JP4590566B2 - ITO powder and manufacturing method thereof, ITO conductive film paint, and transparent conductive film - Google Patents

ITO powder and manufacturing method thereof, ITO conductive film paint, and transparent conductive film Download PDF

Info

Publication number
JP4590566B2
JP4590566B2 JP2006096718A JP2006096718A JP4590566B2 JP 4590566 B2 JP4590566 B2 JP 4590566B2 JP 2006096718 A JP2006096718 A JP 2006096718A JP 2006096718 A JP2006096718 A JP 2006096718A JP 4590566 B2 JP4590566 B2 JP 4590566B2
Authority
JP
Japan
Prior art keywords
ito
particles
conductive film
oxygen
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006096718A
Other languages
Japanese (ja)
Other versions
JP2007269543A (en
Inventor
吾郎 錦織
幸治 田上
慎一 紺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2006096718A priority Critical patent/JP4590566B2/en
Publication of JP2007269543A publication Critical patent/JP2007269543A/en
Application granted granted Critical
Publication of JP4590566B2 publication Critical patent/JP4590566B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Paints Or Removers (AREA)

Description

本発明は、透明導電膜の形成に用いられるITO粉体およびその製造方法、当該ITO粉体を含むITO導電膜塗料、並びに当該ITO導電膜塗料を用いて成膜される透明導電膜に関する。   The present invention relates to an ITO powder used for forming a transparent conductive film and a method for producing the same, an ITO conductive film paint containing the ITO powder, and a transparent conductive film formed using the ITO conductive film paint.

本明細書においてITOとはSnを含有するIn酸化物のことである。このITOを含む透明導電膜は、可視光に対する高い透光性と導電性とを示すことから、各種表示デバイスや太陽電池などの透明導電膜として用いられている。そして、このITOを用いた透明導電膜の成膜方法として、当該ITOをスパッタリング等により成膜する物理成膜法、当該ITO粒子分散液または含ITO有機化合物を塗布する塗布成膜法が知られている。   In this specification, ITO is an In oxide containing Sn. The transparent conductive film containing ITO is used as a transparent conductive film for various display devices, solar cells, and the like because it exhibits high transparency and conductivity with respect to visible light. As a method for forming a transparent conductive film using ITO, a physical film forming method for forming the ITO film by sputtering or the like, and a coating film forming method for applying the ITO particle dispersion or an ITO-containing organic compound are known. ing.

塗布成膜法により得られるITO塗膜は、スパッタリング法などの物理成膜法により得られるITO膜と比べて導電性は多少低いものの、成膜の際に真空装置などの高価な装置を用いる必要がない上、大面積や複雑形状の成膜が可能である。この結果、塗布成膜法により得られるITO塗膜は、低コストになる利点がある。
さらに、当該塗布成膜法の中でも、塗料としてITO粒子分散液を用いる方法は、塗料として含ITO有機化合物を用いる方法と比較して、塗布膜を熱分解させることが不要な為、比較的低温プロセスで成膜でき、良好な導電性が得られる。従って、ITO粒子分散液の塗布によるITO塗膜の製造方法は、ブラウン管の電磁波シールド膜の成膜方法として広く用いられており、さらには、LCDやELなどの表示デバイスへの応用も検討されている。
The ITO coating film obtained by the coating film formation method has a slightly lower conductivity than the ITO film obtained by a physical film formation method such as a sputtering method, but it is necessary to use an expensive apparatus such as a vacuum apparatus for film formation. In addition, a film having a large area or a complicated shape can be formed. As a result, the ITO coating film obtained by the coating film forming method has an advantage that the cost is low.
Furthermore, among the coating film forming methods, the method using the ITO particle dispersion as the coating does not require thermal decomposition of the coating film as compared with the method using the ITO-containing organic compound as the coating, so that the temperature is relatively low. Films can be formed by the process, and good conductivity can be obtained. Therefore, the method for producing an ITO coating film by applying an ITO particle dispersion is widely used as a film forming method for an electromagnetic wave shielding film of a cathode ray tube, and further, application to a display device such as an LCD or an EL is being studied. Yes.

一方、ITO粒子の組成もITOの導電性に影響を与える。ITOの導電性の発現には2種類の機構がある。第1の機構は、ITO結晶中のIn3+をSn4+へ置換することにより、1つの置換Sn原子につき、1つの自由電子が生じるものである。また、第2の機構はITO結晶中に酸素欠損をつくるものであり、1つの酸素欠損につき、2つの自由電子がつくられる。 On the other hand, the composition of ITO particles also affects the conductivity of ITO. There are two types of mechanism of ITO conductivity. The first mechanism is that by replacing In 3+ in the ITO crystal with Sn 4+ , one free electron is generated per substituted Sn atom. The second mechanism creates oxygen vacancies in the ITO crystal, and two free electrons are created for each oxygen vacancy.

当該Sn4+や酸素欠損は、キャリアである自由電子の密度を増大させて、ITO粒子の導電性を高める。しかし、当該酸素欠損が付与されたITO粒子は、導電特性の保存安定性に改善が望まれていた。これは、酸素欠損の付与されたITO粒子が大気中の酸素と再結合して、当該酸素欠損が減少し、ITO粒子の導電性が低下するためである。また、酸素欠損量の多い粒子ほど、大気中の酸素との反応が急激に起こるために経時変化が加速することも、保存安定性を損なう一因となっている。 The Sn 4+ and oxygen deficiency increase the density of free electrons that are carriers, and increase the conductivity of the ITO particles. However, the ITO particles to which the oxygen vacancies are imparted have been desired to improve the storage stability of the conductive properties. This is because the ITO particles with oxygen vacancies recombine with oxygen in the atmosphere, the oxygen vacancies are reduced, and the conductivity of the ITO particles is lowered. In addition, since particles with a larger amount of oxygen deficiency react more rapidly with oxygen in the air, the change with time is accelerated, which is one factor that impairs storage stability.

次に、上述のようなITO粒子の従来の技術に係る製造方法について説明する。ITO粒子の代表的な製法例として、(1)水溶性のSn塩と水溶性のIn塩とを所定の比率で水に溶解し、中和剤を添加してITO前駆水酸化物を得る工程、(2)得られたITO前駆水酸化物を、250℃以上1000℃以下の温度で焼成する工程、を有するものである。この焼成工程は、ITO粒子へ酸素欠損を付与するために、還元雰囲気で行われる。   Next, a manufacturing method according to the prior art of the above ITO particles will be described. As a typical method for producing ITO particles, (1) a step of dissolving an aqueous Sn salt and an aqueous In salt at a predetermined ratio in water and adding a neutralizer to obtain an ITO precursor hydroxide (2) A step of firing the obtained ITO precursor hydroxide at a temperature of 250 ° C. or higher and 1000 ° C. or lower. This firing step is performed in a reducing atmosphere in order to impart oxygen deficiency to the ITO particles.

ここで、特許文献1には、比表面積が15m/g以上、30m/g以下であり、CIE(国際照明委員会)が定めるL*a*b*表色系において、a*が−12以上、−7以下、b*が15以上、25以下であるITO粒子を用いることにより、膜の電気抵抗値が10Ω/□以下でありながら、可視光反射率が1%以下という反射防止性を有し、経時変化による導電性の低下が少ない透明導電膜を得ることができる旨が記載されている。
特開2005−225700号公報
Here, in Patent Document 1, the specific surface area is 15 m 2 / g or more and 30 m 2 / g or less, and in the L * a * b * color system defined by CIE (International Lighting Commission), a * is − By using ITO particles having 12 or more, −7 or less, and b * of 15 or more and 25 or less, the reflectance of the visible light reflectance is 1% or less while the electrical resistance value of the film is 10 3 Ω / □ or less. It is described that it is possible to obtain a transparent conductive film having a preventive property and having little decrease in conductivity due to a change with time.
JP 2005-225700 A

しかしながら本発明者らの検討によれば、ITO粒子分散液の塗布によりITO塗膜を得る方法は、前述のように利点が多い方法ではあっても、粉体における抵抗の経時変化が大きく、さらに周囲の環境により経時変化の度合いが異なるなど、安定性に問題があった。すなわち、通常ITO粒子は出来るだけ酸素を含む大気に接触させないことが望ましいが、実際上、ハンドリング時などには、全く大気に接触させないことは不可能であることに想到した。   However, according to the study by the present inventors, the method of obtaining the ITO coating film by applying the ITO particle dispersion liquid is a method having many advantages as described above, but the change in the resistance of the powder over time is large. There were problems with stability, such as the degree of change over time depending on the surrounding environment. That is, it is usually desirable that the ITO particles are not brought into contact with the atmosphere containing oxygen as much as possible, but in practice, it has been thought that it is impossible to avoid contact with the atmosphere at all during handling.

本発明の目的は、上述の事情を考慮してなされたものであり、大気中であっても導電性の経時変化が少ないITO粒子を含むITO粉体、及びその製造方法、当該ITO粒子を含むITO導電膜塗料、並びに透明導電膜を提供することにある。
尚、本発明において、特に断りのない限り、ITO粒子の粒径は、BET粒径である。尚、ITO粒子は、TEM写真による実際の平均一次粒径イメージと、BET粒径とは、ほぼ近い値を示す。
The object of the present invention has been made in consideration of the above-described circumstances, and includes ITO powder containing ITO particles with little change in conductivity over time even in the air, and a method for producing the same, and the ITO particles. An object is to provide an ITO conductive film paint and a transparent conductive film.
In the present invention, unless otherwise specified, the particle diameter of the ITO particles is the BET particle diameter. In addition, as for ITO particle | grains, the actual average primary particle size image by a TEM photograph and a BET particle size show a substantially close value.

本発明者らは、前述の課題を解決するため鋭意研究を行い、所定圧で成型したITO粉体の圧粉体であって、温度60℃、相対湿度90%の条件下で1時間保管後に測定した比抵抗値をR、同条件下で64時間保管後に測定した比抵抗値をR64としたとき、R64/R≦5.00であるITO粒子を含むITO粉体であれば、当該ITO粒子分散液の塗布により得られたITO塗膜は、大気中であっても導電性の経時変化が少ないITO塗膜となることに想到した。
さらに本発明者らは、焼成したITO粒子を低酸素濃度(酸素濃度3.0vol%以下)の雰囲気下で緩やかに酸化処理を行うことによって、ITO粒子の表面近傍に薄い安定化層をつくり、これにより、ITO粒子内の酸化を抑制する構成に想到した。そして当該安定化層の存在により、当該ITO粒子中に存在する酸素欠損が、大気解放時に空気中の酸素と反応することを抑制でき、ITO粒子の導電性の改善、及びその経時変化率の抑制を実現できることに想到し、本発明を完成した。
The present inventors have intensively studied to solve the above-mentioned problems, and are green compacts of ITO powder molded at a predetermined pressure, after being stored for 1 hour at a temperature of 60 ° C. and a relative humidity of 90%. If the measured resistivity value is R 1 and the resistivity value measured after storage for 64 hours under the same conditions is R 64 , any ITO powder containing ITO particles with R 64 / R 1 ≦ 5.00 It was conceived that the ITO coating film obtained by applying the ITO particle dispersion became an ITO coating film with little change in conductivity over time even in the air.
Furthermore, the present inventors gently oxidize the fired ITO particles in an atmosphere having a low oxygen concentration (oxygen concentration of 3.0 vol% or less), thereby creating a thin stabilization layer near the surface of the ITO particles, Thereby, the structure which suppresses the oxidation in ITO particle | grains was conceived. The presence of the stabilizing layer can prevent oxygen deficiency present in the ITO particles from reacting with oxygen in the air when released to the atmosphere, improving the conductivity of the ITO particles, and suppressing the rate of change over time. The present invention has been completed.

即ち、上述の課題を解決するための第1の構成は、
98.1MPaで成型したITO粉体の圧粉体を、温度60℃、相対湿度90%の条件下で1時間保管後に4探針法で測定した比抵抗値をR、同条件下で64時間保管後に測定した比抵抗値をR64としたとき、
64/R≦5.00
であることを特徴とするITO粉体である。
That is, the first configuration for solving the above-described problem is:
An ITO powder compact molded at 98.1 MPa was stored for 1 hour under conditions of a temperature of 60 ° C. and a relative humidity of 90%, and the specific resistance value measured by the 4-probe method was R 1 , and 64 under the same conditions. when the specific resistance value measured after a time storage was R 64,
R 64 / R 1 ≦ 5.00
It is ITO powder characterized by being.

第2の構成は、
の値が、1×10−4Ω・cm以上、1×10−1Ω・cm以下であることを特徴とする第1の構成に記載のITO粉体である。
The second configuration is
The ITO powder according to the first configuration, wherein the value of R 1 is 1 × 10 −4 Ω · cm or more and 1 × 10 −1 Ω · cm or less.

第3の構成は、
SnOの含有量が20質量%以下、且つ、BET粒径が15nm以上、200nm以下のITO粒子を含むことを特徴とする第1または第2の構成に記載のITO粉体である。
The third configuration is
The ITO powder according to the first or second structure, wherein the ITO powder contains SnO 2 content of 20 % by mass or less and a BET particle size of 15 nm or more and 200 nm or less.

第4の構成は、
可視光領域における透過色を、CIE(国際照明委員会)が定めるL*a*b*表色系で評価したとき、b*の値が−15以上、15以下であることを特徴とする第1から第3の構成のいずれかに記載のITO粉体である。
The fourth configuration is
When the transmitted color in the visible light region is evaluated by the L * a * b * color system defined by CIE (International Commission on Illumination), the value of b * is −15 or more and 15 or less. The ITO powder according to any one of the first to third configurations.

第5の構成は、
水溶性のSn塩と水溶性のIn塩とから所定の比率の水溶液を作製し、中和してITO前駆水酸化物を得、このITO前駆水酸化物を、還元性雰囲気下において250℃以上、1000℃以下で焼成してITO粒子を得た後、当該ITO粒子を200℃以下の温度で、酸素濃度3.0vol%以下の酸素雰囲気下で処理して、ITO粉体を製造することを特徴とするITO粉体の製造方法である。
The fifth configuration is
An aqueous solution of a predetermined ratio is prepared from a water-soluble Sn salt and a water-soluble In salt, and neutralized to obtain an ITO precursor hydroxide. This ITO precursor hydroxide is 250 ° C. or higher in a reducing atmosphere. Firing ITO at 1000 ° C. or lower to obtain ITO particles, and then treating the ITO particles at a temperature of 200 ° C. or lower in an oxygen atmosphere with an oxygen concentration of 3.0 vol% or lower to produce an ITO powder. It is the manufacturing method of the ITO powder characterized.

第6の構成は、
第1から第4の構成のいずれかに記載のITO粉体を含むことを特徴とするITO導電膜塗料である。
The sixth configuration is
An ITO conductive film paint comprising the ITO powder according to any one of the first to fourth configurations.

第7の構成は、
第6の構成に記載のITO導電膜塗料を用いて製造されたことを特徴とする透明導電膜である。
The seventh configuration is
A transparent conductive film manufactured using the ITO conductive film paint according to the sixth configuration.

第1から第4の構成のいずれかに係るITO粒子を適宜な溶媒に分散して得られたITO導電膜塗料の塗布により得られた導電膜は、大気中であっても導電性の経時変化が少ないものである。   The conductive film obtained by applying the ITO conductive film paint obtained by dispersing the ITO particles according to any one of the first to fourth structures in an appropriate solvent has a temporal change in conductivity even in the air. There are few things.

第5の構成に係るITO粉体の製造によれば、導電性が高く、大気中であっても導電性の経時変化が少ないITO粒子を含むITO粉体を、高い生産性をもって容易に製造することができる。   According to the production of the ITO powder according to the fifth configuration, the ITO powder containing ITO particles having high conductivity and little change with time in the air even in the air is easily produced with high productivity. be able to.

第6の構成に係るITO導電膜塗料は、高い導電性および透明度、並びに低い経時変化率を有するITO導電膜を容易に成膜することができる。   The ITO conductive film paint according to the sixth configuration can easily form an ITO conductive film having high conductivity and transparency and a low rate of change with time.

第7の構成に係る透明導電膜は、高い導電性および透明度、並びに低い経時変化率を有するものである。   The transparent conductive film according to the seventh configuration has high conductivity and transparency, and a low rate of change with time.

以下、本発明を実施するための最良の形態を説明する。
本実施形態に係るITO粉体は、98.1MPaで成型した当該ITO粉体の圧粉体を、温度60℃、相対湿度90%の条件下で1時間保管後に4探針法で測定した比抵抗値をR、同条件下で64時間保管後に測定した比抵抗値をR64としたとき、R64/R≦5.00である、ITO粉体である。当該ITO粒子分散液の塗布により得られたITO塗膜は、大気中であっても導電性の経時変化が少ないITO塗膜となった。
Hereinafter, the best mode for carrying out the present invention will be described.
The ITO powder according to this embodiment is a ratio obtained by measuring the green compact of the ITO powder molded at 98.1 MPa for 1 hour under conditions of a temperature of 60 ° C. and a relative humidity of 90% by a four-probe method. when the resistance value R 1, the specific resistance value measured after storage for 64 hours under the same conditions and with R 64, an R 64 / R 1 ≦ 5.00, an ITO powder. The ITO coating film obtained by applying the ITO particle dispersion was an ITO coating film with little change in conductivity over time even in the air.

さらに、当該Rの値が、1×10−4Ω・cm以上、1×10−1Ω・cm以下であるITO粉体であると、当該ITO粒子分散液の塗布により得られたITO塗膜は、導電性の経時変化が少なく、且つ、低抵抗なITO塗膜となった。 Furthermore, when the value of R 1 is an ITO powder having a value of 1 × 10 −4 Ω · cm or more and 1 × 10 −1 Ω · cm or less, the ITO coating obtained by application of the ITO particle dispersion is used. The film was an ITO coating film with little change in conductivity over time and a low resistance.

スズ含有水酸化インジウムであるITO前駆水酸化物(詳細は後述する。)、を焼成した場合、250℃でほぼ完全に脱水されて、BET粒径が15nm程度のITOが生成する。それ以下の温度での焼成では原理的に低抵抗で安定なITOは期待出来ない。焼成温度を高くすると、より大粒径のITO粒子を得ることが出来るが、当該ITOは、可視光に対する透過性も求められているため、当該ITO塗膜中に含まれるITO粒子のBET粒径は200nm以下であることが好ましい。これはITO塗膜中のBET粒径が200nm以下であれば、当該ITO塗膜の可視光に対する透明性を十分に維持できるためである。以上のことから、本実施形態に係るITO粉体は、BET粒径が15nm以上、200nm以下、さらに好ましくは、BET粒径が15nm以上、100nm以下のITO粒子を含むものである。   When an ITO precursor hydroxide (details will be described later), which is tin-containing indium hydroxide, is calcined, it is almost completely dehydrated at 250 ° C. to produce ITO having a BET particle size of about 15 nm. In principle, low-resistance and stable ITO cannot be expected when firing at lower temperatures. When the firing temperature is increased, ITO particles having a larger particle diameter can be obtained. However, since the ITO is also required to be transparent to visible light, the BET particle diameter of the ITO particles contained in the ITO coating film Is preferably 200 nm or less. This is because if the BET particle size in the ITO coating film is 200 nm or less, the transparency of the ITO coating film to visible light can be sufficiently maintained. From the above, the ITO powder according to this embodiment includes ITO particles having a BET particle size of 15 nm or more and 200 nm or less, more preferably a BET particle size of 15 nm or more and 100 nm or less.

本実施形態に係るITO粉体は、SnOを20%以下の割合で含むことが好ましい。SnOはキャリアを生成して導電性を向上させる。また、SnOが20質量%以下であれば、キャリアの移動度の大幅な低下もないためである。 The ITO powder according to the present embodiment preferably contains SnO 2 at a ratio of 20% or less. SnO 2 generates carriers and improves conductivity. Further, if SnO 2 is 20 % by mass or less, there is no significant decrease in carrier mobility.

本実施形態に係るITO粉体は、可視光領域における透過色を、CIE(国際照明委員会)が定めるL*a*b*表色系で評価したとき、b*の値が−15以上、15以下となる。これは、ITOを焼成することによって当該ITO結晶中に酸素欠損が生じて、次第に青色を帯びてくるためである。ただし、あまりに強い還元条件下で焼成を行うと、ITO中に黒色の不導体であるInO等を生じ、導電性および光学特性を低下させる。   The ITO powder according to the present embodiment has a b * value of −15 or more when the transmitted color in the visible light region is evaluated by the L * a * b * color system defined by the CIE (International Lighting Commission). 15 or less. This is because baking of ITO causes oxygen deficiency in the ITO crystal and gradually becomes blue. However, if firing is performed under too strong reducing conditions, InO or the like, which is a black nonconductor, is generated in the ITO, and the electrical conductivity and optical characteristics are deteriorated.

通常、焼成炉内で焼成されたITO粒子は酸素欠損を有している。しかし、当該ITO粒子中の酸素欠損は、炉内から取り出された後に大気中の酸素と反応して次第に減少し、導電性が低下する傾向を示す。   Usually, ITO particles fired in a firing furnace have oxygen vacancies. However, oxygen vacancies in the ITO particles tend to decrease after reacting with oxygen in the atmosphere after being taken out from the furnace, and the conductivity tends to decrease.

ここで、本発明者らは、焼成されたITO粒子が大気中の酸素と反応する前に、当該ITO粒子を低酸素濃度雰囲気下で処理して、当該ITO粒子中の酸素欠損を、当該低酸素濃度雰囲気中の酸素と緩やかに反応させるという、新規な構成に想到した。そして、当該ITO粒子中の酸素欠損を、当該低酸素濃度雰囲気中の酸素と緩やかに反応させることにより、大気中などの酸素存在下において、導電性の経時的な低下を抑制できることを見出した。これは、「(1)当該低酸素濃度雰囲気中の酸素と緩やかな反応により、当該ITO粒子の表面近傍に薄い安定化層がつくられる。」、「(2)当該安定化層は、当該ITO粒子が大気中の酸素と反応して、当該ITO粒子中の酸素欠損が減少するのを抑制している。」からであると考えられる。   Here, the present inventors treat the ITO particles in a low oxygen concentration atmosphere before the fired ITO particles react with oxygen in the atmosphere to reduce oxygen deficiencies in the ITO particles. We have come up with a new configuration that allows a slow reaction with oxygen in an oxygen-concentrated atmosphere. And it discovered that an oxygen deficiency in the said ITO particle | grain can be made to react slowly with the oxygen in the said low oxygen concentration atmosphere, and the time-dependent fall of electroconductivity can be suppressed in oxygen presence, such as in air | atmosphere. This is because "(1) a thin stabilization layer is formed in the vicinity of the surface of the ITO particles by a slow reaction with oxygen in the low oxygen concentration atmosphere", "(2) the stabilization layer is the ITO. It is thought that this is because the particles react with oxygen in the atmosphere to reduce oxygen deficiency in the ITO particles.

上述したITO粒子の表面近傍に安定化層を形成させる安定化処理とは、具体的には、焼成完了後のITO粒子を、大気解放前に3.0vol%までの低酸素濃度の雰囲気に暴露させることである。そして、当該安定化処理によって、当該ITO粒子に極めてマイルドな酸化処理を行うことができると考えられる。
また、当該安定化処理における酸素濃度は、例えば0.1vol%程度の低濃度から開始し、急激な発熱反応が起きないよう、段階的あるいは漸増的に濃度を上昇させることが好ましい。また、前段の焼成工程において強い還元雰囲気下で焼成を行った場合には、ITO粒子中の酸素欠損量が多くなるため、低酸素濃度の雰囲気であっても、より強い発熱を伴う。この発熱は、安定化処理後のITO粒子の導電性を低下させる影響があるため、上記発熱が極力小さくなるように、酸素添加の初期濃度を低酸素側へ調整し、その後の濃度上昇も緩やかにすることが望ましい。
Specifically, the stabilization treatment in which a stabilization layer is formed in the vicinity of the surface of the ITO particles described above specifically means that the ITO particles after completion of firing are exposed to an atmosphere having a low oxygen concentration of up to 3.0 vol% before being released to the atmosphere. It is to let you. And it is thought that the mild oxidation process can be performed on the ITO particles by the stabilization process.
The oxygen concentration in the stabilization treatment is preferably started from a low concentration of about 0.1 vol%, for example, and the concentration is increased stepwise or gradually so as not to cause a rapid exothermic reaction. Further, when firing in a strong reducing atmosphere in the preceding firing step, the amount of oxygen vacancies in the ITO particles increases, so that even in an atmosphere with a low oxygen concentration, stronger heat generation is accompanied. Since this heat generation has the effect of reducing the conductivity of the ITO particles after the stabilization treatment, the initial concentration of oxygen addition is adjusted to the low oxygen side so that the heat generation becomes as small as possible, and the subsequent increase in concentration is moderate. It is desirable to make it.

上述したように、ITO粒子の焼成工程において、NHガスあるいはHガス、COガスなどの還元性ガスを所定の濃度で炉内に添加すると、当該ITO粒子の酸素欠損量を調整することができる。この還元性ガスの添加と低酸素濃度雰囲気での安定化処理とを併せて行うことで、導電性の調整とその経時安定性を両立することができる。具体的には、焼成工程は焼成温度450〜1000℃、NHガス濃度0.5〜1.0vol%にすることで98.1MPaの圧力で成型した圧粉体についての比抵抗が1×10−1〜1×10−4Ω・cmの範囲になり、さらに前述の安定化処理を行うことで、経時変化率R64/Rが5.00以下の範囲にまで低減することが出来る。 As described above, when a reducing gas such as NH 3 gas, H 2 gas, or CO gas is added to the furnace at a predetermined concentration in the ITO particle firing step, the amount of oxygen vacancies in the ITO particles can be adjusted. it can. By performing the addition of the reducing gas and the stabilization treatment in a low oxygen concentration atmosphere, it is possible to achieve both adjustment of conductivity and stability over time. Specifically, the specific resistance of the green compact molded at a pressure of 98.1 MPa by setting the firing temperature to 450 to 1000 ° C. and the NH 3 gas concentration to 0.5 to 1.0 vol% is 1 × 10 −1 to 1 × 10 −4 Ω · cm, and by performing the above-described stabilization treatment, the aging rate R 64 / R 1 can be reduced to a range of 5.00 or less.

[本実施形態のITO粒子の製造方法]
まず、第1工程として、水溶性のSn塩と水溶性のIn塩とをそれぞれ規定量秤量し混合した後、純水に溶解して水溶液を得る。そして、当該水溶液を、中和剤であるアルカリと反応させて、水酸化Snと水酸化Inを含むスラリーを生成させる。
ここで、水溶性のSnとInとの塩は、塩酸塩、硫酸塩、硝酸塩などが代表的であるが、中でも塩酸塩が好ましい。また、中和剤であるアルカリには、アンモニア、苛性ソーダ、苛性カリ、またはそれらの炭酸塩が用いられるが、中和反応後の水酸化Snおよび水酸化Inのスラリーの洗浄性を良好にする観点から、アンモニアを用いることが好ましい。
[Production method of ITO particles of this embodiment]
First, as a first step, a prescribed amount of water-soluble Sn salt and water-soluble In salt are weighed and mixed, and then dissolved in pure water to obtain an aqueous solution. And the said aqueous solution is made to react with the alkali which is a neutralizing agent, and the slurry containing Sn hydroxide and In hydroxide is produced | generated.
Here, typical salts of water-soluble Sn and In are hydrochloride, sulfate, nitrate, etc., among which hydrochloride is preferable. In addition, ammonia, caustic soda, caustic potash, or carbonates thereof are used as the neutralizing agent, but from the viewpoint of improving the cleaning properties of the slurry of Sn hydroxide and In hydroxide after the neutralization reaction. Preferably, ammonia is used.

生成した水酸化Snと水酸化Inとの混合スラリーを固液分離により採取し、純水洗浄によって不純物を洗浄することで、純度を高めたITO前駆水酸化物のケーキが得られる。得られたITO前駆水酸化物のケーキを造粒し、100℃以上の温度で乾燥することにより、ITO前駆水酸化物の乾燥粉が得られる。   The produced mixed slurry of Sn hydroxide and In hydroxide is collected by solid-liquid separation, and impurities are washed by pure water washing to obtain an ITO precursor hydroxide cake with improved purity. The obtained ITO precursor hydroxide cake is granulated and dried at a temperature of 100 ° C. or higher to obtain a dried powder of ITO precursor hydroxide.

当該ITO前駆水酸化物において、Snは、(1)水酸化InのIn原子と置換している場合もあるが、(2)SnO、または水酸化Snとして、水酸化Inと共沈している場合もあり、(3)SnOまたは水酸化Snとして、水酸化Inと非晶質の混合体となっている場合もある。 In the ITO precursor hydroxide, Sn may be substituted with (1) In atom of In hydroxide, but (2) SnO 2 or Sn hydroxide is coprecipitated with In hydroxide. (3) SnO 2 or Sn hydroxide may be a mixture of In hydroxide and amorphous.

当該ITO前駆水酸化物の粒径は、上述した水酸化物を得る湿式工程で決定されるが、主に反応温度、反応pH、液濃度を制御することで、当該粒径や形状を調整することができる。
好ましくは、微粒子単分散のITO前駆水酸化物を得るための方法のひとつは、反応等量で約2倍程度のNH水溶液中に、InやSnの塩化物を溶解した原液を3〜60分間程度で加え、逆中和反応させる方法である。このときの反応温度は20〜70℃、NH濃度は1〜10質量%、原液濃度はITO換算で1〜10質量%程度とすると微粒子単分散なITOの前駆水酸化物が反応液中に沈殿する。
The particle size of the ITO precursor hydroxide is determined by the wet process for obtaining the hydroxide described above, but the particle size and shape are adjusted mainly by controlling the reaction temperature, reaction pH, and liquid concentration. be able to.
Preferably, one of the methods for obtaining fine particle monodispersed ITO precursor hydroxide is that a stock solution in which chlorides of In and Sn are dissolved in an NH 3 aqueous solution of about twice the reaction equivalent amount is used. This is a method of adding in about a minute and performing a reverse neutralization reaction. At this time, when the reaction temperature is 20 to 70 ° C., the NH 3 concentration is 1 to 10 % by mass , and the stock solution concentration is about 1 to 10 % by mass in terms of ITO, fine particle monodisperse precursor hydroxide of ITO is contained in the reaction solution. Precipitate.

次に、第2の工程である、得られたITO前駆水酸化物を焼成する工程について説明する。
当該焼成工程の目的は、(1)ITO前駆水酸化物を酸化物であるITOに転化すること、(2)得られるITO粒子の粒径を調整すること、(3)得られるITOの結晶に酸素欠損を与えること、である。従って、当該焼成工程は、ITOの結晶に酸素欠損を与えるために、不活性ガスと還元性ガスとを混合した弱還元雰囲気下で行うことが好ましい。
Next, the step of firing the obtained ITO precursor hydroxide, which is the second step, will be described.
The purpose of the firing step is (1) to convert the ITO precursor hydroxide to ITO, which is an oxide, (2) to adjust the particle size of the obtained ITO particles, and (3) to the resulting ITO crystals. Giving oxygen deficiency. Therefore, the firing step is preferably performed in a weak reducing atmosphere in which an inert gas and a reducing gas are mixed in order to give oxygen deficiency to the ITO crystal.

この弱還元雰囲気としては、通常、窒素やヘリウム、アルゴン等の不活性ガスに、水素や一酸化炭素、アンモニアガス等の還元性ガスを混合した混合ガスが用いられる。当該混合ガスにおける各ガスの混合比率は、ITOの結晶に付与しようとする酸素欠損量により異なる。但し、当該混合ガスの還元力が強すぎると、スズ含有水酸化インジウムはInO、金属In等になってしまう。また、水素や一酸化炭素等の混合比率の目安は、混合ガスが大気中で爆発限界を超えない程度の濃度にすることが望ましい。好ましくはNHを0.2〜5.0vol%(さらに好ましくは0.5〜1.0vol%)含むN雰囲気の条件で行うことにより、結晶中に適量の酸素を付与出来る。 As the weak reducing atmosphere, a mixed gas in which an inert gas such as nitrogen, helium, or argon is mixed with a reducing gas such as hydrogen, carbon monoxide, or ammonia gas is usually used. The mixing ratio of each gas in the mixed gas varies depending on the amount of oxygen deficiency to be imparted to the ITO crystal. However, if the reducing power of the mixed gas is too strong, the tin-containing indium hydroxide becomes InO, metal In, or the like. Moreover, it is desirable that the standard of the mixing ratio of hydrogen, carbon monoxide, or the like is such that the mixed gas does not exceed the explosion limit in the atmosphere. Preferably, an appropriate amount of oxygen can be imparted to the crystal by performing the reaction under N 2 atmosphere containing NH 3 in an amount of 0.2 to 5.0 vol% (more preferably 0.5 to 1.0 vol%).

当該焼成工程における焼成温度は、250℃以上、1000℃迄の条件で行われる。250℃以上であれば完全な酸化物を得ることが出来、1000℃以下であれば、ITO粒子間同士の激しい焼結を回避できる。好ましくは400℃以上、800℃以下である。当該焼成工程により生成するITO粒子は、焼成温度が高いほど粒子同士の焼結が進むことにより、粒径が大きくなる。   The firing temperature in the firing step is performed under conditions of 250 ° C. or more and 1000 ° C. If it is 250 degreeC or more, a perfect oxide can be obtained, and if it is 1000 degrees C or less, intense sintering between ITO particles can be avoided. Preferably it is 400 degreeC or more and 800 degrees C or less. The ITO particles produced by the firing step have a larger particle size as the sintering temperature increases as the firing temperature increases.

ここで、ITO粒子の粒径を所定の大きさに制御する方法について、さらに説明する。
ITOの粒径を所定の粒径に制御する方法には、大別して次の2つがある。
第1の方法は、BET粒径が5〜15nm程度の微細なITO前駆水酸化物を合成し、当該ITO前駆水酸化物を焼成してITOとする際の焼成温度を制御する方法である。第2の方法は、所定の粒径を有する粒状で結晶性の良いITO前駆水酸化物スズ含有水酸化インジウムを合成し、当該ITO前駆水酸化物の粒径を保持したままで、焼成してITOとする方法である。
Here, a method for controlling the particle size of the ITO particles to a predetermined size will be further described.
Methods for controlling the ITO particle size to a predetermined particle size are roughly divided into the following two methods.
The first method is a method of synthesizing a fine ITO precursor hydroxide having a BET particle size of about 5 to 15 nm and controlling the firing temperature when firing the ITO precursor hydroxide to form ITO. The second method is to synthesize ITO precursor hydroxide tin-containing indium hydroxide having a predetermined particle size and good crystallinity, and firing while maintaining the particle size of the ITO precursor hydroxide. This is ITO.

第1の方法は、焼成温度を通常450℃〜1000℃とするが、焼成温度が高いほど、微細なITO粒子同士が焼結するため、大きな粒径を有するITO粒子が生成する。
NHを0.5vol%含むN雰囲気で焼成した場合のBET粒径は、450℃では約15nm、600℃では約25nm、800℃では約50nmとなり、温度増加に伴って粒径も大きく成長する。
In the first method, the firing temperature is usually 450 ° C. to 1000 ° C., but the higher the firing temperature, the finer ITO particles are sintered together, so that ITO particles having a large particle size are generated.
The BET particle size when calcined in an N 2 atmosphere containing 0.5 vol% NH 3 is about 15 nm at 450 ° C., about 25 nm at 600 ° C., and about 50 nm at 800 ° C., and the particle size increases with increasing temperature. To do.

第2の方法は、ITO前駆水酸化物の粒子合成の際の、反応液の温度、反応時間、反応pHを制御することにより、所定の粒径のITO前駆水酸化物粒子を生成させる方法である。得られた所定の粒径のITO前駆水酸化物粒子を、250℃〜550℃の比較的低温で焼成することにより、水酸化物の形状、粒径を保持したままでITO粒子を得ることができる。
例えば、反応温度10℃、反応pH7、中和時間1時間の条件で反応させると、長軸200〜250nm、短軸20nm程度の柱状粒子を得ることが出来る。
あるいは、反応温度10℃、反応pH9、中和時間1時間の条件で反応させると50〜100nm程度の粒径の板状粒子を得ることが出来る。
The second method is a method of generating ITO precursor hydroxide particles having a predetermined particle diameter by controlling the temperature of the reaction liquid, the reaction time, and the reaction pH during the synthesis of ITO precursor hydroxide particles. is there. By firing the obtained ITO precursor hydroxide particles having a predetermined particle size at a relatively low temperature of 250 ° C. to 550 ° C., ITO particles can be obtained while maintaining the shape and particle size of the hydroxide. it can.
For example, when the reaction is carried out under conditions of a reaction temperature of 10 ° C., a reaction pH of 7, and a neutralization time of 1 hour, columnar particles having a major axis of 200 to 250 nm and a minor axis of about 20 nm can be obtained.
Alternatively, when the reaction is carried out under conditions of a reaction temperature of 10 ° C., a reaction pH of 9, and a neutralization time of 1 hour, plate-like particles having a particle diameter of about 50 to 100 nm can be obtained.

第3の工程は、得られたITO粒子を安定化処理する工程である。
当該ITO粒子に安定化処理を行う場合、上述の方法で得られたITO粒子を焼成後、炉内に保持したまま、200℃以下の所定温度において、大気よりも低い酸素濃度(酸素濃度3.0vol%以下)の雰囲気のガスを流通させることで、当該安定化処理を容易に実施することができる。
例えば、ITO焼成後、Nガス雰囲気で冷却し、所定温度において、まず0.2vol%酸素を含むNガス雰囲気に置換して20分間、次に、0.4vol%酸素を含むNガス雰囲気に置換して5分間、さらに、0.8vol%酸素を含むNガス雰囲気に置換して5分間、最後に、2.0vol%酸素を含むNガス雰囲気に置換して10分間、の計40分間の段階的な雰囲気置換により安定化処理を行う。
または、炉内の酸素濃度が、0.2vol%から2.0vol%へ漸増的に上昇するような雰囲気置換でも良い。
The third step is a step of stabilizing the obtained ITO particles.
When the ITO particles are subjected to stabilization treatment, the ITO particles obtained by the above-described method are baked and then kept in a furnace, and at a predetermined temperature of 200 ° C. or lower, the oxygen concentration (oxygen concentration 3. The stabilization treatment can be easily performed by circulating a gas having an atmosphere of 0 vol% or less.
For example, after firing the ITO, it is cooled in an N 2 gas atmosphere, and at a predetermined temperature, it is first replaced with an N 2 gas atmosphere containing 0.2 vol% oxygen for 20 minutes, and then an N 2 gas containing 0.4 vol% oxygen. 5 minutes after replacement with an atmosphere, 5 minutes after replacement with an N 2 gas atmosphere containing 0.8 vol% oxygen, and finally 10 minutes after replacement with an N 2 gas atmosphere containing 2.0 vol% oxygen. Stabilization is performed by stepwise atmosphere replacement for a total of 40 minutes.
Alternatively, atmospheric substitution may be used in which the oxygen concentration in the furnace gradually increases from 0.2 vol% to 2.0 vol%.

安定化処理を行って得られたITO粒子を炉内から取り出し後、単分散化させるため、ハンマーミル、ボールミル、ホモジナイザーなどで分散させる。このとき、できる限り一次粒子の粒径まで分散させることが好ましい。   The ITO particles obtained by the stabilization treatment are taken out from the furnace and then dispersed by a hammer mill, a ball mill, a homogenizer or the like for monodispersion. At this time, it is preferable to disperse to the primary particle size as much as possible.

安定化処理しないITO粒子の表面は活性であるため、大気中では酸素を吸着し、導電性を低下させるが、安定化処理したITO粒子は予め表面活性を緩和させているため、導電性の経時的な悪化を抑制することが出来る。   Since the surface of the ITO particles that are not stabilized is active, oxygen is adsorbed in the atmosphere and the conductivity is lowered. However, the stabilized ITO particles have previously been reduced in surface activity, so that the conductivity is deteriorated over time. Deterioration can be suppressed.

[本実施形態のITO粒子を用いた塗料(塗液)の製造方法]
本実施形態のITO粒子は、分散剤を用いて液状媒体物に分散させることにより、液状またはペースト状の分散物として塗料化される。この塗料化の方法は公知の方法を適用できる。液状媒体物としてはアルコール、ケトン、エーテル、エステル等の有機溶媒や水を使用でき、分散剤としては、界面活性剤やカップリング剤等を使用すればよい。バインダーは所望により用いればよいが、用いる場合には、エポキシ樹脂、アクリル樹脂、塩ビ樹脂、ポリウレタン樹脂、ポリビニルアルコール樹脂等を好適に使用できるが、これに限られない。本実施形態のITO粒子を液状媒体物に分散させる際には、ビーズミル等の分散装置を用いるのが好ましい。
[Method for producing paint (coating liquid) using ITO particles of this embodiment]
The ITO particles of the present embodiment are made into a paint as a liquid or paste-like dispersion by being dispersed in a liquid medium using a dispersant. A known method can be applied as the method for forming the paint. As the liquid medium, an organic solvent such as alcohol, ketone, ether or ester or water can be used, and as the dispersant, a surfactant, a coupling agent or the like may be used. The binder may be used as desired, but when used, an epoxy resin, an acrylic resin, a vinyl chloride resin, a polyurethane resin, a polyvinyl alcohol resin, or the like can be suitably used, but is not limited thereto. When dispersing the ITO particles of the present embodiment in a liquid medium, it is preferable to use a dispersing device such as a bead mill.

[本実施形態のITO粒子を含む塗液を用いた塗膜の製造方法]
本実施形態のITO粒子を含む、液状またはペースト状の分散物の塗布または塗膜化に際しては、スクリーン印刷、スピンコート、ディップコート、ロールコート、刷毛コート、スプレーコート等の公知の方法を用いることができる。例えば、当該分散物を基板上に塗布する場合には、当該基板材料として、有機高分子、プラスチック、ガラス等をあげることができ、当該基板形状としてはフィルム状のものが一般的である。特に、タッチパネルのようにフレキシビリティを要求される基板には高分子フィルムが好ましい。当該高分子フィルムは、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド、アラミド、ポリカーボネート等のフィルムを用いることができる。
[Method for producing coating film using coating liquid containing ITO particles of this embodiment]
When applying or coating a liquid or paste-like dispersion containing the ITO particles of this embodiment, a known method such as screen printing, spin coating, dip coating, roll coating, brush coating, spray coating, or the like is used. Can do. For example, when the dispersion is applied onto a substrate, examples of the substrate material include organic polymers, plastics, and glass, and the substrate shape is generally a film. In particular, a polymer film is preferable for a substrate requiring flexibility such as a touch panel. As the polymer film, a film of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, aramid, polycarbonate, or the like can be used.

(実施例1)
塩化Inと塩化Snとを準備し、モル比でSn:In=15:85となるよう、InClを1350g、SnCl・2HOを431.4g含む30Lの混合溶液(以下、原液と記載する。)を調整した。
他方、前記原液の中和剤として、当該原液中に存在する塩化Inと塩化Snとの2倍等量含む45LのNH水溶液を用意した。そして、原液とNH水溶液とが共に50℃になるよう調整し、原液を3分間かけてNH水溶液中に添加するが、このときNH水溶液の撹拌を続けた。当該添加により生成したスラリーをろ過し、次に純水で洗浄して、ITO前駆水酸化物のウェットケーキを得た。
このウェットケーキを造粒した後、大気中250℃で12時間乾燥させ、ITO前駆水酸化物のドライケーキを得た。このドライケーキを、焼成炉において、大気中400℃30分間の条件で焼成し、次に、大気雰囲気を、0.5vol%のNHを含むNガス雰囲気に置換して708℃2時間の焼成を行った。
この焼成後、炉内雰囲気をNガス置換するとともに炉内温度を室温(約25℃)まで冷却し、その後、Nガス雰囲気を、0.2vol%酸素を含むNガス雰囲気に置換して20分間、次に、0.4vol%酸素を含むNガス雰囲気に置換して5分間、さらに、0.8vol%酸素を含むNガス雰囲気に置換して5分間、最後に、2.0vol%酸素を含むNガス雰囲気に置換して10分間、の計40分間のパターンで安定化処理を行い、ITO粒子を得た。当該ITO粒子の性状を表1に示す。
Example 1
30 ml of a mixed solution containing 1350 g of InCl 3 and 431.4 g of SnCl 2 .2H 2 O (hereinafter referred to as a stock solution) was prepared by preparing In chloride and Sn chloride and having a molar ratio of Sn: In = 15: 85. Adjusted).
On the other hand, as a neutralizing agent for the stock solution, a 45 L NH 3 aqueous solution containing twice the equivalent amount of In chloride and Sn chloride present in the stock solution was prepared. The stock solution and the NH 3 aqueous solution were both adjusted to 50 ° C., and the stock solution was added to the NH 3 aqueous solution over 3 minutes. At this time, stirring of the NH 3 aqueous solution was continued. The slurry produced by the addition was filtered and then washed with pure water to obtain a wet cake of ITO precursor hydroxide.
This wet cake was granulated and then dried in the atmosphere at 250 ° C. for 12 hours to obtain a dry cake of ITO precursor hydroxide. This dry cake was baked in a baking furnace in the atmosphere at 400 ° C. for 30 minutes, and then the atmospheric atmosphere was replaced with an N 2 gas atmosphere containing 0.5 vol% NH 3 at 708 ° C. for 2 hours. Firing was performed.
After this firing, the furnace atmosphere is replaced with N 2 gas and the furnace temperature is cooled to room temperature (about 25 ° C.), and then the N 2 gas atmosphere is replaced with an N 2 gas atmosphere containing 0.2 vol% oxygen. For 20 minutes, then replaced with an N 2 gas atmosphere containing 0.4 vol% oxygen for 5 minutes, further replaced with an N 2 gas atmosphere containing 0.8 vol% oxygen for 5 minutes, and finally Substituting with an N 2 gas atmosphere containing 0 vol% oxygen for 10 minutes, a stabilization treatment was performed with a pattern of 40 minutes in total to obtain ITO particles. Table 1 shows the properties of the ITO particles.

ここで、ITO粒子の色度は、測式色差計を使用し反射光を用いて測定した。尚、測式色差計は、日本電色工業株式会社製Z−300Aを用いた。また、ITO粒子の比表面積(BET)は、QUANTACHROME社製MONOSORBを用いて測定し、BET粒径は、比表面積の値から次の式で換算した。
BET粒径=6/BET値×7.13×1000(nm)
Here, the chromaticity of the ITO particles was measured using reflected light using a colorimeter. In addition, Nippon Denshoku Industries Co., Ltd. Z-300A was used for the measurement type color difference meter. The specific surface area (BET) of the ITO particles was measured using MONOSORB manufactured by QUANTACHROME, and the BET particle size was converted from the value of the specific surface area according to the following formula.
BET particle size = 6 / BET value × 7.13 × 1000 (nm)

(実施例2)
焼成までは実施例1と同様の操作を行った後、炉内温度を100℃に保持した。この状態で、実施例1と同様な雰囲気のパターンの下で安定化処理を行い、ITO粒子を得た。当該ITO粒子の性状を表1に示す。
(Example 2)
Until the firing, the same operation as in Example 1 was performed, and then the furnace temperature was maintained at 100 ° C. In this state, the stabilization process was performed under the same atmosphere pattern as in Example 1 to obtain ITO particles. Table 1 shows the properties of the ITO particles.

(実施例3)
焼成までは実施例1と同様の操作を行った後、炉内温度を200℃に保持した。この状態で、実施例1と同様な雰囲気のパターンの下で安定化処理を行い、ITO粒子を得た。当該ITO粒子の性状を表1に示す。
(Example 3)
Until the firing, the same operation as in Example 1 was performed, and then the furnace temperature was maintained at 200 ° C. In this state, the stabilization process was performed under the same atmosphere pattern as in Example 1 to obtain ITO particles. Table 1 shows the properties of the ITO particles.

(比較例1)
焼成までは実施例1と同様の操作を行った後、炉内温度を70℃以下に冷却し、安定化処理を行なわずにITO粒子を大気下に取り出した。当該ITO粒子の性状を表1に示す。
(Comparative Example 1)
The same operation as in Example 1 was performed until firing, and then the furnace temperature was cooled to 70 ° C. or lower, and the ITO particles were taken out into the atmosphere without performing the stabilization treatment. Table 1 shows the properties of the ITO particles.

Figure 0004590566
Figure 0004590566

(圧粉体の抵抗値測定)
次に、製造された実施例1〜3に係るITO粒子を含むITO粉体から圧粉体を製造し、当該圧粉体の抵抗値の測定を行った。さらに比較例1におけるITO粒子を含むITO粉体についても同様の測定を行った。当該測定結果を表2に示す。
ここで、ITO粉体の圧粉体の抵抗値測定について説明する。上述したITO粉体を内径25mmの金型に4g充填して98.1MPaの圧力をかけ、直径25mmの円柱状のペレットを作製した。当該ペレットの電気抵抗値を四探針法により測定した。尚、測定装置には、三菱化学製LORESTAHPを用いた。
(Measurement of resistance value of green compact)
Next, a green compact was manufactured from the ITO powder containing the ITO particles according to Examples 1 to 3, and the resistance value of the green compact was measured. Further, the same measurement was performed on the ITO powder containing ITO particles in Comparative Example 1. The measurement results are shown in Table 2.
Here, the resistance value measurement of the green compact of the ITO powder will be described. 4 g of the above-mentioned ITO powder was filled in a mold having an inner diameter of 25 mm, and a pressure of 98.1 MPa was applied to produce a cylindrical pellet having a diameter of 25 mm. The electric resistance value of the pellet was measured by a four-probe method. The measuring device used was LORESTAHP manufactured by Mitsubishi Chemical.

(圧粉体の抵抗値の経時変化率測定)
次に、ITO粒子の圧粉体における抵抗値の経時変化率の測定について説明する。上述した抵抗値を測定した圧粉体を、恒温恒湿器内に設置し、60℃、相対湿度90%で計64時間保存した。当該圧粉体について、保存後1時間経過後の電気抵抗値をRとし、高温恒湿器内での保存X時間後の電気抵抗値をRxとし、R/R×100(%)から、圧粉体の電気抵抗値の経時変化率を求めた。尚、本実施例では、保存後1時間経過後のRと、64時間経過後のR64との変化率(R64/R)を、経時変化率と定義した。
(Measurement of time-dependent change rate of resistance value of green compact)
Next, measurement of the rate of change with time of the resistance value in the green compact of ITO particles will be described. The green compact whose resistance value was measured was placed in a constant temperature and humidity chamber, and stored at 60 ° C. and 90% relative humidity for a total of 64 hours. For the green compact, the electric resistance value after a lapse of 1 hour after storage as R 1, an electric resistance value after storage X time in the thermo-hygrostat and Rx, R X / R 1 × 100 (%) From this, the rate of change with time of the electrical resistance value of the green compact was determined. In this example, the rate of change (R 64 / R 1 ) between R 1 after 1 hour from storage and R 64 after 64 hours was defined as the rate of change with time.

当該測定結果を、表2および図1に示す。図1は、縦軸にR/R×100%をとり、横軸に経過時間をとったグラフである。図1において、実施例1は■でプロットし、実線で結び、実施例2は▲でプロットし、1点鎖線で結び、実施例3は×でプロットし、2点鎖線で結び、比較例1は●でプロットし、破線で結んだ。 The measurement results are shown in Table 2 and FIG. FIG. 1 is a graph in which R X / R 1 × 100% is plotted on the vertical axis and elapsed time is plotted on the horizontal axis. In FIG. 1, Example 1 is plotted with ■, connected with a solid line, Example 2 is plotted with ▲, connected with a one-dot chain line, Example 3 is plotted with x, and connected with a two-dot chain line, Comparative Example 1 Is plotted with ● and connected with a broken line.

Figure 0004590566
Figure 0004590566

(評価)
実施例1〜3と比較例1について評価する。
表2および図1から明らかなように、安定化処理を行うことによって、圧粉体抵抗の経時的な増加を抑制することが出来る。
(Evaluation)
Examples 1 to 3 and Comparative Example 1 are evaluated.
As can be seen from Table 2 and FIG. 1, by performing the stabilization treatment, it is possible to suppress an increase in the green compact resistance over time.

以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。   As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this.

実施例1〜3および比較例1に係るITO粒子を含む圧粉体の抵抗値の経時変化率を示すグラフである。It is a graph which shows the time-dependent change rate of the resistance value of the green compact containing the ITO particle which concerns on Examples 1-3 and the comparative example 1. FIG.

Claims (7)

98.1MPaで成型したITO粉体の圧粉体を、温度60℃、相対湿度90%の条件下で1時間保管後に4探針法で測定した比抵抗値をR、同条件下で64時間保管後に測定した比抵抗値をR64としたとき、
64/R≦5.00
であることを特徴とするITO粉体。
An ITO powder compact molded at 98.1 MPa was stored for 1 hour under conditions of a temperature of 60 ° C. and a relative humidity of 90%, and the specific resistance value measured by the 4-probe method was R 1 , and 64 under the same conditions. when the specific resistance value measured after a time storage was R 64,
R 64 / R 1 ≦ 5.00
ITO powder characterized by being.
の値が、1×10−4Ω・cm以上、1×10−1Ω・cm以下であることを特徴とする請求項1に記載のITO粉体。 The ITO powder according to claim 1, wherein the value of R 1 is 1 × 10 −4 Ω · cm or more and 1 × 10 −1 Ω · cm or less. SnOの含有量が20質量%以下、且つ、BET粒径が15nm以上、200nm以下のITO粒子を含むことを特徴とする請求項1または2に記載のITO粉体。 3. The ITO powder according to claim 1, comprising ITO particles having a SnO 2 content of 20 % by mass or less and a BET particle size of 15 nm or more and 200 nm or less. 可視光領域における透過色を、CIE(国際照明委員会)が定めるL*a*b*表色系で評価したとき、b*の値が−15以上、15以下であることを特徴とする請求項1から3のいずれかに記載のITO粉体。   When the transmitted color in the visible light region is evaluated by the L * a * b * color system defined by the CIE (International Commission on Illumination), the value of b * is -15 or more and 15 or less. Item 4. The ITO powder according to any one of Items 1 to 3. 水溶性のSn塩と水溶性のIn塩とから所定の比率の水溶液を作製し、中和してITO前駆水酸化物を得、このITO前駆水酸化物を、還元性雰囲気下において250℃以上、1000℃以下で焼成してITO粒子を得た後、当該ITO粒子を200℃以下の温度で、酸素濃度3.0vol%以下の酸素雰囲気下で処理して、ITO粉体を製造することを特徴とするITO粉体の製造方法。   An aqueous solution of a predetermined ratio is prepared from a water-soluble Sn salt and a water-soluble In salt, and neutralized to obtain an ITO precursor hydroxide. This ITO precursor hydroxide is 250 ° C. or higher in a reducing atmosphere. Firing ITO at 1000 ° C. or lower to obtain ITO particles, and then treating the ITO particles at a temperature of 200 ° C. or lower in an oxygen atmosphere with an oxygen concentration of 3.0 vol% or lower to produce an ITO powder. A method for producing ITO powder, which is characterized. 請求項1から4のいずれかに記載のITO粉体を含むことを特徴とするITO導電膜塗料。   An ITO conductive film paint comprising the ITO powder according to claim 1. 請求項6に記載のITO導電膜塗料を用いて製造されたことを特徴とする透明導電膜。   A transparent conductive film produced using the ITO conductive film paint according to claim 6.
JP2006096718A 2006-03-31 2006-03-31 ITO powder and manufacturing method thereof, ITO conductive film paint, and transparent conductive film Expired - Fee Related JP4590566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006096718A JP4590566B2 (en) 2006-03-31 2006-03-31 ITO powder and manufacturing method thereof, ITO conductive film paint, and transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096718A JP4590566B2 (en) 2006-03-31 2006-03-31 ITO powder and manufacturing method thereof, ITO conductive film paint, and transparent conductive film

Publications (2)

Publication Number Publication Date
JP2007269543A JP2007269543A (en) 2007-10-18
JP4590566B2 true JP4590566B2 (en) 2010-12-01

Family

ID=38672723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096718A Expired - Fee Related JP4590566B2 (en) 2006-03-31 2006-03-31 ITO powder and manufacturing method thereof, ITO conductive film paint, and transparent conductive film

Country Status (1)

Country Link
JP (1) JP4590566B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5829386B2 (en) 2009-10-16 2015-12-09 三菱マテリアル電子化成株式会社 Fine ITO powder with high crystallinity, its use and manufacturing method, etc.
KR101488116B1 (en) 2010-07-29 2015-01-29 미쓰비시 마테리알 가부시키가이샤 Indium tin oxide powder, production method therefor, transparent conductive composition, and indium tin hydroxide
KR20170030311A (en) * 2015-09-09 2017-03-17 주식회사 무한 A thin film type solar cell and Method of manufacturing the same
CN112905068A (en) * 2021-01-27 2021-06-04 黄石瑞视光电技术股份有限公司 Indium tin oxide film layer stabilizing treatment method and device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769632A (en) * 1993-06-30 1995-03-14 Mitsubishi Materials Corp Ir ray cut-off powder
JP2001226833A (en) * 2000-02-08 2001-08-21 Tokuyama Corp Method for producing tin oxide fiber or composite tin oxide fiber
JP2002068744A (en) * 2000-08-30 2002-03-08 Mitsui Mining & Smelting Co Ltd Tin oxide-added indium oxide powder and its manufacturing method
JP2003119023A (en) * 2001-10-12 2003-04-23 Mitsui Mining & Smelting Co Ltd Method for producing ito powder, and ito powder
JP2004055486A (en) * 2002-07-24 2004-02-19 Dowa Mining Co Ltd Conductive powder, its manufacturing method, conductive paint and conductive coating film using the powder
JP2004143022A (en) * 2001-11-16 2004-05-20 Hitachi Maxell Ltd Tin-containing indium oxide particle and its production method, conductive coating film, and conductive sheet
JP2005225700A (en) * 2004-02-12 2005-08-25 Sumitomo Osaka Cement Co Ltd Indium tin oxide fine particle, coating for forming transparent conductive film, transparent conductive film and display apparatus, and method of manufacturing transparent conductive film
JP2006306695A (en) * 2005-03-28 2006-11-09 Fuji Titan Kogyo Kk Method for manufacturing fine powder of indium oxide and fine powder of indium oxide containing tin
JP2007238337A (en) * 2006-03-03 2007-09-20 Dowa Holdings Co Ltd Ito powder and its manufacturing method, ito coating material and ito electrically conductive film
JP2007254235A (en) * 2006-03-24 2007-10-04 Dowa Holdings Co Ltd Ito powder, and method for manufacturing the same, coating material for ito conductive film, and transparent conductive film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769632A (en) * 1993-06-30 1995-03-14 Mitsubishi Materials Corp Ir ray cut-off powder
JP2001226833A (en) * 2000-02-08 2001-08-21 Tokuyama Corp Method for producing tin oxide fiber or composite tin oxide fiber
JP2002068744A (en) * 2000-08-30 2002-03-08 Mitsui Mining & Smelting Co Ltd Tin oxide-added indium oxide powder and its manufacturing method
JP2003119023A (en) * 2001-10-12 2003-04-23 Mitsui Mining & Smelting Co Ltd Method for producing ito powder, and ito powder
JP2004143022A (en) * 2001-11-16 2004-05-20 Hitachi Maxell Ltd Tin-containing indium oxide particle and its production method, conductive coating film, and conductive sheet
JP2004055486A (en) * 2002-07-24 2004-02-19 Dowa Mining Co Ltd Conductive powder, its manufacturing method, conductive paint and conductive coating film using the powder
JP2005225700A (en) * 2004-02-12 2005-08-25 Sumitomo Osaka Cement Co Ltd Indium tin oxide fine particle, coating for forming transparent conductive film, transparent conductive film and display apparatus, and method of manufacturing transparent conductive film
JP2006306695A (en) * 2005-03-28 2006-11-09 Fuji Titan Kogyo Kk Method for manufacturing fine powder of indium oxide and fine powder of indium oxide containing tin
JP2007238337A (en) * 2006-03-03 2007-09-20 Dowa Holdings Co Ltd Ito powder and its manufacturing method, ito coating material and ito electrically conductive film
JP2007254235A (en) * 2006-03-24 2007-10-04 Dowa Holdings Co Ltd Ito powder, and method for manufacturing the same, coating material for ito conductive film, and transparent conductive film

Also Published As

Publication number Publication date
JP2007269543A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP4686776B2 (en) ITO powder and manufacturing method thereof, coating material for ITO conductive film, and transparent conductive film
JP2695605B2 (en) Target and manufacturing method thereof
JP4994068B2 (en) Oxide conductive material and manufacturing method thereof
JP4134314B2 (en) Method for producing conductive powder
JP5089386B2 (en) In / Sm oxide sputtering target
JP5472589B2 (en) Production method of ITO particles
JP4590566B2 (en) ITO powder and manufacturing method thereof, ITO conductive film paint, and transparent conductive film
JP4617506B2 (en) ITO powder and manufacturing method thereof, coating material for ITO conductive film, and transparent conductive film
JP5337158B2 (en) Method for producing zinc sulfide phosphor
JP4765051B2 (en) Tin-doped indium oxide powder
JP4841029B2 (en) Tin oxide-added indium oxide powder and method for producing the same
JP2001058822A (en) Tin-doped indium oxide powder and its production
KR101283984B1 (en) Silver nanowire having protuberance and Method for preparing the same
JP4586126B2 (en) ITO powder and manufacturing method thereof, ITO paint, and ITO conductive film
JP5285412B2 (en) Tin-doped indium oxide particles and method for producing the same
JP4134313B2 (en) Method for producing conductive powder
JP4793537B2 (en) Visible light transmission type particle-dispersed conductor, conductive particles, visible light transmission type conductive article, and manufacturing method thereof
JP2008115024A (en) Conductive oxide powder and method of manufacturing conductive oxide powder
JPH06227815A (en) Production of electrically conductive fine powder
JP2006306695A (en) Method for manufacturing fine powder of indium oxide and fine powder of indium oxide containing tin
JP2014125415A (en) ITO powder
JP2001220137A (en) Tin-doped indium oxide powder and its manufacturing method
JPH06236710A (en) Conductive material and manufacture and manufacture thereof
JP2010143969A (en) Method for preparing phosphor
KR100635021B1 (en) Synthesis of nano ito(indium tin oxide)powder by sol-gel combustion hybrid method using carbon black

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4590566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees