JP4994068B2 - Oxide conductive material and manufacturing method thereof - Google Patents

Oxide conductive material and manufacturing method thereof Download PDF

Info

Publication number
JP4994068B2
JP4994068B2 JP2007063025A JP2007063025A JP4994068B2 JP 4994068 B2 JP4994068 B2 JP 4994068B2 JP 2007063025 A JP2007063025 A JP 2007063025A JP 2007063025 A JP2007063025 A JP 2007063025A JP 4994068 B2 JP4994068 B2 JP 4994068B2
Authority
JP
Japan
Prior art keywords
oxide
mol
conductive material
conductivity
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007063025A
Other languages
Japanese (ja)
Other versions
JP2008066276A (en
Inventor
雅敏 柴田
真 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2007063025A priority Critical patent/JP4994068B2/en
Publication of JP2008066276A publication Critical patent/JP2008066276A/en
Application granted granted Critical
Publication of JP4994068B2 publication Critical patent/JP4994068B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Conductive Materials (AREA)

Description

本発明は、酸化物導電性材料及びその製造方法に関する。   The present invention relates to an oxide conductive material and a manufacturing method thereof.

インジウム−錫酸化物(ITO)を主とする導電性酸化物粉末の透明導電性被膜への利用が盛んに行われている。導電性酸化物粉末を透明導電性被膜とするには、例えば、一次粒子径が約0.1μm以下の導電性酸化物粉末を溶媒とバインダー樹脂からなる溶液中に分散させ、これをガラス、プラスチック等の基材に塗布、印刷、浸漬、スピンコート又は噴霧等の手段で塗工し、乾燥する方法がある。   BACKGROUND ART Conductive oxide powders mainly composed of indium-tin oxide (ITO) are actively used for transparent conductive films. In order to make the conductive oxide powder into a transparent conductive film, for example, a conductive oxide powder having a primary particle size of about 0.1 μm or less is dispersed in a solution composed of a solvent and a binder resin, and this is made into glass or plastic. There is a method of applying to a substrate such as coating, printing, dipping, spin coating or spraying and drying.

こうして作製した透明導電膜は、ガラス、プラスチック等の帯電防止やほこりの付着防止に有効であり、ディスプレーや計測器の窓ガラスの帯電防止やほこりの付着防止用として利用されている。   The transparent conductive film produced in this way is effective for preventing charging of glass, plastics and the like and preventing adhesion of dust, and is used for preventing charging of window glass of displays and measuring instruments and preventing adhesion of dust.

さらに、ICパッケージ回路形成、クリーンルーム内装材、各種ガラスやフィルム等の帯電防止やほこりの付着防止、塗布型透明電極又は赤外線遮蔽材料等の用途に利用可能であり、今後の需要の伸びが期待されている。   Furthermore, it can be used for applications such as IC package circuit formation, clean room interior materials, antistatic and dust adhesion prevention of various glass and films, coated transparent electrodes or infrared shielding materials, and future demand growth is expected. ing.

このような利用分野の拡大に伴って、導電性に優れかつ透明性にも優れた導電性微粒子の需要が高まっている。
しかし、インジウムは、亜鉛の精錬時の副産物として得られる金属で資源量も限られており、近年液晶の透明電極としてITOが多用されてきたことから、供給量制約の不安があり、価格が急激に上昇している。また、インジウムの入手困難性も増加している。
With the expansion of such fields of use, there is an increasing demand for conductive fine particles having excellent conductivity and transparency.
However, indium is a metal obtained as a by-product during the refining of zinc, and the amount of resources is limited. In recent years, ITO has been used extensively as a transparent electrode for liquid crystals, so there are concerns about supply restrictions and the price is rapidly rising. Is rising. In addition, the difficulty of obtaining indium has increased.

特許文献1には、酸化インジウム、酸化錫及び酸化亜鉛が特定の金属原子比であって、酸化インジウムと酸化亜鉛からなる六方晶層状化合物、及び酸化錫と酸化亜鉛からなるスピネル構造を有する化合物を含有する焼結体が開示されている。また、各成分の金属原子比において、インジウムがIn/(In+Sn+Zn)=0.50〜0.75の範囲にあると記載されている。しかし、コランダム構造に関する記載はない。   Patent Document 1 discloses a compound having a specific metal atomic ratio of indium oxide, tin oxide and zinc oxide, a hexagonal layered compound composed of indium oxide and zinc oxide, and a compound having a spinel structure composed of tin oxide and zinc oxide. A sintered body is disclosed. In addition, in the metal atomic ratio of each component, it is described that indium is in a range of In / (In + Sn + Zn) = 0.50 to 0.75. However, there is no description regarding the corundum structure.

特許文献2には、コランダム型結晶相を含むITO膜を形成する製造方法が記載されているが、インジウム含量の高い材料のみが開示されている。特許文献3には、不活性ガス密閉加圧雰囲気下、350〜1000℃で熱処理して得られる粒子径0.05μm以下のITO粉末が開示されているが、この文献においてもインジウム含量の高い材料のみが開示されている。特許文献4には、本発明の製造法と類似するインジウム系酸化物微粒子の製造方法が開示されている。しかし、特定組成のIn,Sn及びZnの酸化物からなる酸化物導電性材料についての開示はない。
特開2000−72537号公報 特開2004−75427号公報 特開平7−21831号公報 特開2004−75472号公報
Patent Document 2 describes a manufacturing method for forming an ITO film containing a corundum crystal phase, but only a material having a high indium content is disclosed. Patent Document 3 discloses an ITO powder having a particle diameter of 0.05 μm or less obtained by heat treatment at 350 to 1000 ° C. in an inert gas hermetically pressurized atmosphere. In this document as well, a material with a high indium content is disclosed. Only is disclosed. Patent Document 4 discloses a method for producing indium oxide fine particles similar to the production method of the present invention. However, there is no disclosure of an oxide conductive material composed of oxides of In, Sn, and Zn having a specific composition.
JP 2000-72537 A JP 2004-75427 A JP-A-7-21831 JP 2004-75472 A

本発明の目的は、インジウム含有量が少なくても良好な導電性を有する酸化物導電性材料を提供することである。
本発明の他の目的は、粒径が小さく、導電性ペーストや導電性塗布液に使用できる酸化物導電性材料を提供することである。
本発明の他の目的は、上記酸化物導電性材料の製造方法を提供することである。
An object of the present invention is to provide an oxide conductive material having good conductivity even when the indium content is small.
Another object of the present invention is to provide an oxide conductive material having a small particle size and usable in a conductive paste or a conductive coating solution.
Another object of the present invention is to provide a method for producing the oxide conductive material.

本発明は上述の問題に鑑みなされたものであり、コランダム構造のIn、Sn及びZnの酸化物を含み、酸素を除く全原子に占めるIn、Sn及びZnの割合が、20mol%≦In≦70mol%、5mol%≦Sn≦60mol%、5mol%≦Zn≦60mol%である酸化物導電性材料が良好な導電性を示すことを見出し、本発明を完成させた。
本発明によれば、以下の導電性酸化物材料及びその製造方法が提供される。
1.コランダム構造のIn、Sn及びZnの酸化物を含み、酸素を除く全原子に占める前記In、Sn及びZnの割合が、20mol%≦In≦70mol%、5mol%≦Sn≦60mol%、5mol%≦Zn≦60mol%である酸化物導電性材料。
2.100kg/cmの加圧下での電気伝導度が0.001S/cm以上である1に記載の酸化物導電性材料。
3.平均粒径が0.2μm以下の粒子である1又は2に記載の酸化物導電性材料。
4.Mg,Ca,Ti,Zr,Al,Ga,Si,Geから選択される1又は2以上の金属元素を含む酸化物及び/又は希土類元素の酸化物を含む1〜3のいずれかに記載の酸化物導電性材料。
5.In、Sn及びZnを含む金属塩溶液から沈殿法によってIn、Sn及びZnの含有物を調製し、前記含有物を酸素濃度が0.1体積%以下の不活性ガス下で熱処理してIn、Sn及びZnを含む酸化物を得る1〜4のいずれかに記載の酸化物導電性材料の製造方法。
6.1〜4のいずれかに記載の又は5に記載の製造方法により製造された酸化物導電性材料を用いて得られるスパッタリングターゲット。
The present invention has been made in view of the above problems, and includes an oxide of In, Sn, and Zn having a corundum structure, and the proportion of In, Sn, and Zn in all atoms excluding oxygen is 20 mol% ≦ In ≦ 70 mol. %, 5 mol% ≦ Sn ≦ 60 mol%, 5 mol% ≦ Zn ≦ 60 mol% was found to exhibit good conductivity, and the present invention was completed.
According to the present invention, the following conductive oxide materials and methods for producing the same are provided.
1. The ratio of In, Sn, and Zn in the total atoms excluding oxygen, including oxides of In, Sn, and Zn having a corundum structure, is 20 mol% ≦ In ≦ 70 mol%, 5 mol% ≦ Sn ≦ 60 mol%, 5 mol% ≦ An oxide conductive material in which Zn ≦ 60 mol%.
2. The oxide conductive material according to 1, wherein the electric conductivity under a pressure of 100 kg / cm 2 is 0.001 S / cm or more.
3. 3. The oxide conductive material according to 1 or 2, wherein the average particle size is 0.2 μm or less.
4). The oxidation according to any one of 1 to 3, comprising an oxide containing one or more metal elements selected from Mg, Ca, Ti, Zr, Al, Ga, Si, Ge and / or an oxide of a rare earth element Conductive material.
5. A content of In, Sn, and Zn is prepared from a metal salt solution containing In, Sn, and Zn by a precipitation method, and the content is heat-treated in an inert gas having an oxygen concentration of 0.1% by volume or less. The manufacturing method of the oxide electroconductive material in any one of 1-4 which obtains the oxide containing Sn and Zn.
The sputtering target obtained using the oxide electroconductive material manufactured by the manufacturing method in any one of 6.1-4 or 5.

本発明によれば、インジウム含有量が少なくても良好な導電性を有する導電性酸化物材料を提供することができる。
本発明によれば、粒径が小さく、導電性ペーストや導電性塗布液に使用できる導電性酸化物材料を提供することができる。
本発明によれば、上記導電性酸化物材料の製造方法を提供することができる。
According to the present invention, it is possible to provide a conductive oxide material having good conductivity even when the indium content is small.
According to the present invention, it is possible to provide a conductive oxide material having a small particle size and usable for a conductive paste or a conductive coating solution.
According to this invention, the manufacturing method of the said electroconductive oxide material can be provided.

本発明の酸化物導電性材料はコランダム構造のIn、Sn及びZnの酸化物を含み、酸素を除く全原子に占めるIn、Sn及びZnの割合が、20mol%≦In≦70mol%、5mol%≦Sn≦60mol%、5mol%≦Zn≦60mol%である。   The oxide conductive material of the present invention includes an oxide of In, Sn, and Zn having a corundum structure, and the proportion of In, Sn, and Zn in all atoms excluding oxygen is 20 mol% ≦ In ≦ 70 mol%, 5 mol% ≦ Sn ≦ 60 mol%, 5 mol% ≦ Zn ≦ 60 mol%.

Inの高温相として、コランダム構造の結晶相が知られている(Inorganic Chemistry,(1969),8,1985−1993)。本発明の酸化物導電性材料において、コランダム構造のIn、Sn及びZnの酸化物とは、上記コランダム構造のInのInサイトにランダムにSnとZnが置換したものである。 A crystalline phase having a corundum structure is known as a high-temperature phase of In 2 O 3 (Inorganic Chemistry, (1969), 8, 1985-1993). In the oxide conductive material of the present invention, the corundum-structured In, Sn, and Zn oxides are those in which Sn and Zn are randomly substituted at the In 2 O 3 In site of the corundum structure.

酸素を除く全原子に占めるIn、Sn及びZnの割合は、好ましくは30mol%≦In≦60mol%、15mol%≦Sn≦60mol%、5mol%≦Zn≦50mol%である。この範囲において、さらに導電性を向上させることができる。
Inが20mol%未満の場合、導電性が非常に低くなるおそれがある。また、Inが70mol%を超える場合、高価なInが多くなりコストが高くなる上、Inの入手困難性への対処が難しくなる。
Sn又はZnが5mol%未満の場合、導電性が非常に低くなるおそれがある。また、Sn又はZnが60mol%を超える場合、導電性が低くなるおそれがある。
The proportions of In, Sn and Zn in all atoms excluding oxygen are preferably 30 mol% ≦ In ≦ 60 mol%, 15 mol% ≦ Sn ≦ 60 mol%, 5 mol% ≦ Zn ≦ 50 mol%. Within this range, the conductivity can be further improved.
If In is less than 20 mol%, the conductivity may be very low. Further, when In exceeds 70 mol%, expensive In is increased and the cost is increased, and it is difficult to cope with the difficulty of obtaining In.
When Sn or Zn is less than 5 mol%, the conductivity may be very low. Moreover, when Sn or Zn exceeds 60 mol%, there exists a possibility that electroconductivity may become low.

本発明の酸化物導電性材料は、上記コランダム構造のIn、Sn及びZnの酸化物の他に、好ましくはMg,Ca,Ti,Zr,Al,Ga,Si,Geから選択される1又は2以上の金属元素を含む酸化物及び/又は希土類元素の酸化物を含む。これらの酸化物を含有させることにより、高価なInの含有量を減少させても、高い導電性を維持できる。また、これらの酸化物が含まれることにより、導電性が向上する。
上記酸化物のうち、導電性向上の点から、Mg,Al,Ga、Siから選択される1又は2以上の金属元素を含む酸化物を含むことがより好ましい。
また、本発明の酸化物導電性材料において、上記酸化物の酸素を除く全原子に占めるMg,Al,Ga、Siから選択される1又は2以上の金属元素の割合は、通常0.1mol%〜20mol%である。この範囲において上記酸化物を含ませると効果の発現が大きい。好ましくは0.2mol%〜10mol%である。
The oxide conductive material of the present invention is preferably 1 or 2 selected from Mg, Ca, Ti, Zr, Al, Ga, Si, and Ge other than the oxides of In, Sn, and Zn having the corundum structure. An oxide containing the above metal element and / or an oxide of a rare earth element is included. By containing these oxides, high conductivity can be maintained even if the expensive In content is reduced. Moreover, electroconductivity improves by containing these oxides.
Among the above oxides, it is more preferable to include an oxide containing one or more metal elements selected from Mg, Al, Ga, and Si from the viewpoint of improving conductivity.
In the oxide conductive material of the present invention, the ratio of one or more metal elements selected from Mg, Al, Ga, Si to the total atoms excluding oxygen in the oxide is usually 0.1 mol%. ˜20 mol%. When the above oxide is included in this range, the effect is large. Preferably it is 0.2 mol%-10 mol%.

本発明の酸化物導電性材料は、良好な導電性を有する。具体的には、100kg/cmの加圧下での電気伝導度が0.001S/cm以上であると好ましく、0.01S/cm以上であるとより好ましい。
電気伝導度が0.001S/cm以上であると、帯電防止やほこりの付着防止に有効な成形品や膜が得られる。また、酸化物導電性材料の配合量を低減させることで、帯電防止と軽量化の両方を達成することができる。
尚、電気伝導度の上限について規定する必要はないが、本発明の酸化物導電性材料は主に微粒子や焼結体の形状で利用されることを考慮すると、電気伝導度の上限として、10S/cm程度の値が考えられる。
尚、本発明の酸化物導電性材料は、通常、微粒子として得られることから、信頼性の高い電気伝導度測定値を得るため、100kg/cmの加圧下で測定する。
The oxide conductive material of the present invention has good conductivity. Specifically, the electric conductivity under a pressure of 100 kg / cm 2 is preferably 0.001 S / cm or more, and more preferably 0.01 S / cm or more.
When the electrical conductivity is 0.001 S / cm or more, a molded product or a film effective for preventing charging and preventing adhesion of dust can be obtained. Further, by reducing the blending amount of the oxide conductive material, both antistatic and light weight can be achieved.
Although it is not necessary to define the upper limit of electrical conductivity, considering that the oxide conductive material of the present invention is mainly used in the form of fine particles and sintered bodies, the upper limit of electrical conductivity is 10 A value of about 4 S / cm is conceivable.
Since the oxide conductive material of the present invention is usually obtained as fine particles, it is measured under a pressure of 100 kg / cm 2 in order to obtain a highly reliable measured value of electric conductivity.

本発明の酸化物導電性材料の平均粒径は、用途に合わせて調整すればよく、例えば、ゴムやプラスチック等への白色導電性フィラーや、焼結体原料として用いる場合は0.1μm〜数μmである。
本発明の酸化物導電性材料は、好ましくは平均粒径が0.2μm以下であり、より好ましくは0.1μm以下である。平均粒径が0.2μm以下であることで、透明導電性が要求される用途にも利用することができる。粒径の通常の下限値としては、1nmを挙げることができる。
The average particle size of the oxide conductive material of the present invention may be adjusted according to the application. For example, when used as a white conductive filler for rubber or plastic or a raw material of a sintered body, 0.1 μm to several μm.
The oxide conductive material of the present invention preferably has an average particle size of 0.2 μm or less, more preferably 0.1 μm or less. When the average particle size is 0.2 μm or less, it can be used for applications requiring transparent conductivity. A typical lower limit of the particle size can be 1 nm.

本発明の酸化物導電性材料は、In、Sn及びZnの金属塩溶液から沈殿法によってIn、Sn及びZnの含有物を調製し、この含有物を酸素濃度が0.1体積%以下の不活性ガス下で熱処理することにより得られる。
沈殿法を用いることで均一な材質の酸化物導電性材料を得ることができる。
The oxide conductive material of the present invention is prepared by preparing a content of In, Sn, and Zn from a metal salt solution of In, Sn, and Zn by a precipitation method. It can be obtained by heat treatment under an active gas.
A uniform oxide conductive material can be obtained by using the precipitation method.

本発明の酸化物導電性材料の製造方法において、金属塩溶液はIn、Sn及びZnの他に、好ましくはMg,Ca,Ti,Zr,Al,Ga,Si,Geから選択される1又は2以上の金属元素及び/又は希土類元素の金属塩を含む。   In the method for producing an oxide conductive material according to the present invention, the metal salt solution is preferably selected from Mg, Ca, Ti, Zr, Al, Ga, Si and Ge in addition to In, Sn and Zn. The metal element of the above metal element and / or rare earth element is included.

金属塩としては、硝酸塩、塩化物塩、酢酸塩、アルコキシド等が挙げられる。アルコキシドとしては、例えば、メトキシド、エトキシド等が挙げられる。   Examples of metal salts include nitrates, chloride salts, acetates, alkoxides, and the like. Examples of the alkoxide include methoxide and ethoxide.

上記金属塩を水、又はアルコール、含酸素化合物等の有機溶媒に溶解させる。アルコールとしては、例えば、メタノール、エタノール、イソプロパノール、メトキシエタノール、エトキシエタノール等が挙げられる。また、含酸素化合物としては、例えば、酢酸エチル等のエステル、酢酸、プロピオン酸等のカルボン酸等が挙げられる。   The metal salt is dissolved in water or an organic solvent such as alcohol or oxygen-containing compound. Examples of the alcohol include methanol, ethanol, isopropanol, methoxyethanol, ethoxyethanol and the like. Examples of the oxygen-containing compound include esters such as ethyl acetate, carboxylic acids such as acetic acid and propionic acid, and the like.

金属塩溶液の濃度は、通常、0.001mol/l〜10mol/lの範囲である。0.001mol/l未満の濃度では、生産性が悪く、10mol/lを超えるような高濃度では沈殿液の撹拌が困難となる。   The concentration of the metal salt solution is usually in the range of 0.001 mol / l to 10 mol / l. When the concentration is less than 0.001 mol / l, the productivity is poor, and when the concentration is higher than 10 mol / l, it is difficult to stir the precipitation solution.

沈殿法に用いる沈殿剤は、例えば、水酸化アンモニウム、水酸化ナトリウム、炭酸アンモニウム、炭酸ナトリウム、炭酸水素アンモニウム、炭酸水素ナトリウム等のアルカリ溶液、シュウ酸、蟻酸、シュウ酸アンモニウム等の有機酸や有機酸塩、さらには加熱時に分解してアンモニアを発生する尿素等を挙げることができる。均一な沈殿が形成され易い点で、好ましくは炭酸アンモニウム、炭酸水素アンモニウム、炭酸ナトリウム、炭酸水素ナトリウム、シュウ酸、シュウ酸アンモニウム、尿素である。   Examples of the precipitant used in the precipitation method include alkaline solutions such as ammonium hydroxide, sodium hydroxide, ammonium carbonate, sodium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, organic acids such as oxalic acid, formic acid, ammonium oxalate, and organic acids. Examples thereof include acid salts and urea that decomposes when heated to generate ammonia. Among them, ammonium carbonate, ammonium hydrogen carbonate, sodium carbonate, sodium hydrogen carbonate, oxalic acid, ammonium oxalate, and urea are preferable because a uniform precipitate is easily formed.

沈殿剤の使用量は、通常、上記の各金属塩が水酸化物やシュウ酸塩等の化合物となるのに必要な化学当量の50%以上であり、好ましくはアルカリイオン等の残留による洗浄時間の短縮の観点から、化学当量の80%〜2000%である。
沈殿剤の使用量が、化学当量の50%未満の場合、沈殿物の組成が溶液組成と異なるものになるおそれがある。
The amount of precipitant used is usually 50% or more of the chemical equivalent required for each of the above metal salts to become a compound such as hydroxide or oxalate, and preferably the washing time due to residual alkali ions or the like. From the viewpoint of shortening, the chemical equivalent is 80% to 2000%.
When the amount of the precipitant used is less than 50% of the chemical equivalent, the composition of the precipitate may be different from the solution composition.

沈殿の形成温度は、通常、溶媒の凝固点から溶媒の沸点までとすると好ましい。低温では沈殿の形成速度が遅いため、溶媒の凝固点+5℃から溶媒の沸点までとするとより好ましい。   The formation temperature of the precipitate is usually preferably from the freezing point of the solvent to the boiling point of the solvent. Since the formation rate of the precipitate is low at low temperatures, it is more preferable that the temperature be from the freezing point of the solvent + 5 ° C. to the boiling point of the solvent.

沈殿形成後に、沈殿形成時と同じ温度から、常圧では溶媒の沸点までの温度、又は加圧下で300℃まで昇温して、数分から100時間程度の熟成を行ってもよい。熟成を行うことにより、沈殿物のろ過が容易となり、より完全な水酸化物やシュウ酸塩等の化合物を得ることができる。   After the formation of the precipitate, aging may be performed for several minutes to about 100 hours by raising the temperature from the same temperature as the formation of the precipitate to the boiling point of the solvent at normal pressure or 300 ° C. under pressure. By aging, the precipitate can be easily filtered, and more complete compounds such as hydroxide and oxalate can be obtained.

得られた化合物(沈殿)は、ろ過、遠心分離、デカンテーション等の手段により溶液から分離し、その後、水洗や溶媒洗浄等を行って、不要なイオン等を除去する。溶媒洗浄で使用する溶媒としては、例えば、エタノール、イソプロパノール等のアルコール類、THF等のエーテル類が挙げられる。
不要なイオン等が除去されたことは、洗浄に使用した溶媒の電気伝導度が0.5mS以下となることを目安とすることができる。
The obtained compound (precipitate) is separated from the solution by means of filtration, centrifugation, decantation, etc., and then washed with water or solvent to remove unnecessary ions and the like. Examples of the solvent used in the solvent washing include alcohols such as ethanol and isopropanol, and ethers such as THF.
The removal of unnecessary ions or the like can be taken as a measure that the electrical conductivity of the solvent used for cleaning is 0.5 mS or less.

洗浄後に、水や溶媒を50〜400℃、30分〜100時間の乾燥によって除去する。上記乾燥後、例えば、さらに熱処理することにより、得られた化合物を酸化物としてもよい。この熱処理は、後述する熱処理と同一の工程であってもよいが、より完全に水や溶媒を除去するための予備的な熱処理であってもよい。予備的な熱処理の場合、通常、200〜800℃程度で行う。この場合、不活性ガス下で熱処理する必要はない。   After washing, water and solvent are removed by drying at 50 to 400 ° C. for 30 minutes to 100 hours. After the drying, the obtained compound may be converted into an oxide by, for example, further heat treatment. This heat treatment may be the same step as the heat treatment described later, but may be a preliminary heat treatment for removing water and solvent more completely. In the case of preliminary heat treatment, it is usually performed at about 200 to 800 ° C. In this case, it is not necessary to perform heat treatment under an inert gas.

本発明の酸化物導電性材料の製造方法において、沈殿法で得られた化合物を熱処理して酸化物にする。熱処理することにより、化合物の結晶性が向上し、導電性が向上する。
高温で熱処理する場合、粒成長が激しいため、好ましくは短時間で行う。一方、低温で熱処理する場合は粒成長が抑えられるが、反応の進行が遅い。このため、低温で熱処理する場合、より長時間の熱処理をしたほうが導電性は向上する。
In the method for producing an oxide conductive material of the present invention, the compound obtained by the precipitation method is heat-treated to form an oxide. By performing the heat treatment, the crystallinity of the compound is improved and the conductivity is improved.
When the heat treatment is performed at a high temperature, since the grain growth is severe, it is preferably performed in a short time. On the other hand, when the heat treatment is performed at a low temperature, the grain growth is suppressed, but the reaction proceeds slowly. For this reason, when the heat treatment is performed at a low temperature, the conductivity is improved by performing the heat treatment for a longer time.

熱処理温度、熱処理時間等の熱処理条件は、酸化物導電性材料に求められる粒子の大きさと求められる導電性の程度を勘案して決定すればよい。例えば、熱処理温度は、1300℃以下が好ましい。熱処理温度が1300℃を超える場合、粒成長が特に激しく微粒子の製造が難しくなるおそれがある。   The heat treatment conditions such as the heat treatment temperature and the heat treatment time may be determined in consideration of the particle size required for the oxide conductive material and the required degree of conductivity. For example, the heat treatment temperature is preferably 1300 ° C. or lower. When the heat treatment temperature exceeds 1300 ° C., the grain growth is particularly intense, and it may be difficult to produce fine particles.

熱処理時間は、通常、高温であれば数秒程度の非常に短い時間で足り、低温であっても数時間程度以下で十分である。例えば、熱処理温度が1000℃以上である場合、好ましくは10分以下である。熱処理温度が500〜1000℃である場合、好ましくは30分以下である。熱処理温度が500℃以下である場合、好ましくは数時間程度以下である。高い温度であれば粒成長が激しいことから、短時間での熱処理が好ましく、低温であれば粒成長が抑えられるが固相反応が遅いため、導電性向上のため、より長時間の熱処理をしたほうが好ましい。
熱処理温度は、上述した予備的な熱処理の場合と同様に通常、200℃以上で行う。好ましくは、300℃以上である。
The heat treatment time is usually a very short time of about several seconds at a high temperature, and about several hours or less is sufficient even at a low temperature. For example, when the heat treatment temperature is 1000 ° C. or higher, it is preferably 10 minutes or shorter. When heat processing temperature is 500-1000 degreeC, Preferably it is 30 minutes or less. When the heat treatment temperature is 500 ° C. or less, it is preferably about several hours or less. Grain growth is high at high temperatures, so heat treatment in a short time is preferable. Grain growth is suppressed at low temperatures, but the solid-phase reaction is slow, so a longer heat treatment was performed to improve conductivity. Is preferred.
The heat treatment temperature is usually 200 ° C. or higher as in the case of the preliminary heat treatment described above. Preferably, it is 300 ° C. or higher.

上記熱処理は、不活性ガス下で行う。不活性ガスとしては、窒素、ヘリウム、アルゴン等が使用でき、入手容易性の点で窒素やアルゴンが好ましい。
また、上記不活性ガスの酸素濃度は、0.1体積%以下であり、好ましくは、0.05体積%以下である。0.1体積%を超える濃度では、導電性が低下するおそれがある。
The heat treatment is performed under an inert gas. As the inert gas, nitrogen, helium, argon or the like can be used, and nitrogen or argon is preferable in terms of availability.
The oxygen concentration of the inert gas is 0.1% by volume or less, preferably 0.05% by volume or less. If the concentration exceeds 0.1% by volume, the conductivity may decrease.

不活性ガス下での熱処理の実施は、不活性ガスを充填でき、炉内を不活性ガス雰囲気に維持できる条件が確保されれば特に限定されず、例えば電気炉等を用いて実施できる。   The heat treatment under the inert gas is not particularly limited as long as the conditions that can be filled with the inert gas and can maintain the inside of the furnace in the inert gas atmosphere are not particularly limited. For example, the heat treatment can be performed using an electric furnace or the like.

熱処理した後、熱処理化合物を解砕することにより酸化物粒子を得られる。解砕は、遊星ボールミルやジェットミル等の機械的粉砕方法を用いて乾式で粉砕することで、より粒径の小さい酸化物微粉子を得ることができる。   After the heat treatment, oxide particles can be obtained by crushing the heat treatment compound. Crushing can be performed by dry pulverization using a mechanical pulverization method such as a planetary ball mill or a jet mill, whereby fine oxide particles having a smaller particle diameter can be obtained.

こうして得られた本発明の酸化物導電性材料は、それ自体の持つ機能を利用し帯電防止剤等、各種用途に用いられる。また、この材料を原料とし、公知の方法にて加圧成型し、大気又は不活性ガス中で焼結して焼結体とすることもできる。
上記焼結体は、例えば、本発明の酸化物導電性材料にバインダーを混合して所定の形状に成型し、空気中又は不活性雰囲気中で900℃から1700℃で1分から100時間焼結を行うことで得ることができる。バインダーとしては、例えば、ポリビニルアルコール、ポリブチラール、ポリアクリル酸等が挙げられる。
The oxide conductive material of the present invention thus obtained is used for various applications such as an antistatic agent by utilizing its own function. Further, this material can be used as a raw material, pressure-molded by a known method, and sintered in air or an inert gas to obtain a sintered body.
The sintered body is formed, for example, by mixing the oxide conductive material of the present invention with a binder and molding it into a predetermined shape, and sintering in air or in an inert atmosphere at 900 ° C. to 1700 ° C. for 1 minute to 100 hours. It can be obtained by doing. Examples of the binder include polyvinyl alcohol, polybutyral, polyacrylic acid and the like.

本発明の酸化物導電性材料を用いた焼結体は導電性に優れているため、例えば、導電性膜を形成するときに使用されるスパッタリングターゲットとして好適に用いることができる。   Since the sintered body using the oxide conductive material of the present invention is excellent in conductivity, it can be suitably used, for example, as a sputtering target used when forming a conductive film.

また、本発明の酸化物導電性材料を、ビーズミルや振動ミル等を用いて、溶媒、分散剤及びバインダー樹脂からなる溶液中に分散させることで、分散溶液を導電性ペーストや塗布液とすることができる。これら導電性ペーストや塗布液を、ガラス、プラスチック等の基材に塗布、印刷、浸漬、スピンコート又は噴霧等の手段で塗工し、乾燥することにより透明導電膜とすることができる。この膜は、ガラス、プラスチック等の帯電防止やほこりの付着防止に有効である。また、ディスプレーや計測器の窓ガラスの帯電防止やほこりの付着防止用として利用できる。   Moreover, the oxide conductive material of the present invention is dispersed in a solution composed of a solvent, a dispersant, and a binder resin using a bead mill, a vibration mill, or the like, so that the dispersion solution becomes a conductive paste or a coating liquid. Can do. These conductive pastes and coating solutions can be applied to a substrate such as glass or plastic by means such as coating, printing, dipping, spin coating or spraying, and dried to form a transparent conductive film. This film is effective for preventing charging of glass, plastic, etc. and preventing adhesion of dust. In addition, it can be used for preventing charging of window glass of displays and measuring instruments and adhesion of dust.

さらに、本発明の酸化物導電性材料は、ICパッケージ回路形成、クリーンルーム内装材、各種ガラスやフィルム等の帯電防止やほこりの付着防止、塗布型透明電極又は赤外線遮蔽材料等の用途に利用できる。加えて、タッチパネル等にも応用できる。   Furthermore, the oxide conductive material of the present invention can be used for applications such as IC package circuit formation, clean room interior materials, antistatic of various glasses and films, dust adhesion prevention, coated transparent electrodes or infrared shielding materials. In addition, it can be applied to touch panels.

実施例1
In、Zn、Snのモル比がIn:Zn:Sn=60:20:20となるように、硝酸インジウム(3水和物)(関東化学(株)製)170g、塩化第二錫(5水和物)(関東化学(株)製)56g、硝酸亜鉛(6水和物)(関東化学(株)製)47.5gを2.5Lのイオン交換水に溶解した(A溶液という)。また、炭酸アンモニウム(和光純薬(株)製)132.2gを0.9Lのイオン交換水に溶解した(B溶液という)。
Example 1
170 g of indium nitrate (trihydrate) (manufactured by Kanto Chemical Co., Inc.), stannic chloride (5 water) so that the molar ratio of In, Zn, and Sn is In: Zn: Sn = 60: 20: 20 56 g of Japanese product (manufactured by Kanto Chemical Co., Ltd.) and 47.5 g of zinc nitrate (hexahydrate) (manufactured by Kanto Chemical Co., Ltd.) were dissolved in 2.5 L of ion-exchanged water (referred to as solution A). Further, 132.2 g of ammonium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 0.9 L of ion exchange water (referred to as B solution).

A溶液を撹拌しながら、25℃に保ち、30分かけてB溶液を滴下した。その後、溶液の温度を80℃まで加温し、30分間熟成を行い、沈殿物を得た。次に、デカンテーションにて一回につき2Lのイオン交換水で沈殿物の洗浄を行い、導電率計Combo2(ハンナインスツルメンツ製)により溶液の電気伝導度を測定し、溶液の電気伝導度が0.5mS以下になるまで洗浄を繰り返し行った。その後、沈殿物を300℃で乾燥した。   While stirring the A solution, the B solution was added dropwise over 30 minutes while maintaining the temperature at 25 ° C. Thereafter, the temperature of the solution was heated to 80 ° C., and aging was performed for 30 minutes to obtain a precipitate. Next, the precipitate is washed with 2 L of ion exchange water at a time by decantation, and the electrical conductivity of the solution is measured by a conductivity meter Combo2 (manufactured by Hanna Instruments). Washing was repeated until 5 mS or less. Thereafter, the precipitate was dried at 300 ° C.

得られた化合物を赤外線イメージ炉(株式会社モトヤマ製)にて、窒素(酸素濃度;10ppm)を0.5L/分の流量で流しながら、約10分間で800℃まで昇温し、10分間その温度に保持した後、室温まで急冷した。   The obtained compound was heated to 800 ° C. in about 10 minutes while flowing nitrogen (oxygen concentration: 10 ppm) at a flow rate of 0.5 L / min in an infrared image furnace (manufactured by Motoyama Co., Ltd.) After maintaining the temperature, it was rapidly cooled to room temperature.

得られた酸化物粒子は薄い青灰色であり、平均粒径は約0.035μmであった。尚、平均粒径は窒素吸着によるBET比表面積測定法により比表面積を測定し、下記式から算出した値である。
平均粒径(μm)=6/(密度×比表面積)
尚、上記密度はX線回折測定結果から格子定数を計算し、それから計算される格子体積と格子内に存在する原子の重量から計算した。
The obtained oxide particles were light blue-gray and the average particle size was about 0.035 μm. The average particle diameter is a value calculated from the following formula by measuring the specific surface area by the BET specific surface area measurement method by nitrogen adsorption.
Average particle diameter (μm) = 6 / (density × specific surface area)
The density was calculated from the lattice constant calculated from the X-ray diffraction measurement result, and the calculated lattice volume and the weight of atoms present in the lattice.

また、X線回折測定を行ったところ、図1に示すようにコランダム構造の酸化物が生成していた。X線回折のデータから、リートベルト解析を行い、InサイトにランダムにSnとZnが置換していると判断した。
尚、X線回折測定(XRD)の測定条件は以下の通りであった。
装置:(株)リガク製Ultima−III
X線:Cu−Kα線(波長1.5406Å、グラファイトモノクロメータにて単色化)
2θ−θ反射法、連続スキャン(1.0°/分)
サンプリング間隔:0.02°
スリット DS、SS:2/3°、RS:0.6mm
Further, when X-ray diffraction measurement was performed, an oxide having a corundum structure was formed as shown in FIG. From the X-ray diffraction data, Rietveld analysis was performed and it was determined that Sn and Zn were randomly substituted at the In site.
The measurement conditions for X-ray diffraction measurement (XRD) were as follows.
Device: Rigaku Ultima-III
X-ray: Cu-Kα ray (wavelength 1.5406mm, monochromatized with graphite monochromator)
2θ-θ reflection method, continuous scan (1.0 ° / min)
Sampling interval: 0.02 °
Slit DS, SS: 2/3 °, RS: 0.6 mm

この粒子を加圧しながら二端子法で電気伝導度を測定した。具体的には、アクリル樹脂製の円筒容器(直径12mm)に測定対象の粒子を入れ、上下から銅製の円筒状電極で挟んだ。電気抵抗測定器を用いて電極間の電気抵抗を測定しながら、油圧ジャッキで試料に圧力をかけた。圧力が100kg/cmに到達した時の電気抵抗と試料の厚さを測定し、下記式から電気伝導度を算出した。
電気伝導度=(抵抗の逆数×試料厚み)/試料面積
その結果、100kg/cmの加重をかけた時の電気伝導度は2.5×10−1S/cmであり、良好な電気伝導性を有すことが明らかになった。
The electrical conductivity was measured by a two-terminal method while pressing the particles. Specifically, particles to be measured were placed in a cylindrical container (diameter 12 mm) made of acrylic resin, and sandwiched between copper cylindrical electrodes from above and below. While measuring the electrical resistance between the electrodes using an electrical resistance measuring device, pressure was applied to the sample with a hydraulic jack. The electrical resistance and the thickness of the sample when the pressure reached 100 kg / cm 2 were measured, and the electrical conductivity was calculated from the following formula.
Electrical conductivity = (reciprocal of resistance × sample thickness) / sample area As a result, the electrical conductivity when a weight of 100 kg / cm 2 is applied is 2.5 × 10 −1 S / cm, and good electrical conductivity It became clear that it has sex.

実施例2
In、Zn、Snのモル比がIn:Zn:Sn=40:30:30となるように、硝酸インジウム量を170g、塩化第二錫量を126g、硝酸亜鉛量を106.9g、炭酸アンモニウム量を198.5gにした以外は実施例1と同じように調製した。
Example 2
The amount of indium nitrate is 170 g, the amount of stannic chloride is 126 g, the amount of zinc nitrate is 106.9 g, and the amount of ammonium carbonate so that the molar ratio of In, Zn, and Sn is In: Zn: Sn = 40: 30: 30 Was prepared in the same manner as in Example 1 except that 198.5 g was used.

得られた酸化物粒子は薄い青灰色であり、平均粒径は約0.045μmであった。そのX線回折測定を行ったところ、図2に示すようにほとんどがコランダム構造の酸化物が生成していた。また、リートベルト解析を行い、InサイトにランダムにSnとZnが置換していると判断した。
この粒子を加圧しながら二端子法で電気伝導度を測定した。100kg/cmの加重をかけた時の電気伝導度は2.2×10−1S/cmであり、良好な伝導性を有すことが明らかになった。
The obtained oxide particles were light blue-gray and the average particle size was about 0.045 μm. When the X-ray diffraction measurement was performed, almost all oxides having a corundum structure were formed as shown in FIG. Further, Rietveld analysis was performed and it was determined that Sn and Zn were randomly substituted at the In site.
The electrical conductivity was measured by a two-terminal method while pressing the particles. The electrical conductivity when a load of 100 kg / cm 2 was applied was 2.2 × 10 −1 S / cm, and it was revealed that the material had good conductivity.

実施例3
In、Zn、Snのモル比がIn:Zn:Sn=30:20:50となるように、硝酸インジウム量を80.0g、塩化第二錫量を131.7g、硝酸亜鉛量を44.7g、炭酸アンモニウム量を137gにした以外は実施例1と同じように調製した。
Example 3
The amount of indium nitrate was 80.0 g, the amount of stannic chloride was 131.7 g, and the amount of zinc nitrate was 44.7 g so that the molar ratio of In, Zn, and Sn was In: Zn: Sn = 30: 20: 50. This was prepared in the same manner as in Example 1 except that the amount of ammonium carbonate was changed to 137 g.

得られた酸化物粒子は薄い青灰色であり、平均粒径は約0.042μmであった。そのX線回折測定を行ったところ、図3に示すようにほとんどがコランダム構造の酸化物が生成していた。また、リートベルト解析を行い、InサイトにランダムにSnとZnが置換していると判断した。
この粒子を加圧しながら二端子法で電気伝導度を測定した。100kg/cmの加重をかけた時の電気伝導度は3.9×10−1S/cmであり、良好な伝導性を有すことが明らかになった。
The obtained oxide particles were light blue-gray and the average particle diameter was about 0.042 μm. As a result of X-ray diffraction measurement, almost all oxides having a corundum structure were formed as shown in FIG. Further, Rietveld analysis was performed and it was determined that Sn and Zn were randomly substituted at the In site.
The electrical conductivity was measured by a two-terminal method while pressing the particles. The electrical conductivity when a load of 100 kg / cm 2 was applied was 3.9 × 10 −1 S / cm, and it was revealed that the material had good conductivity.

実施例4
In、Zn、Sn、Mgのモル比がIn:Zn:Sn:Mg=35:30:30:5となるように、硝酸インジウム量を160g、塩化第二錫量を135.5g、硝酸亜鉛量を115g、硝酸マグネシウム6水和物16.5g、炭酸アンモニウム量を198.5gにした以外は実施例1と同じように調製した。
得られた酸化物粒子は薄い青灰色であり、平均粒径は約0.044μmであった。そのX線回折測定を行ったところコランダム構造の酸化物が生成していた。また、リートベルト解析を行い、InサイトにランダムにSnとZnが置換していると判断した。
この粒子を加圧しながら二端子法で電気伝導度を測定した。100kg/cmの加重をかけた時の電気伝導度は3.1×10−1S/cmであり、良好な伝導性を有すことが明らかになった。
Example 4
The amount of indium nitrate was 160 g, the amount of stannic chloride was 135.5 g, and the amount of zinc nitrate so that the molar ratio of In, Zn, Sn, and Mg was In: Zn: Sn: Mg = 35: 30: 30: 5 Was prepared in the same manner as in Example 1, except that 115 g of magnesium nitrate, 16.5 g of magnesium nitrate hexahydrate, and 198.5 g of ammonium carbonate were used.
The obtained oxide particles were light blue-gray, and the average particle size was about 0.044 μm. When the X-ray diffraction measurement was performed, an oxide having a corundum structure was formed. Further, Rietveld analysis was performed and it was determined that Sn and Zn were randomly substituted at the In site.
The electrical conductivity was measured by a two-terminal method while pressing the particles. The electrical conductivity when a load of 100 kg / cm 2 was applied was 3.1 × 10 −1 S / cm, and it was revealed that the material had good conductivity.

実施例5
In、Zn、Snのモル比がIn:Zn:Sn=40:30:30となるように、塩化インジウム(4水和物)(新興化学工業(株)製)を120g、塩化第二錫(5水和物)量(和光純薬(株)製)を107.6g、塩化亜鉛量(和光純薬(株)製)を41.8gを3.4Lのイオン交換水に溶解した(A’溶液という)。また、尿素(和光純薬(株)製)1843gを6.1Lのイオン交換水に溶解した(B’溶液という)。
A’溶液とB’溶液を混合し、溶液の温度を93℃まで加温し、180分間熟成を行い、沈殿物を得た。次に、デカンテーションにて一回につき5Lのイオン交換水で沈殿物の洗浄を行い、導電率計Combo2(ハンナインスツルメンツ製)により溶液の電気伝導度を測定し、溶液の電気伝導度が0.5mS以下になるまで洗浄を繰り返し行った。その後、沈殿物を300℃で乾燥した。
Example 5
120 g of indium chloride (tetrahydrate) (manufactured by Shinsei Chemical Industry Co., Ltd.) and stannic chloride (in order for the molar ratio of In, Zn, and Sn to be In: Zn: Sn = 40: 30: 30) 107.6 g of pentahydrate) (made by Wako Pure Chemical Industries, Ltd.) and 41.8 g of zinc chloride (made by Wako Pure Chemical Industries, Ltd.) were dissolved in 3.4 L of ion-exchanged water (A ′ Called solution). Further, 1843 g of urea (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 6.1 L of ion exchange water (referred to as B ′ solution).
The A ′ solution and the B ′ solution were mixed, the temperature of the solution was heated to 93 ° C., and aging was performed for 180 minutes to obtain a precipitate. Next, the precipitate is washed with 5 L of ion exchange water at a time by decantation, and the electrical conductivity of the solution is measured by a conductivity meter Combo2 (manufactured by Hanna Instruments). Washing was repeated until 5 mS or less. Thereafter, the precipitate was dried at 300 ° C.

これ以降の窒素中での焼成は、焼成温度を700℃とした以外は実施例1と同じようにして調製した。
得られた酸化物粒子は薄い青灰色であり、平均粒径は約0.023μmであった。そのX線回折測定を行ったところ、図5に示すようにほとんどがコランダム構造である酸化物が生成していた。
Subsequent firing in nitrogen was prepared in the same manner as in Example 1 except that the firing temperature was 700 ° C.
The obtained oxide particles were light blue-gray and the average particle diameter was about 0.023 μm. When the X-ray diffraction measurement was performed, an oxide having a mostly corundum structure was formed as shown in FIG.

この粒子を実施例1と同じように加圧しながら二端子法で電気伝導度を測定した。100kg/cmの加重をかけたときの電気伝導度は2.2×100S/cmであり、良好な伝導性を有すことが明らかになった。 The electrical conductivity was measured by the two-terminal method while pressing the particles in the same manner as in Example 1. The electrical conductivity when a load of 100 kg / cm 2 was applied was 2.2 × 10 0 S / cm, and it was revealed that the film had good conductivity.

比較例1
In、Zn、Snのモル比がIn:Zn:Sn=15:55:30となるように、硝酸インジウム量を40g、塩化第二錫量を79g、硝酸亜鉛量を129.9g、炭酸アンモニウム量を114.2gにした以外は実施例1と同じように沈殿物を得て、乾燥した。
これを0.5体積%酸素/窒素雰囲気ガスを0.5L/分の流量で流しながら、約10分間で800℃まで昇温し、1分間その温度に保持した後、室温まで急冷した。
Comparative Example 1
The amount of indium nitrate is 40 g, the amount of stannic chloride is 79 g, the amount of zinc nitrate is 129.9 g, and the amount of ammonium carbonate so that the molar ratio of In, Zn, and Sn is In: Zn: Sn = 15: 55: 30 A precipitate was obtained in the same manner as in Example 1 except that 114.2 g was used, and dried.
While flowing 0.5 volume% oxygen / nitrogen atmosphere gas at a flow rate of 0.5 L / min, the temperature was raised to 800 ° C. in about 10 minutes, held at that temperature for 1 minute, and then rapidly cooled to room temperature.

得られた酸化物粒子は黄緑色に着色していた。また、平均粒径は約0.055μmであった。そのX線回折測定を行ったところ、図4に示すようにコランダム構造の酸化物ではなく、酸化スズとZnSnOが生成していた。
実施例1と同様にして電気伝導度を測定した結果、この粒子の電気伝導度は2.3×10−4S/cmと低いものであった。
The obtained oxide particles were colored yellow-green. The average particle size was about 0.055 μm. As a result of X-ray diffraction measurement, tin oxide and Zn 2 SnO 4 were formed instead of the corundum-structured oxide as shown in FIG.
As a result of measuring the electrical conductivity in the same manner as in Example 1, the electrical conductivity of the particles was as low as 2.3 × 10 −4 S / cm.

本発明の酸化物導電性材料は、透明導電性塗料又はコーティング液、プラスチックの添加剤(白色フィラー、帯電防止、静電気防止、電磁シールド等)、透明導電性薄膜材料、赤外線・紫外線遮蔽材料、機能性塗料材料(導電性塗料、熱線反射塗料)、又は機能性コーティング液材料(導電性コーティング液、熱線反射コーティング液)等に使用できる。
また、本発明の酸化物導電性材料からなる焼結体は透明導電性薄膜を形成するためのスパッタリングターゲット等に使用できる。
The oxide conductive material of the present invention includes transparent conductive paint or coating liquid, plastic additives (white filler, antistatic, antistatic, electromagnetic shield, etc.), transparent conductive thin film material, infrared / ultraviolet shielding material, function It can be used for conductive paint materials (conductive paint, heat ray reflective paint) or functional coating liquid materials (conductive coating liquid, heat ray reflective coating liquid).
Moreover, the sintered compact which consists of an oxide electroconductive material of this invention can be used for the sputtering target etc. for forming a transparent conductive thin film.

実施例1で得られた酸化物粒子のX線回折を示す図である。1 is a diagram showing X-ray diffraction of oxide particles obtained in Example 1. FIG. 実施例2で得られた酸化物粒子のX線回折を示す図である。4 is a diagram showing X-ray diffraction of oxide particles obtained in Example 2. FIG. 実施例3で得られた酸化物粒子のX線回折を示す図である。4 is a diagram showing X-ray diffraction of oxide particles obtained in Example 3. FIG. 比較例1で得られた酸化物粒子のX線回折を示す図である。FIG. 3 is a diagram showing X-ray diffraction of oxide particles obtained in Comparative Example 1. 実施例5で得られた酸化物粒子のX線回折を示す図である。6 is a diagram showing X-ray diffraction of oxide particles obtained in Example 5. FIG.

Claims (6)

コランダム構造のIn、Sn及びZnの酸化物を含み、
酸素を除く全原子に占める前記In、Sn及びZnの割合が、30mol%≦In≦60mol%、15mol%≦Sn≦60mol%、5mol%≦Zn≦50mol%である酸化物導電性材料。
Including oxides of In, Sn and Zn having a corundum structure;
Oxide conductivity in which the proportion of In, Sn and Zn in all atoms excluding oxygen is 30 mol% ≦ In ≦ 60 mol%, 15 mol% ≦ Sn ≦ 60 mol%, 5 mol% ≦ Zn ≦ 50 mol% material.
100kg/cmの加圧下での電気伝導度が0.001S/cm以上である請求項1に記載の酸化物導電性材料。 2. The oxide conductive material according to claim 1, wherein the electric conductivity under a pressure of 100 kg / cm 2 is 0.001 S / cm or more. 平均粒径が0.2μm以下の粒子である請求項1又は2に記載の酸化物導電性材料。   3. The oxide conductive material according to claim 1, wherein the oxide conductive material has an average particle diameter of 0.2 μm or less. Mg,Ca,Ti,Zr,Al,Ga,Si,Geから選択される1又は2以上の金属元素を含む酸化物及び/又は希土類元素の酸化物を含む請求項1〜3のいずれかに記載の酸化物導電性材料。   4. The oxide according to claim 1, comprising an oxide containing one or more metal elements selected from Mg, Ca, Ti, Zr, Al, Ga, Si and Ge and / or an oxide of a rare earth element. Oxide conductive material. In、Sn及びZnを含む金属塩溶液から沈殿法によってIn、Sn及びZnの含有物を調製し、
前記含有物を酸素濃度が0.1体積%以下の不活性ガス下で、熱処理温度が200℃以上1300℃以下で熱処理してIn、Sn及びZnを含む酸化物を得る請求項1〜4のいずれかに記載の酸化物導電性材料の製造方法。
A content of In, Sn and Zn is prepared by precipitation from a metal salt solution containing In, Sn and Zn,
The oxide containing In, Sn, and Zn is obtained by heat-treating the inclusion under an inert gas having an oxygen concentration of 0.1% by volume or less at a heat treatment temperature of 200 ° C or higher and 1300 ° C or lower . The manufacturing method of the oxide electroconductive material in any one.
請求項1〜4のいずれかに記載又は請求項5に記載の製造方法により製造された酸化物導電性材料を用いて得られるスパッタリングターゲット。   The sputtering target obtained using the oxide electroconductive material manufactured by the manufacturing method of any one of Claims 1-4 or Claim 5.
JP2007063025A 2006-08-09 2007-03-13 Oxide conductive material and manufacturing method thereof Expired - Fee Related JP4994068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007063025A JP4994068B2 (en) 2006-08-09 2007-03-13 Oxide conductive material and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006216434 2006-08-09
JP2006216434 2006-08-09
JP2007063025A JP4994068B2 (en) 2006-08-09 2007-03-13 Oxide conductive material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008066276A JP2008066276A (en) 2008-03-21
JP4994068B2 true JP4994068B2 (en) 2012-08-08

Family

ID=39288772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063025A Expired - Fee Related JP4994068B2 (en) 2006-08-09 2007-03-13 Oxide conductive material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4994068B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160041013A (en) 2014-10-06 2016-04-15 제이엑스 킨조쿠 가부시키가이샤 Oxide sintered compact and method of producing same, oxide sputtering target, and conductive oxide film

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260237A (en) * 2008-01-24 2009-11-05 Showa Denko Kk Compound semiconductor light-emitting element and its manufacturing method, conduction type translucent electrode for compound semiconductor light-emitting element, lamp, electronic device, and mechanical apparatus
EP2281919A4 (en) * 2008-06-03 2014-03-19 Jx Nippon Mining & Metals Corp Sputtering target and non-crystalline optical thin film
JPWO2010058533A1 (en) * 2008-11-20 2012-04-19 出光興産株式会社 ZnO-SnO2-In2O3-based oxide sintered body and amorphous transparent conductive film
JP5651095B2 (en) * 2010-11-16 2015-01-07 株式会社コベルコ科研 Oxide sintered body and sputtering target
JP5750065B2 (en) 2011-02-10 2015-07-15 株式会社コベルコ科研 Oxide sintered body and sputtering target
JP6141332B2 (en) * 2013-01-15 2017-06-07 出光興産株式会社 Sputtering target, oxide semiconductor thin film, and manufacturing method thereof
JP6454974B2 (en) * 2013-03-29 2019-01-23 株式会社リコー Metal oxide film forming coating solution, metal oxide film manufacturing method, and field effect transistor manufacturing method
JP6233233B2 (en) * 2013-08-06 2017-11-22 三菱マテリアル株式会社 Sputtering target and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4372876B2 (en) * 1999-01-12 2009-11-25 出光興産株式会社 Transparent conductive material, transparent conductive glass and transparent conductive film
JP4397511B2 (en) * 1999-07-16 2010-01-13 Hoya株式会社 Low resistance ITO thin film and manufacturing method thereof
JP2004075427A (en) * 2002-08-13 2004-03-11 Intertec:Kk Process for forming ito film containing corundum-type crystal phase and ito film for transparent electrode formed through the process
JP4960244B2 (en) * 2005-09-22 2012-06-27 出光興産株式会社 Oxide material and sputtering target

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160041013A (en) 2014-10-06 2016-04-15 제이엑스 킨조쿠 가부시키가이샤 Oxide sintered compact and method of producing same, oxide sputtering target, and conductive oxide film

Also Published As

Publication number Publication date
JP2008066276A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4994068B2 (en) Oxide conductive material and manufacturing method thereof
JP2695605B2 (en) Target and manufacturing method thereof
JP5589214B2 (en) ITO powder and manufacturing method thereof, coating material for transparent conductive material, and transparent conductive film
WO2012057053A1 (en) Indium tin oxide powder, method for producing same, dispersion, paint, and functional thin film
TWI523813B (en) Tin oxide particles and the method for preparing the same
WO1994013851A1 (en) Transparent conductive film, transparent conductive base material, and conductive material
WO2006025470A1 (en) Conductive particle, visible light transmissive particle dispersed conductor, method for producing same, transparent conductive thin film, method for producing same, transparent conductive article using same, and infrared shielding article
Ouni et al. Structural and electrical properties of the sol–gel prepared Sr1− xErxSnO3− δ compounds
JP4134314B2 (en) Method for producing conductive powder
JPH06247716A (en) Low resistance conductive pigment and its production
JP4617499B2 (en) ITO powder and manufacturing method thereof, coating material for transparent conductive material, and transparent conductive film
JP2011198518A (en) Conductive particulate and method for manufacturing the same, and visible light transmission type particle dispersion conductor
JP2008115024A (en) Conductive oxide powder and method of manufacturing conductive oxide powder
JP5726728B2 (en) ITO powder, ITO paint, and transparent conductive film formed using ITO paint
JP5285412B2 (en) Tin-doped indium oxide particles and method for producing the same
Oliveira et al. Influence of pH in obtaining indium tin oxide nanoparticles by microwave assisted solvothermal method
JP4793537B2 (en) Visible light transmission type particle-dispersed conductor, conductive particles, visible light transmission type conductive article, and manufacturing method thereof
JP4134313B2 (en) Method for producing conductive powder
JP4590566B2 (en) ITO powder and manufacturing method thereof, ITO conductive film paint, and transparent conductive film
JP6060680B2 (en) ITO powder
JP2009179515A (en) In4Sn3O12 POLYCRYSTALLINE POWDER, SINTERED COMPACT THEREOF, AND METHOD FOR PRODUCING THOSE
TWI568676B (en) ITO powder and its manufacturing method
JP2009158443A (en) Dispersion liquid, conductive paint, conductive film, and laminate
JP2007238337A (en) Ito powder and its manufacturing method, ito coating material and ito electrically conductive film
JP2010080316A (en) Transparent conductive substrate, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4994068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees