化亜鉛の偏析が起こり、表層と内部とで組成にずれが生じるようになり、深さ方向の組成が均一でないターゲットとなる。一方、酸化亜鉛の含有量が少ないと焼結体の密度が低く、比抵抗が高い。
上記実施例で得られた焼結体を機械加工により円板状に加工した後、バッキングプレートに接合してスパッタリングターゲットとした。この錫−アンチモン酸化物焼結体ターゲットを用いて、公知の成膜条件でスパッタリング法を行ったところ、基板上に透明導電性の錫−アンチモン酸化物薄膜を効率よく形成することができた。
【0020】
【発明の効果】
本発明によれば、酸化亜鉛を5〜20重量%の配合量で含有せしめることにより、コールドプレス法や泥漿鋳込み法によって、密度が高く、かつ、比抵抗の小さい錫−アンチモン酸化物焼結体ターゲットを製造し、提供することができる。得られたターゲットを用いて有用な透明導電性薄膜を形成することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tin-antimony oxide sintered body target and a method for producing the same, and more particularly to a tin-antimony oxide sintered body target used as a raw material for forming a transparent conductive thin film by a sputtering method and a method for producing the same. .
[0002]
[Prior art]
In recent years, there has been a growing demand for transparent conductive thin films in various fields such as transparent electrodes of display devices and solar cells. Transparent conductive thin films are required to have high visible light transmittance and low electrical resistivity, and one of the raw materials for forming such a thin film is a tin-antimony oxide target. is there. Such a transparent conductive thin film is generally formed by vapor deposition, sputtering, CVD, or the like. Among them, the sputtering method that can manufacture a stable film with a large area has become the mainstream.
[0003]
The film formation method by sputtering is a film formation method in which argon ions are mainly collided with a sputtering target, and the same material as the target material is attached and deposited on the substrate by sputtering. Therefore, in order to obtain a tin-antimony oxide film, a sintered body of tin-antimony oxide is used as a sputtering target in the sputtering method. However, in the case of a tin-antimony oxide sintered body, since the sinterability of tin oxide is poor, only low-density products can be produced simply by press molding (cold press method) and sintering. It was difficult to obtain a ligation. Therefore, in general, a sintered body having a high density is obtained for such a difficult-to-sinter material by performing press molding during heating and sintering (hot pressing method).
[0004]
[Problems to be solved by the invention]
However, since the hot press method is a batch type, the productivity is poor, and in this method, it is necessary to use a device in which a vacuum device, a heating device, and a pressure device are integrated, and the cost is increased. . For example, Japanese Patent Laid-Open No. 2001-39771 discloses a method of manufacturing a sintered sputtering target by a hot press method using a mixed powder containing zinc sulfide and silicon dioxide as main components and zinc oxide added thereto. Although disclosed, this method has the problems described above.
Moreover, the conventional tin-antimony oxide sintered compact target obtained by sintering after molding by the cold press method has a large influence due to its low density, and has a high electric resistance. Therefore, when this target is used, there is a problem that the amount of sputtering increases and it is difficult to use it for DC sputtering with a high deposition rate.
[0005]
An object of the present invention is to solve the above-mentioned problems of the prior art, a high density and low specific resistance tin-antimony oxide sintered compact target for forming a transparent conductive thin film, and this target, An object of the present invention is to provide a method for producing a raw material oxide powder by mixing, forming, and heating and sintering without using a large-scale hot pressing method.
[0006]
[Means for Solving the Problems]
As a result of intensive studies on the third element doped into tin-antimony oxide, the present inventor doped a specific amount of zinc oxide to form a molded body by a cold press method, a slurry casting method, or the like, and then It was found that a tin-antimony oxide sintered compact target that is satisfactory in terms of both density and specific resistance can be obtained by using the sintering method, and the present invention has been completed.
The tin-antimony oxide sintered compact target of the present invention is a sintered compact target mainly composed of tin oxide and antimony oxide, and is 5 to 20% by weight, preferably 5 to 15% by weight based on the weight of the sintered compact target. % Zinc oxide. The specific resistance of the sintered compact target is 50 mΩ · cm or less, and its relative density is 90% or more.
[0007]
When the content of zinc oxide is less than 5% by weight, a satisfactory density cannot be obtained, and the specific resistance tends to increase. When this content exceeds 20% by weight, segregation of zinc oxide occurs in the vicinity of the surface of the obtained sintered compact target, resulting in a deviation in composition between the surface layer and inside, and a target in which the composition in the depth direction is not uniform. It is not preferable.
Moreover, the target manufacturing method of the present invention is a method for manufacturing a tin-antimony oxide sintered compact target mainly composed of tin oxide and antimony oxide, and the content of the tin oxide powder and antimony oxide powder and the mixed powder is This is mixed with 5 to 20% by weight, preferably 5 to 15% by weight of zinc oxide powder, and the resulting mixed powder is molded under known molding conditions by a known cold press method or slurry casting method. The molded body is fired to obtain a sintered body. The specific resistance and relative density of the obtained sintered compact target are as described above.
[0008]
【Example】
Hereinafter, the present invention will be described in detail based on examples and comparative examples.
Example 1
Commercially available tin oxide, antimony oxide, and zinc oxide powders were weighed in a total of 500 g so that the weight percentage would be 89: 6: 5, placed in a nylon pot with 500 g of zirconia balls of φ10 mm, and mixed in a ball mill for 20 hours. did. The obtained mixed powder was taken out from the nylon pot, dried in an oven, and then again ball milled for 10 hours in a dry manner using the nylon pot. The pulverized powder was classified with a 500 μm sieve, filled in a rubber mold of φ150 mm, and pressure-molded at room temperature with a pressure of 2 ton / cm 2 to obtain a molded body. Then, it sintered at 1500 degreeC for 5 hours, and obtained the sintered compact. The specific gravity of the sintered body at this time was 6.0 g / ml, the relative density of specific gravity with respect to 100% density was 90%, and the specific resistance was 30 mΩ · cm.
[0009]
(Example 2)
The same amount of commercially available tin oxide, antimony oxide and zinc oxide powder as in Example 1 was weighed in a weight of 89: 6: 5 in a total amount of 500 g, and placed in a nylon pot together with 500 g of zirconia balls having a diameter of 10 mm. Mix for 20 hours on a ball mill. To the obtained mixed powder, a dispersant (manufactured by Chukyo Yushi Co., Ltd., trade name: Celna D-305, 2.5 g) and a binder (manufactured by Mitsui Chemicals, Inc., trade name: Bind Serum WA610, 5.0 g) Was added and further mixed for 10 hours. The obtained slurry was cast into a casting mold to obtain a molded body. The molded body was dried in an oven and then fired at 1500 ° C. for 5 hours to obtain a sintered body. The specific gravity of the sintered body at this time was 6.1 g / ml, the relative density of the specific gravity with respect to the density of 100% was 91%, and the specific resistance was 10 mΩ · cm.
[0010]
(Example 3)
The same commercially available tin oxide, antimony oxide and zinc oxide powder as in Example 1 were weighed in a weight of 84: 6: 10 in a total amount of 500 g, and placed in a nylon pot together with 500 g of zirconia balls having a diameter of 10 mm. Mix for 20 hours on a ball mill. The obtained mixed powder was taken out from the nylon pot, dried in an oven, and then again ball milled for 10 hours in a dry manner using the nylon pot. The pulverized powder was classified with a 500 μm sieve, filled in a rubber mold of φ150 mm, and pressure-molded at room temperature with a pressure of 2 ton / cm 2 to obtain a molded body. Then, it sintered at 1500 degreeC for 5 hours, and obtained the sintered compact. The specific gravity of the sintered body at this time was 6.0 g / ml, the relative density of the specific gravity with respect to the density of 100% was 90%, and the specific resistance was 12 mΩ · cm.
[0011]
Example 4
The same commercially available tin oxide, antimony oxide and zinc oxide powder as in Example 1 were weighed in a weight of 84: 6: 10 in a total amount of 500 g, and placed in a nylon pot together with 500 g of zirconia balls having a diameter of 10 mm. Mix for 20 hours on a ball mill. To the obtained mixed powder, a dispersant (manufactured by Chukyo Yushi Co., Ltd., trade name: Celna D-305, 2.5 g) and a binder (manufactured by Mitsui Chemicals, Inc., trade name: Bind Serum WA610, 5.0 g) Was added and further mixed for 10 hours. The obtained slurry was cast into a casting mold to obtain a molded body. The molded body was dried and then fired at 1500 ° C. for 5 hours to obtain a sintered body. The specific gravity of the sintered body at this time was 6.2 g / ml, the relative density of the specific gravity with respect to 100% density was 93%, and the specific resistance was 3 mΩ · cm.
[0012]
(Example 5)
Commercially available tin oxide, antimony oxide, and zinc oxide powders were weighed in a total of 500 g so that the weight percentage would be 79: 6: 15, placed in a nylon pot together with 500 g of zirconia balls of φ10 mm, and mixed in a ball mill for 20 hours. did. The obtained mixed powder was taken out from the nylon pot, dried in an oven, and then again ball milled for 10 hours in a dry manner using the nylon pot. The pulverized powder was classified with a 500 μm sieve, filled in a rubber mold of φ150 mm, and pressure-molded at room temperature with a pressure of 2 ton / cm 2 to obtain a molded body. Then, it sintered at 1500 degreeC for 5 hours, and obtained the sintered compact. The specific gravity of the sintered body at this time was 6.1 g / ml, the relative density of the specific gravity with respect to the density of 100% was 93%, and the specific resistance was 9 mΩ · cm.
[0013]
(Example 6)
The same commercially available tin oxide, antimony oxide, and zinc oxide powder as in Example 1 were weighed in a weight of 79: 6: 15 in a total amount of 500 g, and placed in a nylon pot together with 500 g of zirconia balls having a diameter of 10 mm. Mix for 20 hours on a ball mill. To the obtained mixed powder, a dispersant (manufactured by Chukyo Yushi Co., Ltd., trade name: Celna D-305, 2.5 g) and a binder (manufactured by Mitsui Chemicals, Inc., trade name: Bind Serum WA610, 5.0 g) Was added and further mixed for 10 hours. The obtained slurry was cast into a casting mold to obtain a molded body. The molded body was dried and then fired at 1500 ° C. for 5 hours to obtain a sintered body. The specific gravity of the sintered body at this time was 6.2 g / ml, the relative density of the specific gravity to the density of 100% was 95%, and the specific resistance was 2 mΩ · cm.
[0014]
(Comparative Example 1)
A total of 500 g of commercially available tin oxide and antimony oxide powders as in Example 1 were weighed in a weight ratio of 94: 6, put into a nylon pot together with 500 g of zirconia balls having a diameter of 10 mm, and mixed in a ball mill for 20 hours. did. The obtained mixed powder was taken out from the nylon pot, dried in an oven, and then again ball milled for 10 hours in a dry manner using the nylon pot. The pulverized powder was classified with a 500 μm sieve, filled in a rubber mold of φ150 mm, and pressure-molded at room temperature with a pressure of 2 ton / cm 2 to obtain a molded body. Then, it sintered at 1500 degreeC for 5 hours, and obtained the sintered compact. The specific gravity of the sintered body at this time was 3.8 g / ml, the relative density of the specific gravity with respect to the density of 100% was 57%, and the specific resistance was ∞.
[0015]
(Comparative Example 2)
A total of 500 g of commercially available tin oxide and antimony oxide powders as in Example 1 were weighed in a weight ratio of 94: 6, put into a nylon pot together with 500 g of zirconia balls having a diameter of 10 mm, and mixed in a ball mill for 20 hours. did. To the obtained mixed powder, a dispersant (manufactured by Chukyo Yushi Co., Ltd., trade name: Celna D-305, 2.5 g) and a binder (manufactured by Mitsui Chemicals, Inc., trade name: Bind Serum WA610, 5.0 g) Was added and further mixed for 10 hours. The obtained slurry was cast into a casting mold to obtain a molded body. The molded body was dried and then fired at 1500 ° C. for 5 hours to obtain a sintered body. The specific gravity of the sintered body at this time was 4.0 g / ml, the relative density of the specific gravity with respect to the density of 100% was 60%, and the specific resistance was ∞.
[0016]
(Comparative Example 3)
The same commercially available tin oxide, antimony oxide, and zinc oxide powder as in Example 1 were weighed in a weight of 93: 6: 1 in a total amount of 500 g, and put in a nylon pot together with 500 g of zirconia balls having a diameter of 10 mm. Mix for 20 hours on a ball mill. The obtained mixed powder was taken out from the nylon pot, dried in an oven, and then again ball milled for 10 hours in a dry manner using the nylon pot. The pulverized powder was classified with a 500 μm sieve, filled in a rubber mold of φ150 mm, and pressure-molded at room temperature with a pressure of 2 ton / cm 2 to obtain a molded body. Then, it sintered at 1500 degreeC for 5 hours, and obtained the sintered compact. The specific gravity of the sintered body at this time was 5.8 g / ml, the relative density of the specific gravity with respect to the density of 100% was 86%, and the specific resistance was 500 mΩ · cm.
[0017]
(Comparative Example 4)
The same commercially available tin oxide, antimony oxide, and zinc oxide powder as in Example 1 were weighed in a weight of 93: 6: 1 in a total amount of 500 g, and put in a nylon pot together with 500 g of zirconia balls having a diameter of 10 mm. Mix for 20 hours on a ball mill. To the obtained mixed powder, a dispersant (manufactured by Chukyo Yushi Co., Ltd., trade name: Celna D-305, 2.5 g) and a binder (manufactured by Mitsui Chemicals, Inc., trade name: Bind Serum WA610, 5.0 g) Was added and further mixed for 10 hours. The obtained slurry was cast into a casting mold to obtain a molded body. The molded body was dried and then fired at 1500 ° C. for 5 hours to obtain a sintered body. The specific gravity of the sintered body at this time was 5.9 g / ml, the relative density of the specific gravity with respect to the density of 100% was 88%, and the specific resistance was 400 mΩ · cm.
[0018]
The results of the above Examples and Comparative Examples are summarized in Table 1.
(Table 1)
Figure 0004724330
[0019]
As is clear from Table 1, the higher the zinc oxide content, the higher the density of the sintered body and the lower the specific resistance. However, when the content of zinc oxide exceeds 20% by weight, segregation of zinc oxide occurs near the surface of the sintered compact target, resulting in a deviation in composition between the surface layer and the inside, and a uniform composition in the depth direction. Not a target. On the other hand, when the content of zinc oxide is small, the density of the sintered body is low and the specific resistance is high.
The sintered body obtained in the above example was machined into a disk shape and then joined to a backing plate to obtain a sputtering target. When this tin-antimony oxide sintered compact target was used for sputtering under known film forming conditions, a transparent conductive tin-antimony oxide thin film could be efficiently formed on the substrate.
[0020]
【The invention's effect】
According to the present invention, a tin-antimony oxide sintered body having a high density and a low specific resistance can be obtained by a cold press method or a slurry casting method by containing zinc oxide in a blending amount of 5 to 20% by weight. Targets can be manufactured and provided. A useful transparent conductive thin film can be formed using the obtained target.

Claims (2)

酸化錫及び酸化アンチモンを主成分とする焼結体ターゲットにおいて、該焼結体ターゲット重量基準で5〜20重量%の酸化亜鉛を含み、比抵抗が50mΩ・cm以下であり、かつ、相対密度が90%以上であることを特徴とする錫−アンチモン酸化物焼結体ターゲット。In sintered target composed mainly of tin oxide and antimony oxide, looking containing 5 to 20 wt% of zinc oxide in the sintered body target weight, the resistivity is not more than 50 m [Omega · cm, and a relative density Is a tin-antimony oxide sintered compact target characterized by being 90% or more . 酸化錫及び酸化アンチモンを主成分とする焼結体ターゲットの製造方法において、酸化錫粉末及び酸化アンチモン粉末と、混合粉末中の含有量が5〜20重量%である酸化亜鉛粉末とを混合し、得られた混合粉末をコールドプレス法又は泥漿鋳込み法により成形した後、この成形体を焼成して請求項1記載の焼結体ターゲットを得ることを特徴とする錫−アンチモン酸化物焼結体ターゲットの製造方法。In the method for producing a sintered compact target mainly composed of tin oxide and antimony oxide, tin oxide powder and antimony oxide powder are mixed with zinc oxide powder whose content in the mixed powder is 5 to 20 % by weight, The obtained mixed powder is molded by a cold press method or a mud casting method, and then the molded body is fired to obtain the sintered body target according to claim 1, wherein the sintered tin-antimony oxide sintered body target is obtained. Manufacturing method.
JP2001271734A 2001-09-07 2001-09-07 Tin-antimony oxide sintered compact target and method for producing the same Expired - Lifetime JP4724330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001271734A JP4724330B2 (en) 2001-09-07 2001-09-07 Tin-antimony oxide sintered compact target and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001271734A JP4724330B2 (en) 2001-09-07 2001-09-07 Tin-antimony oxide sintered compact target and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003073819A JP2003073819A (en) 2003-03-12
JP4724330B2 true JP4724330B2 (en) 2011-07-13

Family

ID=19097203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001271734A Expired - Lifetime JP4724330B2 (en) 2001-09-07 2001-09-07 Tin-antimony oxide sintered compact target and method for producing the same

Country Status (1)

Country Link
JP (1) JP4724330B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4711244B2 (en) * 2003-11-25 2011-06-29 Jx日鉱日石金属株式会社 Sputtering target
KR100971866B1 (en) 2007-12-27 2010-07-22 권보경 Sn-Sb alloy for sputtering target and its manufacturing method
KR20120120130A (en) * 2009-10-15 2012-11-01 우미코르 Tin oxide ceramic sputtering target and method of producing it
CN108516820B (en) * 2018-07-04 2019-10-29 郑州大学 A kind of short route sintering process of tin indium oxide target material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225501A (en) * 1983-06-04 1984-12-18 日本コントロ−ル株式会社 Resistor of large capacity resistor
JPS604849A (en) * 1983-06-22 1985-01-11 Nippon Denso Co Ltd Nitrogen oxide detecting element
JP2001216842A (en) * 2000-02-03 2001-08-10 Toyobo Co Ltd Transparent conductive film, transparent conductive sheet and touch panel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026672A (en) * 1990-06-25 1991-06-25 Tektronix, Inc. Method of fabricating a sintered body containing tin oxide
JP3827334B2 (en) * 1993-08-11 2006-09-27 東ソー株式会社 ITO sintered body and sputtering target
WO2000040769A1 (en) * 1998-12-28 2000-07-13 Japan Energy Corporation Sputtering target

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225501A (en) * 1983-06-04 1984-12-18 日本コントロ−ル株式会社 Resistor of large capacity resistor
JPS604849A (en) * 1983-06-22 1985-01-11 Nippon Denso Co Ltd Nitrogen oxide detecting element
JP2001216842A (en) * 2000-02-03 2001-08-10 Toyobo Co Ltd Transparent conductive film, transparent conductive sheet and touch panel

Also Published As

Publication number Publication date
JP2003073819A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
KR101155358B1 (en) Composite oxide sinter, process for producing amorphous composite oxide film, amorphous composite oxide film, process for producing crystalline composite oxide film, and crystalline composite oxide film
JPH0971860A (en) Target and its production
KR101274279B1 (en) Indium oxide sintered body, indium oxide transparent conductive film, and method for manufacturing the transparent conductive film
JP3864425B2 (en) Aluminum-doped zinc oxide sintered body, method for producing the same, and use thereof
KR20140041950A (en) Amorphous composite oxide film,crystalline composite oxide film,process for producing amorphous composite oxide film,process for producing crystalline composite oxide film,and composite oxide sinter
JPH04219359A (en) Electrically conductive zinc oxide sintered compact
KR102030892B1 (en) Ito sputtering target and method for manufacturing same, ito transparent electroconductive film, and method for manufacturing ito transparent electroconductive film
JP3827334B2 (en) ITO sintered body and sputtering target
KR101945145B1 (en) Oxide sintered compact
JP2001131736A (en) Sputtering target and method of manufacture
CN105008306B (en) Zinc oxide-based sintered object, process for producing same, sputtering target, and transparent conductive film
JP2006022373A (en) Method for manufacturing sputtering target for preparing transparent conductive thin film
JP4724330B2 (en) Tin-antimony oxide sintered compact target and method for producing the same
JP3957917B2 (en) Thin film forming materials
JP2009256762A (en) Sputtering target and method for producing the same
JP2010185129A (en) METHOD FOR MANUFACTURING ZnO VAPOR DEPOSITION MATERIAL
JPH0316954A (en) Oxide sintered product and preparation and use thereof
JP4075361B2 (en) Method for producing Mg-containing ITO sputtering target
JP2002275624A (en) Sintered compact target for depositing transparent electrically conductive thin film, production method therefor and transparent electrically conductive thin film obtained therefrom
JPH03126655A (en) Indium oxide-tin oxide sintered body and production therefor
JP2002030429A (en) Ito sputtering target and manufacturing method
JPH08246139A (en) Oxide sintered compact
JP4997665B2 (en) Method for producing transparent conductive film
JP4918737B2 (en) Oxide sintered body and sputtering target
JP2569774B2 (en) Manufacturing method of indium-tin oxide sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4724330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250