JP4765051B2 - Tin-doped indium oxide powder - Google Patents
Tin-doped indium oxide powder Download PDFInfo
- Publication number
- JP4765051B2 JP4765051B2 JP2008006417A JP2008006417A JP4765051B2 JP 4765051 B2 JP4765051 B2 JP 4765051B2 JP 2008006417 A JP2008006417 A JP 2008006417A JP 2008006417 A JP2008006417 A JP 2008006417A JP 4765051 B2 JP4765051 B2 JP 4765051B2
- Authority
- JP
- Japan
- Prior art keywords
- tin
- indium oxide
- doped indium
- oxide powder
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Conductive Materials (AREA)
Description
本発明は高い透明性と共に優れた導電性を有し電気接点あるいは回路用等として、また電磁波に対する反射性が高く電磁波シールド用としても用いられる透明導電性粉体とその製造方法に関する。 The present invention relates to a transparent conductive powder having high transparency and excellent conductivity, and having high reflectivity for electromagnetic contacts and circuits, and a method for producing the same.
従来、このような高透明性と共に高導電性を有する透明導電性材料として、三酸化インジウム(In2O3)に二酸化スズ(SnO2)を不純物として添加したスズドープ酸化インジウムが知られている。このスズドープ酸化インジウムは、可視光に対して透明であると共に、酸素欠損型の導電性を示す半導体であり、同時に添加された二酸化スズ(SnO2)によるSn4+が自由電子の供給源即ちドナーとなり、伝導帯下端近傍のドナーレベルに蓄積され、高い導電性を付与するものである。 Conventionally, tin-doped indium oxide in which tin dioxide (SnO 2 ) is added as an impurity to indium trioxide (In 2 O 3 ) is known as a transparent conductive material having such high transparency and high conductivity. This tin-doped indium oxide is a semiconductor that is transparent to visible light and exhibits oxygen deficiency-type conductivity, and Sn 4+ by simultaneously added tin dioxide (SnO 2 ) is a source of free electrons, ie, a donor. Thus, it is accumulated at the donor level near the lower end of the conduction band and imparts high conductivity.
また、このようなスズドープ酸化インジウムを膜体として得る手段としては、スパッタリングや真空蒸着法あるいは四塩化スズ(SnCl4)を添加した三塩化インジウム(InCl3)の溶液を用いて気相反応を行わせるスプレー法等が知られているが、粉体を得る具体的な手段としては、アンモニウム炭酸塩の溶液に、三塩化インジウム(InCl3)と四塩化スズ(SnCl4)との混合溶液を滴下し、インジウムとスズの共沈水酸化物を生成させ、この共沈水酸化物をデカンテーション又は遠心分離法によって水洗して乾燥し、さらに、この乾燥物を水素雰囲気または真空雰囲気内で加熱還元した後、粉砕する還元焼成方法が知られている。
しかしながら、従来、シールド効果を高めるために低抵抗化の処理を施したものは、焼成温度を高くするなどの対策をとるため焼結が進み凝集が激しく分散不良を起こす。これらは塗料中で沈積してしまうなどの問題があった。また、透光性に優れた青色から緑色の塗膜が分散良く得られるものはなかった。以上のように、導電性と分散性のいずれにおいても良好な粉体は得られていなかった。
このような従来の問題点に鑑み、本発明は、より高い導電性と良好な分散性を示す透明導電性粉体の提供、および、そのための好適な製造方法の提供を目的とするものである。
However, in the past, those that have been subjected to a low resistance treatment in order to enhance the shielding effect, take measures such as increasing the firing temperature, so that the sintering progresses and the agglomeration is severe and causes poor dispersion. These had problems such as depositing in the paint. Further, there was no blue to green coating film excellent in translucency with good dispersion. As described above, good powders were not obtained in both conductivity and dispersibility.
In view of such conventional problems, an object of the present invention is to provide a transparent conductive powder exhibiting higher conductivity and good dispersibility, and to provide a suitable manufacturing method therefor. .
本発明者は、かかる課題を解決するため鋭意研究したところ、低抵抗を得る手段として、インジウムに添加するドーピング剤にスズ原料の従来の4価の化合物に代えて2価の化合物を用いることにより、還元雰囲気を容易に得ることができ、O2欠損が増え、低抵抗を実現できることを見いだした。 As a means of obtaining low resistance, the present inventor has conducted diligent research in order to solve such a problem. By using a divalent compound instead of a conventional tetravalent compound of a tin raw material as a doping agent to be added to indium, It has been found that a reducing atmosphere can be easily obtained, O 2 deficiency increases, and low resistance can be realized.
すなわち、本発明は、第1に、Sn含有量がSnO2換算で0.1〜30重量%で、色調がxy色度図上で0.280〜0.370のx値および0.316〜0.400のy値であることを特徴とするスズドープ酸化インジウム粉;第2に、Sn含有量がSnO2換算で0.1〜30重量%で0.01molKCl水溶液中で測定したゼータ電位が+5mV以上であることを特徴とするスズドープ酸化インジウム粉;第3に、比表面積が15m2/g以上で、粒径が10〜30nmで、X線回折図上で2θ=30.5°付近のメインピーク半価幅が0.2°〜0.7°で、200kg/cm2の圧力で成形した圧粉体の状態において体積固有抵抗率が3×101Ωcm以下であることを特徴とするスズドープ酸化インジウム粉;第4に、インジウムと2価のスズを溶解した酸性溶液にアンモニウム炭酸塩を添加してインジウムとスズの共沈水酸化物を生成させた後乾燥させ、該共沈水酸化物を水分を含む不活性ガス雰囲気で500〜800℃で焼成することを特徴とするスズドープ酸化インジム粉の製造方法;第5に、前記水分を含む不活性ガス雰囲気の供給が1.0ml/min・g(乾燥共沈水酸化物1g当たりの毎分供給量)以上の流量であることを特徴とする前記第4に記載のスズドープ酸化インジウム粉の製造方法を提供するものである。 That is, according to the present invention, first, the Sn content is 0.1 to 30% by weight in terms of SnO 2 , and the color tone is an x value of 0.280 to 0.370 on the xy chromaticity diagram, and 0.316 to A tin-doped indium oxide powder characterized by a y value of 0.400; second, the zeta potential measured in an aqueous 0.01 mol KCl solution with a Sn content of 0.1-30 wt% in terms of SnO 2 is +5 mV Tin-doped indium oxide powder characterized by the above; third, a specific surface area of 15 m 2 / g or more, a particle size of 10 to 30 nm, and an X-ray diffraction diagram of 2θ = about 30.5 ° Tin dope characterized in that the volume resistivity is 3 × 10 1 Ωcm or less in the state of a green compact molded at a pressure of 200 kg / cm 2 with a peak half width of 0.2 ° to 0.7 °. Indium oxide powder; Fourth, indium and divalent tin Ammonium carbonate is added to the dissolved acidic solution to form a coprecipitated hydroxide of indium and tin and then dried, and the coprecipitated hydroxide is fired at 500 to 800 ° C. in an inert gas atmosphere containing moisture. A method for producing tin-doped indium oxide powder characterized by the following: Fifth, supply of the inert gas atmosphere containing moisture is 1.0 ml / min · g (amount of supply per minute per 1 g of dry coprecipitated hydroxide) or more The method for producing tin-doped indium oxide powder according to the fourth aspect, characterized in that the flow rate is a flow rate.
本発明により、高い透明域において、高い導電性と高い分散性を示す透明導電性粉体が得られる。また、前記の透明導電性粉体を製造し得ると共に、強い還元雰囲気における焼成処理を必要とすることなく、従って高価な設備やその設備による高いランニングコストを必要とせず、経済的で且つ安全性の高い透明導電性粉体の製造方法を提供できる。 According to the present invention, a transparent conductive powder exhibiting high conductivity and high dispersibility in a high transparent region can be obtained. In addition, the transparent conductive powder can be produced, and does not require a baking treatment in a strong reducing atmosphere, and therefore does not require expensive equipment and high running cost due to the equipment, and is economical and safe. Can be provided.
本発明においては、出発物質として、可溶性インジウム化合物と2価の可溶性スズ化合物を使用する。可溶性インジウム化合物としては、例えばInCl3を用いる。このInCl3は、インジウムメタルを塩酸酸性溶液中で加熱溶解することにより容易に得られる。可溶性スズ化合物としては、例えばSnCl2を用いる。SnCl2はスズメタルを塩酸に溶かして得られ、この溶解液を濃縮すると安定な二水塩が得られる。2価のスズ化合物(例えば、SnCl2)を用いることにより、焼成工程において十分な還元雰囲気が得られ、焼成物の結晶格子内に十分な酸素欠損を形成することができる。 In the present invention, a soluble indium compound and a divalent soluble tin compound are used as starting materials. For example, InCl 3 is used as the soluble indium compound. This InCl 3 can be easily obtained by heating and dissolving indium metal in an acidic hydrochloric acid solution. For example, SnCl 2 is used as the soluble tin compound. SnCl 2 is obtained by dissolving tin metal in hydrochloric acid, and when this solution is concentrated, a stable dihydrate is obtained. By using a divalent tin compound (for example, SnCl 2 ), a sufficient reducing atmosphere can be obtained in the firing step, and sufficient oxygen vacancies can be formed in the crystal lattice of the fired product.
前記InCl3水溶液とSnCl2水溶液を、高い導電性の粉を得るため焼成後のスズドープ酸化インジウム粉中のSn含有量がSnO2換算で0.1〜30重量%となる割合で混合し、この混合液に、炭酸アンモニウム塩溶液、例えば重炭酸アンモニウム(NH4HCO3)とアンモニア水との混合アルカリ性溶液を添加し、攪拌して反応させることにより、In(OH)3とSn(OH)2の共沈生成物が得られる。ここでスズドープ酸化インジウム粉のSn含有量をSnO2換算で0.1〜30重量%とするのは、この範囲では自由電子密度が高く高導電性の粉が得られるからであり、この範囲を外れると良好な導電性の粉が得られないからである。
高い分散性を得る手段としては、上記の反応工程において酸性のInCl3とSnCl2の混合水溶液中にアルカリ溶液を添加し、中性領域にて一気に核生成させて粒子の均一化を図り分散させるとともに粗粒子の発生を抑制する。こうすることによって透光性の高い粉体を得ることができる。
In order to obtain highly conductive powder, the InCl 3 aqueous solution and the SnCl 2 aqueous solution are mixed in such a ratio that the Sn content in the tin-doped indium oxide powder after firing is 0.1 to 30% by weight in terms of SnO 2. An ammonium carbonate salt solution, for example, a mixed alkaline solution of ammonium bicarbonate (NH 4 HCO 3 ) and aqueous ammonia is added to the mixed solution, and the mixture is stirred and reacted, whereby In (OH) 3 and Sn (OH) 2 are reacted. The coprecipitation product is obtained. The reason why the Sn content of the tin-doped indium oxide powder is 0.1 to 30% by weight in terms of SnO 2 is that, in this range, a high-electron density and a highly conductive powder can be obtained. This is because good conductive powder cannot be obtained if it is detached.
As a means for obtaining high dispersibility, an alkaline solution is added to the mixed aqueous solution of acidic InCl 3 and SnCl 2 in the above reaction step, and the particles are nucleated all at once in the neutral region to achieve uniform particle distribution. At the same time, the generation of coarse particles is suppressed. By doing so, a highly translucent powder can be obtained.
得られた共沈生成物を温水によるデカンテーションで数回繰り返し洗浄した後脱水させ、さらに150℃で長時間乾燥させる。
次いで、得られた乾燥粒材を雰囲気炉内に保持し、水分を含む不活性ガスを通しながら、500℃〜800℃の高温度に数時間程度保持することにより焼成処理を行う。不活性ガスとしては窒素、アルゴン、炭酸ガス等が使用可能であるが、特性および費用の面から窒素、アルゴンが好ましく、特に窒素が好ましい。
水分含有量は、良好な色調と分散性が得られるように不活性ガス中に添加する。水分の含有量としては例えば室温での飽和水蒸気圧程度であればよい。
焼成温度は500℃〜800℃の範囲内が望ましい。焼成温度が500℃未満では焼成が不十分で、得られる粉体の抵抗が高くなり、800℃を超えると焼結と凝集が進み、得られる粉体の分散性が不良となる。
The obtained coprecipitation product is repeatedly washed several times by decantation with warm water, dehydrated, and further dried at 150 ° C. for a long time.
Next, the obtained dried granule is held in an atmosphere furnace, and a baking treatment is performed by holding it at a high temperature of 500 ° C. to 800 ° C. for several hours while passing an inert gas containing moisture. Nitrogen, argon, carbon dioxide, or the like can be used as the inert gas, but nitrogen and argon are preferable from the viewpoint of characteristics and cost, and nitrogen is particularly preferable.
The water content is added to the inert gas so that a good color tone and dispersibility can be obtained. The water content may be, for example, about the saturated water vapor pressure at room temperature.
The firing temperature is preferably in the range of 500 ° C to 800 ° C. When the firing temperature is less than 500 ° C., the firing is insufficient and the resulting powder has high resistance, and when it exceeds 800 ° C., the sintering and aggregation progress, and the dispersibility of the resulting powder becomes poor.
また、焼成工程において、通気ガスの流量を1.0ml/min・g(乾燥共沈水酸化物1g当たりの毎分供給量)以上にすることによって雰囲気の均一化が図られ、部分的な焼結を抑制でき、分散性の良好な青色から緑色を呈する粉末を得ることができる。通気ガスの流量が1.0ml/min・g未満だと焼成炉内に雰囲気のばらつきを生じ、特性ムラとなり、好ましくない。 Further, in the firing step, the atmosphere is made uniform by setting the flow rate of the aeration gas to 1.0 ml / min · g or more (amount supplied per minute per 1 g of dry coprecipitated hydroxide), and partial sintering is performed. Can be suppressed, and a dispersible blue to green powder can be obtained. If the flow rate of the aeration gas is less than 1.0 ml / min · g, the atmosphere varies in the firing furnace, resulting in uneven characteristics, which is not preferable.
粉体の色調は、xy色度図上で0.280〜0.370のx値および0.316〜0.400のy値を示すものとする。この色調のものは青〜黄緑で可視光の中で人の目の感度の最も高い500nm付近での光吸収がほとんどなく透光性が良好であるからであり、x値、y値の少なくとも一方がこの範囲を外れると十分な透光性は得られない。
粉体の分散性の指標として水中でのゼータ電位を測定し、溶媒(水)中での安定性を評価した。粉体のゼータ電位が正の値を示すとき、好ましくは+5mV以上のとき、より好ましくは+15mV以上のとき塗料中の粉体は良好な分散性を示し、ゼータ電位が0以下では十分な分散性は得られない。
The tone of the powder shall indicate an x value of 0.280 to 0.370 and a y value of 0.316 to 0.400 on the xy chromaticity diagram. This color tone is blue to yellowish green, and has almost no light absorption in the vicinity of 500 nm, which is the highest sensitivity of human eyes in visible light, and has good translucency. If one is out of this range, sufficient translucency cannot be obtained.
The zeta potential in water was measured as an index of the dispersibility of the powder, and the stability in a solvent (water) was evaluated. When the zeta potential of the powder shows a positive value, preferably when it is +5 mV or more, more preferably when it is +15 mV or more, the powder in the paint exhibits good dispersibility, and when the zeta potential is 0 or less, sufficient dispersibility Cannot be obtained.
さらに十分な透光性を得るためには比表面積は好ましくは15m2/g以上、より好ましくは30m2/g以上とし、粒径(TEM写真による一次粒径)は10〜30nmの範囲内が好ましい。比表面積が15m2/g未満では微粒化が十分ではなく、十分な透光性が得られない。また粒径が10〜30nmの範囲を外れると十分な透光性が得られない。またさらに高い導電性を得るためには粉体の結晶性は、X線回折図上2θ=30.5°付近でのメインピークの半価幅(以下XRD半価幅という)が、好ましくは0.2°〜0.7°、より好ましくは0.3°〜0.5°の範囲内とするとよい。0.2°未満では焼結が進み粗粒化が生じ透光性を阻害し、0.7°を越える場合は焼成不足で充分な結晶性が得られず導電性が不良となる。
高いシールド効果を得るためには、200kg/cm2の圧力で成形した圧粉体の状態において体積固有抵抗率が3×101Ωcm以下が好ましく、さらに3×100Ωcm以下がより好ましい。
Furthermore, in order to obtain sufficient translucency, the specific surface area is preferably 15 m 2 / g or more, more preferably 30 m 2 / g or more, and the particle size (primary particle size by TEM photograph) is in the range of 10 to 30 nm. preferable. When the specific surface area is less than 15 m 2 / g, atomization is not sufficient, and sufficient translucency cannot be obtained. Further, when the particle size is out of the range of 10 to 30 nm, sufficient light transmission cannot be obtained. In order to obtain even higher conductivity, the crystallinity of the powder is preferably such that the half-value width of the main peak (hereinafter referred to as XRD half-value width) around 2θ = 30.5 ° on the X-ray diffraction diagram is preferably 0. The angle may be within the range of 0.2 ° to 0.7 °, more preferably 0.3 ° to 0.5 °. If the angle is less than 0.2 °, the sintering proceeds and coarsening occurs and the translucency is inhibited. If the angle exceeds 0.7 °, sufficient crystallinity cannot be obtained due to insufficient firing, resulting in poor conductivity.
In order to obtain a high shielding effect, the volume resistivity is preferably 3 × 10 1 Ωcm or less, and more preferably 3 × 10 0 Ωcm or less in the state of a green compact molded at a pressure of 200 kg / cm 2 .
〔実施例1〕
インジウムメタルをHCl酸性液により加熱溶解してInCl3溶液を得、このInCl3溶液に、SnCl2溶液を所定割合で添加し、pH1〜2の混合溶液を作った。この混合溶液に重炭酸アンモニウム溶液を添加して攪拌し反応させた。反応終了時のpHは6〜7である。得られた共沈生成物を、60℃以上の温水による5回のデカンテーションで繰り返し洗浄し、濾過・脱水した後150℃で20時間乾燥した。
さらに、該乾燥サンプル400gを管状雰囲気炉に仕込み、N2ガスを10ml/min・g(乾燥共沈水酸化物1g当たりの毎分供給量)の流量で通気しながら550℃で3時間焼成した。通気中には、30℃での飽和水分を維持させるよう湿度調節を行った。得られた焼成物を卓上ミルで粉砕した。
[Example 1]
Give the InCl 3 solution indium metal was heated and dissolved with HCl acid solution, to the InCl 3 solution was added SnCl 2 solution in a predetermined ratio to make a mixed solution of pH 1-2. To this mixed solution, an ammonium bicarbonate solution was added and stirred to react. The pH at the end of the reaction is 6-7. The obtained coprecipitation product was repeatedly washed by decantation with hot water of 60 ° C. or higher, filtered and dehydrated, and then dried at 150 ° C. for 20 hours.
Further, 400 g of the dried sample was charged into a tubular atmosphere furnace, and calcined at 550 ° C. for 3 hours while aerated with N 2 gas at a flow rate of 10 ml / min · g (amount supplied per 1 g of dry coprecipitated hydroxide). During the ventilation, the humidity was adjusted to maintain saturated moisture at 30 ° C. The obtained fired product was pulverized by a table mill.
Sn含有量の測定はICP分析によって行った。一次粒径は透過型電子顕微鏡(TEM)によって測定した。比表面積はBET1点法によって測定した。色調はダブルビーム交照測光法(色差計)によって測定した。X線回折はCuK‐α1、50kVの条件下でシンチレーションカウンタを用いて行った。圧粉体の固有抵抗率は、200kg/cm2の圧力で成形した圧粉体について四探針法で抵抗測定を行って求めた。ゼータ電位は、粉体を0.01molのKCl水溶液中に超音波(5分間照射)で分散させ、レーザ回転プリズム方式のゼータ電位計を使用して100Vの印加電圧で測定した。 The Sn content was measured by ICP analysis. The primary particle size was measured with a transmission electron microscope (TEM). The specific surface area was measured by the BET single point method. The color tone was measured by a double beam photometry method (color difference meter). X-ray diffraction was performed using a scintillation counter under conditions of CuK-α 1 and 50 kV. The specific resistivity of the green compact was determined by measuring the resistance of the green compact molded at a pressure of 200 kg / cm 2 by the four-probe method. The zeta potential was measured at an applied voltage of 100 V using a laser rotating prism type zeta potentiometer by dispersing the powder in 0.01 mol of KCl aqueous solution with ultrasonic waves (irradiation for 5 minutes).
以上の方法で得られた粉体のSn含有量はSnO2換算で5.3重量%であり、粒径は10nm、比表面積は56.5m2/gであった。
このスズドープ酸化インジウム粉体は青緑色の色調を有し、xy色度図でのx値とy値はそれぞれ0.323および0.353であった。また、該粉体のXRD半価幅は0.58°、圧粉体の体積固有抵抗率は0.1Ωcm、ゼータ電位は+25mVであった。
The Sn content of the powder obtained by the above method was 5.3% by weight in terms of SnO 2 , the particle size was 10 nm, and the specific surface area was 56.5 m 2 / g.
This tin-doped indium oxide powder had a blue-green color tone, and the x and y values in the xy chromaticity diagram were 0.323 and 0.353, respectively. Further, the XRD half width of the powder was 0.58 °, the volume resistivity of the green compact was 0.1 Ωcm, and the zeta potential was +25 mV.
〔実施例2〕
焼成温度を550℃に代えて650℃とした以外は実施例1と同様の処理を行った。
得られたスズドープ酸化インジウム粉体のSn含有量ははSnO2換算で5.3重量%であり、粒径は15nm、比表面積は43.1m2/gであった。該粉体は青色の色調を有し、xy色度図でのx値とy値はそれぞれ0.301および0.317であった。また、該粉体のXRD半価幅は0.45°、圧粉体の体積固有抵抗率は0.03Ωcm、ゼータ電位は+23mVであった。
[Example 2]
The same treatment as in Example 1 was performed except that the firing temperature was changed to 650 ° C. instead of 550 ° C.
Sn content of the obtained tin-doped indium oxide powder was 5.3% by weight in terms of SnO 2 , the particle size was 15 nm, and the specific surface area was 43.1 m 2 / g. The powder had a blue color tone, and the x and y values in the xy chromaticity diagram were 0.301 and 0.317, respectively. Further, the XRD half width of the powder was 0.45 °, the volume resistivity of the green compact was 0.03 Ωcm, and the zeta potential was +23 mV.
〔比較例〕
インジウムメタルをHCl酸性液により加熱溶解してInCl3溶液を得、このInCl3溶液に、SnCl2溶液を所定割合で添加し、pH1〜2の混合溶液を作った。重炭酸アンモニウム溶液に前記の混合溶液を添加して攪拌し反応させた。反応終了時のpHは7である。得られた共沈生成物について、60℃以上の温水で5回デカンテーションを繰り返して洗浄し、濾過・脱水した後150℃で20時間乾燥を行った。
さらに、該乾燥サンプル400gを管状雰囲気炉に仕込み、N2ガスを0.5ml/min・gの流量で通気しながら550℃で3時間焼成した。通気ガス中には水分を添加しなかった。得られた焼成物を卓上ミルで粉砕した。得られた粉体のSn含有量はSnO2換算で5.3重量%であり、粒径10nm、比表面積は58.0m2/gであった。
このスズドープ酸化インジウム粉体は黄緑色の色調を有し、xy色度図でのx値とy値はそれぞれ0.380および0.383であった。また、該粉体のXRD半価幅は0.68°、圧粉体の体積固有抵抗率は3.0Ωcm、ゼータ電位は−3.2mVであった。
[Comparative Example]
Give the InCl 3 solution indium metal was heated and dissolved with HCl acid solution, to the InCl 3 solution was added SnCl 2 solution in a predetermined ratio to make a mixed solution of pH 1-2. The above mixed solution was added to the ammonium bicarbonate solution and stirred to react. The pH at the end of the reaction is 7. The obtained coprecipitation product was washed by repeating decantation 5 times with hot water of 60 ° C. or higher, filtered and dehydrated, and then dried at 150 ° C. for 20 hours.
Further, 400 g of the dried sample was charged into a tubular atmosphere furnace, and calcined at 550 ° C. for 3 hours while aeration of N 2 gas at a flow rate of 0.5 ml / min · g. No moisture was added to the aeration gas. The obtained fired product was pulverized by a table mill. The Sn content of the obtained powder was 5.3% by weight in terms of SnO 2 , the particle size was 10 nm, and the specific surface area was 58.0 m 2 / g.
This tin-doped indium oxide powder had a yellow-green color tone, and the x value and y value in the xy chromaticity diagram were 0.380 and 0.383, respectively. Further, the XRD half width of the powder was 0.68 °, the volume resistivity of the green compact was 3.0 Ωcm, and the zeta potential was −3.2 mV.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008006417A JP4765051B2 (en) | 2008-01-16 | 2008-01-16 | Tin-doped indium oxide powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008006417A JP4765051B2 (en) | 2008-01-16 | 2008-01-16 | Tin-doped indium oxide powder |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16481498A Division JP4171790B2 (en) | 1998-06-12 | 1998-06-12 | Method for producing tin-doped indium oxide powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008110915A JP2008110915A (en) | 2008-05-15 |
JP4765051B2 true JP4765051B2 (en) | 2011-09-07 |
Family
ID=39443652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008006417A Expired - Lifetime JP4765051B2 (en) | 2008-01-16 | 2008-01-16 | Tin-doped indium oxide powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4765051B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5829386B2 (en) * | 2009-10-16 | 2015-12-09 | 三菱マテリアル電子化成株式会社 | Fine ITO powder with high crystallinity, its use and manufacturing method, etc. |
JP5835860B2 (en) * | 2009-10-29 | 2015-12-24 | 三菱マテリアル電子化成株式会社 | Heat ray shielding composition and method for producing the same |
JP2011174134A (en) * | 2010-02-24 | 2011-09-08 | Idemitsu Kosan Co Ltd | In-Ga-Sn-BASED OXIDE SINTERED COMPACT, TARGET, OXIDE SEMICONDUCTOR FILM AND SEMICONDUCTOR ELEMENT |
KR101488116B1 (en) | 2010-07-29 | 2015-01-29 | 미쓰비시 마테리알 가부시키가이샤 | Indium tin oxide powder, production method therefor, transparent conductive composition, and indium tin hydroxide |
JP5238005B2 (en) * | 2010-09-22 | 2013-07-17 | 株式会社ノリタケカンパニーリミテド | Porous ceramic substrate manufacturing method and multistage filter |
JP5754580B2 (en) * | 2010-10-26 | 2015-07-29 | 三菱マテリアル電子化成株式会社 | Indium tin oxide powder |
JP5885507B2 (en) * | 2012-01-05 | 2016-03-15 | 三菱マテリアル電子化成株式会社 | Indium tin oxide powder and method for producing the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61143762A (en) * | 1984-12-17 | 1986-07-01 | Canon Inc | Electrophotographic sensitive body |
JP3019551B2 (en) * | 1991-10-15 | 2000-03-13 | 三菱マテリアル株式会社 | Ultrafine low-resistance tin-doped indium oxide powder and its manufacturing method |
JP3277081B2 (en) * | 1994-10-13 | 2002-04-22 | 株式会社東芝 | Deformed resin particles, method for deforming resin particles, and electrophotographic toner comprising the deformed resin particles |
JP3608316B2 (en) * | 1995-12-06 | 2005-01-12 | 住友化学株式会社 | Indium oxide-tin oxide powder and method for producing the same |
-
2008
- 2008-01-16 JP JP2008006417A patent/JP4765051B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2008110915A (en) | 2008-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4765051B2 (en) | Tin-doped indium oxide powder | |
JP5016993B2 (en) | Magnesium oxide particle aggregate and method for producing the same | |
TW201219307A (en) | Magnesium hydroxide microparticle and magnesium oxide microparticle, and method for producing the same | |
JP4134314B2 (en) | Method for producing conductive powder | |
JP5835860B2 (en) | Heat ray shielding composition and method for producing the same | |
Obukuro et al. | Effects of La doping on structural, optical, electronic properties of Sr2Bi2O5 photocatalyst | |
JP4171790B2 (en) | Method for producing tin-doped indium oxide powder | |
JP4801617B2 (en) | Conductive zinc oxide particles and method for producing the same | |
JPH05201731A (en) | Hyperfine particle low resistant tin dope indium oxide powder and production thereof | |
JP4253721B2 (en) | Tin-doped indium oxide powder and method for producing the same | |
KR100444142B1 (en) | ITO fine powder and method for producing the same | |
WO2008044469A1 (en) | Ultrafine zinc oxide particle and process for production thereof | |
JPH11258193A (en) | Antimonic anhydride zinc semiconductor gas sensor and its manufacture | |
KR101469298B1 (en) | magnesium oxide powder | |
TWI778400B (en) | Zinc oxide powder for producing zinc oxide sintered body, zinc oxide sintered body, and method of producing these | |
JP5829386B2 (en) | Fine ITO powder with high crystallinity, its use and manufacturing method, etc. | |
JP4982691B2 (en) | Sn-containing In oxide, method for producing the same, paint using the same, and conductive coating film | |
EP2599751B1 (en) | Indium tin oxide powder, production method therefor, and a transparent conductive composition | |
JP4134313B2 (en) | Method for producing conductive powder | |
JP3838615B2 (en) | Tin-doped indium oxide powder and method for producing the same | |
TWI568676B (en) | ITO powder and its manufacturing method | |
Mishra et al. | Low-cost processing of pure and Al-doped capped ZnO nano powder for industry scale applications. | |
JP6952051B2 (en) | Method for manufacturing infrared shielding material and tin oxide particles | |
JP4575656B2 (en) | Conductive powder | |
JPS60186416A (en) | Production of sn-doped in2o3 powder having low electrical resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110407 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110426 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110518 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20110518 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110518 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110519 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140624 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |