TW201219307A - Magnesium hydroxide microparticle and magnesium oxide microparticle, and method for producing the same - Google Patents

Magnesium hydroxide microparticle and magnesium oxide microparticle, and method for producing the same Download PDF

Info

Publication number
TW201219307A
TW201219307A TW100134937A TW100134937A TW201219307A TW 201219307 A TW201219307 A TW 201219307A TW 100134937 A TW100134937 A TW 100134937A TW 100134937 A TW100134937 A TW 100134937A TW 201219307 A TW201219307 A TW 201219307A
Authority
TW
Taiwan
Prior art keywords
magnesium
magnesium hydroxide
mass
magnesium oxide
aqueous solution
Prior art date
Application number
TW100134937A
Other languages
Chinese (zh)
Other versions
TWI529133B (en
Inventor
Yoshihisa Ohsaki
Original Assignee
Tateho Kagaku Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45893003&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201219307(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tateho Kagaku Kogyo Kk filed Critical Tateho Kagaku Kogyo Kk
Publication of TW201219307A publication Critical patent/TW201219307A/en
Application granted granted Critical
Publication of TWI529133B publication Critical patent/TWI529133B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • C01F5/08Magnesia by thermal decomposition of magnesium compounds by calcining magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/22Magnesium hydroxide from magnesium compounds with alkali hydroxides or alkaline- earth oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Provided are a highly-pure magnesium hydroxide microparticle and a highly-pure magnesium oxide microparticle having small diameters and good uniformity. The magnesium hydroxide microparticle has a BET specific surface area of 5m<SP>2</SP>/g or more, a cumulative 50% particle diameter (D50) in volume reference obtained by laser diffraction scattering particle-distribution measurement with a value of 0.1 to 0.5 μ m, a D90/D10 ratio of the cumulative 10% particle diameter (D10) in volume reference to the cumulative 90% particle diameter (D90) in volume reference obtained by laser diffraction scattering particle-distribution measurement with a value of 10 or less, and a purity of 99.5% by mass or more. The magnesium oxide microparticle has a BET specific surface area of 5m<SP>2</SP>/g or more, a cumulative 50% particle diameter (D50) in volume reference obtained by laser diffraction scattering particle-distribution measurement with a value of 0.1 to 0.5 μ m, a D90/D10 ratio of the cumulative 10% particle diameter (D10) in volume reference to the cumulative 90% particle diameter (D90) in volume reference obtained by laser diffraction scattering particle-distribution measurement with a value of 10 or less, and a purity of 99.5% by mass or more.

Description

201219307 六、發明說明: 【發明所屬的技術領域】 ^發明是關於粒徑小且均句的高純度氫氧化鎮 子及尚純度氧化鎂微粒子,以及該等 ' 【先前技術】 及衫微粒子的製造方法。 氫氧化鎂及氧化鎂是在各種的領域被使用的盔 枓,以前者的用途而言,可舉添加劑、樹脂填充料、 能性材料、及觸媒等,以後者的用途Μ,可舉耐火=、 樹脂填充料、高功能性材料、電磁鋼板材料、及 觸料。包含該等的用途,對氫氧化鎂及氧倾的要求·· 純度高,粒徑小,並且均勻的微粒子形態。 就製造粒徑小且均勻的氫氧化鎂的方法而言,提案 =:在含有氫氧化鎂的水溶液中,添加驗物f,繼而添加 =面活性劑,而藉此調製⑽至咖⑽的氫氧化鎂微粒 j方法(參照專利文獻1)。但在具體例中驗添加量多, 由高壓爸容器溶出不純物,而有不純物混人的問題。 又’也提案有.於使氣化μ與驗物質在水性媒體中進 行水熱反應aydmhemal reaetiQn) $造氫氧化巍的方 法中’添加贼、料或鱗的切溶㈣,而任意控制 所得的氫氧化鎮的縱橫比的方法(參照專利絲2),但 是,在該方法中,有控制粒徑困難,無法得到均勻之粒徑 的微粒子之問題。 (先前技術文獻) (專利文獻) 323520 4 201219307 (專利文獻D日本特開2009-62214號公報 (專利文獻2)日本特開2005-200300號公報 【發明内容】 (發明要解決的課題) ,發日㈣目的是在解決上述問題而提供粒徑小且均 二蓉;氧化職粒子及高純度氧化鎂微粒子,以及 s亥等微粒子的製造方法。 (解決課題的手段) ^發明是關於—種氫氧化鎂微粒子,纟咖比表面積 積其準所r ^雷射繞射散射式粒度分佈測定法所得的體 粒徑㈤在°·1至〇._,雷射繞 (==:=積基準的累積_徑 下,純度在99.5質量^1^()的比WD'。為10以 積在種氧化鎮微粒子,其航比表面 趙積基5(;㈣射㈣式城分佈败法所得的 媸檟丞早的累積5_徑㈣為201219307 VI. Description of the Invention: [Technical Field of the Invention] The invention relates to a high-purity oxidized town of a small particle size and a uniform sentence, and a magnesium oxide fine particle of purity, and the like [the prior art] and a method for producing a smear microparticle . Magnesium hydroxide and magnesium oxide are helmets that are used in various fields. For the purposes of the former, additives, resin fillers, energy materials, and catalysts may be used, and the latter may be used for fire resistance. =, resin filler, high functional materials, electromagnetic steel sheet materials, and touch materials. Including these applications, the requirements for magnesium hydroxide and oxygen tilting are high, the particle size is small, and the fine particle form is uniform. In the method of producing magnesium hydroxide having a small particle size and uniformity, it is proposed to: add an analyte f in an aqueous solution containing magnesium hydroxide, and then add a surfactant; thereby modulating (10) to hydrogen of the coffee (10) Method of magnesium oxide fine particles j (refer to Patent Document 1). However, in the specific case, the amount of addition is large, and the high-pressure dad container dissolves the impurities, and there is a problem that the impurities are mixed. Also 'is also proposed to make the gasification μ and the test substance hydrothermal reaction in the aqueous medium aydmhemal reaetiQn) $ method of making barium hydroxide 'adding thief, material or scale (4), and arbitrary control The method of the aspect ratio of the oxidized town (refer to Patent Wire 2). However, in this method, there is a problem that it is difficult to control the particle diameter, and it is impossible to obtain a fine particle having a uniform particle diameter. (Prior Art Document) (Patent Document) 323520 4 201219307 (Patent Document No. JP-A-2009-62214 (Patent Document 2) JP-A-2005-200300 SUMMARY OF THE INVENTION (Problems to be Solved by the Invention) (4) The purpose of the invention is to provide a method for producing small particle size and uniform granules, oxidized particles and high-purity magnesium oxide particles, and fine particles such as shai. Magnesium oxide microparticles, the specific surface area of the 纟 其 r r ^ 雷 雷 雷 绕 绕 绕 绕 绕 绕 绕 绕 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 体 体 体 体 体 体 体 体 体 体 体 体 体 体 体 体 体 = = = Under the cumulative_path, the purity is 99.5 mass ^1^() ratio WD'. It is 10 to accumulate in the oxidized town microparticles, and its nautical surface surface is Zhaojiji 5 (; (4) shot (four) type city distribution failure method Early accumulation of 5_path (four) is

散射式粒度分佈測定法所得的.0.5射繞射 丨〇)與體積Am的n 積基準的累積10%粒徑(D 的累積_粒徑(Μ的比The cumulative 10% particle size of the n-product of the volume of Am obtained by the scattering particle size distribution method (.0.5 diffraction diffraction) (the cumulative_particle size of D)

下,純度在99.5質量%以上者。 在U 的製=法本發明是關於含有下列步驟的氫氧化鎮微粒子 準備氯化鎂水溶液的步騾(^); 使氯化鎮水溶液與1至⑽的鹼性水溶液,以反應率 323520 5 201219307 m至21〇莫耳%反應,而獲得氫氧化鎮泥裝的步驟⑻; 將氣氧化顏漿—面授拌—面保持於m至·。c的 溫度,獲得經水熱處理過的氫氧化鎂㈣的步驟(〇;以及 ^經水熱處理過的氫氧化鎂m慮、水洗及乾燥, 而獲得氫氧化鎮微粒子的步驟(D)。 之外’本發明疋關於含有下述步驟的氧化鎮微粒子的 製造方法:將上述氫氧化賴粒子或由上述製造方法所獲 得的氫氧化賴粒子,在域環境中,以_至刪。〇锻 燒的步驟(E)。 (發明的效果) 本發明的氫氧化鎂微粒子及氧化鎮微粒子是高純 度’粒徑小,且均句,在各式各樣的領域中的有用性高。 又’依本發明的製造方法可容易調製如上述的微 利性高。 【實施方式】 本發明的氫氧化賴粒子是βΕΤ比表面積在5仏以 上:雷射繞射散射式粒度分佈測定的體積基準的累積_ 粒役㈤為(U至Q 5⑽’ f射繞射散射式粒度分佈測定 =體積基準的累積隱粒_…與體積基準的累積9〇%粒 徑9°,軌D9°/Dl°在10以下。如此的氫氧化鎂微粒子是 粒子$狀小,有優異的反應牲,故適於添加劑,樹脂填 料、,觸媒等’又,粒子开彡狀小’粒度的變異少,有優異 的:政性’所以對高功能性材料等也可適合使用。本發明 的氯氧化鎂微粒子的BET比表面積較佳是i 〇mVg以上,Ds。 323520 6 201219307 較佳是0. 2至〇. 5叩’ Dm/Di。較佳是5以下。 本發明的氫氧化鎂微粒子的純度是在99 5質量%以 上。若在該範圍,則極可抑制不純物的溶出,可適合使用 於高功能性材料。本發明的氫氧化鎂微粒子的純度較佳是 在99. 9質量%以上。 本說明書中,純度是設為測定對象微粒子中的不純物 元素(Ag ’ Al ’ B ’ ,βί ’ Cd ’ Cl,Co,C r,Cu,Fe,Ga,Next, the purity is above 99.5 mass%. The present invention relates to a step (^) for preparing an aqueous magnesium chloride solution containing oxidized granules of the following steps; and a chlorination aqueous solution and an alkaline aqueous solution of 1 to 10, at a reaction rate of 323520 5 201219307 m to 21 〇 % molar reaction, and obtain the step (8) of oxidizing the town mud; maintaining the gas oxidizing slurry - surface mixing - surface to m to ·. The temperature of c, the step of obtaining the hydrothermally treated magnesium hydroxide (IV) (〇; and the hydrothermally treated magnesium hydroxide m, washing with water and drying to obtain the oxidized granules (D). The present invention relates to a method for producing oxidized granules comprising the steps of: calcining the above-mentioned hydroxide particles or the oxidized particles obtained by the above-mentioned production method in a domain environment Step (E). (Effects of the Invention) The magnesium hydroxide fine particles and the oxidized granules of the present invention have high purity, a small particle size, and are uniform in various fields, and have high usefulness in various fields. The manufacturing method of the present invention can easily prepare the above-mentioned high-precision property. [Embodiment] The hydroxide-based particles of the present invention have a β-ΕΤ specific surface area of 5 仏 or more: a volume-based accumulation of a laser diffraction scattering particle size distribution measurement_ (5) is (U to Q 5 (10)' f-ray diffraction scattering particle size distribution measurement = volume-based cumulative cryptoparticle _... cumulative volume with volume basis 9 〇 % particle size 9 °, orbit D9 ° / Dl ° below 10 . Such magnesium hydroxide microparticles The particles are small in shape and have excellent reaction properties, so they are suitable for additives, resin fillers, catalysts, etc., and the particle size is small, the particle size variation is small, and there is excellent: politicality, so for highly functional materials. The BET specific surface area of the magnesium oxychloride fine particles of the present invention is preferably i 〇 mVg or more, Ds. 323520 6 201219307 is preferably 0.2 to 〇. 5叩' Dm/Di. The purity of the magnesium hydroxide fine particles of the present invention is 99.5% by mass or more. If it is within this range, the elution of impurities can be suppressed extremely, and it can be suitably used for a highly functional material. The purity of the magnesium hydroxide fine particles of the present invention. Preferably, the purity is 99.9% by mass or more. In the present specification, the purity is an impurity element (Ag ' Al ' B ' , βί ' Cd ' Cl, Co, C r, Cu, Fe, Ga) in the microparticle to be measured. ,

In ’ K , Li , Mn , Mo ’ Na , Ni ’ p , pb , S , S i , S r , T1 , V ’ Zn ’ Ti及Zr)的含有量’並將該等的合計含有量由i〇〇 質量%扣除的値。本說明書中’高純度是指以如上述方式算 出的純度在99.5質量%以上者。 做為測定對象的不純物元素(Ag,A卜B,Ba,Bi,Cd,The contents of In ' K , Li , Mn , Mo ' Na , Ni ' p , pb , S , S i , S r , T1 , V ' Zn ' Ti and Zr ) and the total content of these are determined by i値 Quality deducted 値. In the present specification, 'high purity' means a purity of 99.5% by mass or more as calculated as described above. As an impurity element (Ag, A, B, Ba, Bi, Cd,

Co , Cr ’ Cu , Fe , Ga , In , K , Li , Μη , Mo , Na , N i , p ,Co , Cr ′ Cu , Fe , Ga , In , K , Li , Μη , Mo , Na , N i , p ,

Pb ’ S,Si ’ Sr,ΤΙ,V,Zn ’ Ti 及 Zr)是使用 ICP 發光分 析裝置,將試料溶解於酸後,測定質量,C1量是使用分光 光度計,將試料溶解於酸後,測定質量的值。 本發明的氫氧化鎂微粒子是Fe,Ti,Ni,Cr,Mo及 Μη的合,含有量在5〇〇質量p卵以下為較佳。該等的合 計含有量在500質量_以下時,金屬不純物的溶出極受 抑制’可適合使用於添加劑、樹脂填充料、高功能性材料。 合計含有量較佳是在450質量卯m以下。 本發月的氫氧化鎂微粒子較佳是,氯的含有量在5⑽ 質里ppm以下§其含有量在質量卿以下時 藉煅燒而㈣氧域微㈣時粒子絲極受㈣,而可= 323520 7 201219307 得微細的氧化鎂粉末。含有量更佳是在450質量ppnl以下。 本發明的氫氧化鎮微粒子較佳是,體積基準平均粒徑 (Dv)與個數基準的平均粒徑(Dn)之比Dv/Dn在1至1〇。當 該Dv/Dn在1至10時’使用於印墨定影劑用途時有優異的 印墨定影性,添加於樹脂等時的耐熱性、難燃性、彎曲性 功能、及觸媒功能佳,且耐酸性,耐濕性良好。Dv/Dn更 佳是在1至8。 上 本發明的氧化鎂微粒子的BET比表面積在5mVg ,雷射繞射散射式粒度分佈測定所得的體積基準的累 50%粒棱(DM為〇. 1至〇.5um,雷射繞射散射式粒度分佈 定所得的體積基準的累積10%粒徑(Difl)與體積基準的累 90%粒徑㈤之比D4。在1〇以下。如此的氧化鎮微粒 =形:小,且有優異的反應性,所以適於做為耐火物 添加劑、树脂填充料、電磁鋼板材料、及觸媒等,又,〗 狀士 ’粒度的變異少’有優異的分散性,所以1 k 5使用於南功能性材料等。 本發明的氧化鎮微粒子 2〇mVg以上,更佳是u 2 T *表面積較佳是乂 η , 更佳在40m/g以上,D5G較佳杲η 9 3Pb ' S, Si ' Sr, ΤΙ, V, Zn ' Ti and Zr) are obtained by dissolving a sample in an acid using an ICP luminescence analyzer, and measuring the mass. The amount of C1 is obtained by dissolving the sample in an acid using a spectrophotometer. Determine the value of the mass. The magnesium hydroxide fine particles of the present invention are a combination of Fe, Ti, Ni, Cr, Mo and Μη, and the content thereof is preferably 5 〇〇 or less. When the total content is 500 mass% or less, the elution electrode of the metal impurities is suppressed. It can be suitably used for additives, resin fillers, and highly functional materials. The total content is preferably 450 mass 卯m or less. It is preferable that the magnesium hydroxide fine particles of the present month have a chlorine content of 5 or less in a mass of 5 (10) or less. When the content of the chlorine is less than or equal to the mass, the particle is extremely subjected to calcination (4) when the oxygen field is micro (four), the particle filament is extremely affected (four), and can be = 323520 7 201219307 A fine magnesium oxide powder is obtained. The content is more preferably 450 mass ppnl or less. The oxidized fine particles of the present invention preferably have a ratio Dv/Dn of a volume-based average particle diameter (Dv) to a number-based average particle diameter (Dn) of from 1 to 1 Torr. When the Dv/Dn is from 1 to 10, it has excellent ink fixing property when used for an ink fixing agent, and is excellent in heat resistance, flame retardancy, bending property, and catalytic function when added to a resin or the like. It is also resistant to acid and has good moisture resistance. Dv/Dn is preferably in the range of 1 to 8. The BET specific surface area of the magnesium oxide fine particles of the present invention is 5 mVg, and the volume-based 50% grain edge obtained by laser diffraction scattering particle size distribution measurement (DM is 〇.1 to 〇.5um, laser diffraction scattering type) The particle size distribution is determined by the volume ratio of the cumulative 10% particle size (Difl) to the volume-based 90% particle size (f) ratio D4. Below 1 。. Such oxidized town particles = shape: small, and excellent reaction It is suitable for use as a refractory additive, a resin filler, an electromagnetic steel sheet material, and a catalyst. Moreover, the shape of the 'small particle size variation is small' has excellent dispersibility, so 1 k 5 is used for south functionality. Materials, etc. The oxidized granules of the present invention are 2 〇 mVg or more, more preferably the u 2 T * surface area is preferably 乂η, more preferably 40 m/g or more, and D5G is preferably 杲η 9 3

〇♦,WD,。較佳是在5以下。 較佳疋〇·2 J 本發明的氧化鎂微粒子的 該範圍’則不純物的溶出將合極::&quot;.5質利以上。在 功能性材料。本發明的氧日:卩制’可適合使用於高 質量%以上。 放粒子的純度較佳是在99. £ 本發明的氧化鎂徜 鎮·子較佳是,Fe’Ti,Ni,Cr,M〇 323520 8 201219307 ' f,的口斤含有量在500質量_以下。該等的合計人右 *夏在500質量卿以下時,則金屬不純物溶出會福 可適合使用於添加劑、樹脂填充料、高功能性材料二制’ 含有量較理想是在彻質量_以下。力4材科。合計 旦本發明的氧化鎂微粒子較佳是,氯的含有量在5 里_以下。該含有量在5〇〇質量_以下時到氯的 會極受抑制,可適合使用於添加劑 ^ 性材料。含有量更佳是在伽質量卿以下 呵功此 發Γ的氧化鎮微粒子較佳是,體積基準的平均粒徑 ^」固數基準的平均粒徑⑽之比Dv/Dn在i至10。該 =L在、1至1G時,則使用於印墨的定影劑㈣時印墨的 。添加於樹月日等時有優異的耐熱性、難燃性、彎曲 性功能、光的擴散效果、及觸媒效果佳,且财酸性、耐濕 性良好’更佳是1至8。 本發明的氧化鎂微粒子較佳是,檸檬酸活性度(最終 …率40/。20.0C)在20至2〇〇〇秒。該擰檬酸活性度在 至2_㈣’職鐵的反應性優異,做為電磁鋼板材 則可適口使用於電磁鋼板用絶緣材及壓粉鐵心用絶緣 被膜材。檸檬酸活性度較佳是在2〇至5〇〇秒。 本發明的氫氧化鎂微粒子是’藉由含有下述的步 可得: 準備氣化鎂水溶液的步驟(A); 使氣化鎖7JC/合液與i至18N的驗性水溶液,以反應率 至210肋1%反應,而獲得氫氧化鎂泥漿的步驟⑻; 323520 9 201219307 將氫氧化觀聚在攪料保持在lGi至測。c的严 度,而獲得經水熱處理過的氣氣 咖 氣鎖泥聚的步驟⑹;以及 而蒋過的氣氧化鎮泥細、水洗及乾燥, 獲于虱氧化鎖试粒子的步驟(D)。 較佳m是準備氣域水溶㈣㈣。氯傾水溶液 =^0.410mol/L,_0.im 則生產效率不好。又,漠度比l0moi 漿的粘度變高,操作付又從^才貝j虱氧化鎂泥 05至5111〇1几/、子。乳化鎮水溶液的漠度較佳是 步驟(A)是例如可含有下述的步驟: 準備粗氯化鎂水溶液的步驟(Ay). 率與1至UN的鹼性水溶液,以反應 ^ lb反應,而獲得粗氫氧化m步驟(A_2); 在粗氫氧化鎂泥漿添加凝集劑後,將氫氧 作為遽液而獲得氣化% /慮 隼沉澱,二m 加凝集劑使氣氧化鎮凝 液獲得氣化鎮水溶液的步驟(A- 3)。 / A])是準備粗氣化鎂溶液的步驟 化鎂(以氣化鎂而言,可使用氣 丨如,在氯 鎮,咬,海水μ Γ 6水和物或無水氯化 鎂或海水、鹼水、或苦汁)添加 脂而精製到電導度在的水)而:= 粗氯化鎂水溶液可作二^ 1〇:,較佳是⑴爾,更佳是2至杨i/L 步驟(A—奴對純倾水驗,歧鮮/ 323520 10 201219307 30mol%之方式,與丨至18N的鹼性水溶液反應,而獲得粗 氫氧化鎂泥漿的步驟。反應率是指全部氯化鎂成為氫氧化 鎂所需要的鹼量做為l〇〇mol%而算出的值。例如,2〇〇m〇i% 是指2倍當量的驗量之意。 以鹼性水溶液而言,可使用氫氧化鈉水溶液,濃度可 設在1至18mol/L,較佳是5至lSmol/L,更佳是10至 18mol/L 。 步驟(A-3)是在粗氫氧化鎂泥漿添加凝集劑後,將氫 氧化鎂過濾,做為濾液而獲得氯化鎂溶液,或添加凝集劑, 使氫氧化鎂凝集沈澱,而做為上澄液而獲得氣化鎂水溶液 的步驟。 以凝集劑而言,可適宜選擇主成分為丙烯醯胺•丙烯 酸鈉共聚物,丙烯醯胺•丙烯醯胺-2-甲基丙磺酸鈉共聚 物,聚丙烯醯胺,烷胺基甲基丙烯酸第4級銨鹽聚合物, 烧胺基丙烯酸第4級銨鹽•丙稀醯胺共聚物,聚肺 (polyamidine)鹽酸鹽等的凝集劑而使用,較佳為丙烯醯胺 •丙烯酸鈉共聚物。凝集劑的添加量是可設為對粗氫氧化 鎂泥漿中的乾燥氫氧化鎂量的1〇〇至1〇〇〇質量ppm。 將如此方式而獲得的氯化鎂水溶液的濃度予以調 整’而可作成濃度0. 1至10. 〇mol/L的氯化鎂水溶液。 步驟(B)是使氯化鎂水溶液與1至18N的驗性水溶 液,以反應率101至210mol%反應,而獲得氫氧化鎂泥漿 的步驟。當反應率未達l〇lm〇l%時’則在氫氧化鎂泥裝的 水熱處理中結晶成長過度,粒徑會變過大。又,當反鹿率 323520 11 201219307 比21〇111〇1%南時,貝lJ由高壓爸容器有特定元素(Fe,Ti,Ni, Cr’Mo及Μη)溶出而容易有不純物的混人。反應率較佳^ 103至200_ ’更佳是1〇5至18〇助1%。 ^ 驗性,溶液較佳是濃度1至18 mol/L的氫氧化納水 溶液。當氫A軸讀㈣濃度未達lmQl/L時,則生產效 率不t X,農度比18m〇1/L高時,則氮氧化錢泥激的魅 度良同’操作性不好。氫氧化鈉水溶㈣濃度較佳是,4 至 16mol/L。 。^驟(C)疋將氫氧化鎂泥漿攪拌中,保持在ιοί至2〇〇 C的孤度而獲得經水熱處理過的氫氧化鎂泥漿的步驟。 。水熱處理疋將氫氧傾泥製,例如可使用高壓爸,在 101C至200C下,在攪拌中保持而實施。當水熱處理溫度 比101 C低時則結晶不成長,生成凝集粒子而分散不好。 又水熱處理溫度比高時職晶過度成長,粒徑有變 過大的傾向。水熱處理溫度較佳是在1〇5至⑽。c。水熱 處理時間u 〇. 5至3小時。當水熱處理時間在此範圍 時’則可將結晶成長及粒徑控制在適切的範圍。水熱處理 時間較佳是1至2小日夺。 為了要得到具有均勻的粒徑之穩定的微粒子,若有需 要則亦可投人純水而將料水熱處理的氫氧傾泥漿的濃 度調節在30g/L至I50g/L即可。 步驟(D)疋將水熱處理過的氫氧化鎮泥漿過慮、水 洗’及乾燥’而獲得氫氧化鎂微粒子的步驟。 步驟(D)是可含有例如: 323520 12 201219307 將水熱處理過的氩氧化鎂泥漿過濾、水洗,而獲得第 一的氣氧化鎂泥餅(cake)的步驟(D-1); 在第一的氫氧化鎂泥餅,加入對於乾燥氫氧化鎂質量 基準置為5至100倍的純水,攪拌後,過濾、水洗而獲得 第一的氣氧化鎂泥餅的步驟(d-2); 代替第一的氫氧化鎂泥餅,而對第二的氫氧化鎂泥 餅’將步驟(D-2)反覆1至20次,獲得高純度氫氧化鎂泥 餅的步驟(D -3);及 將高純度氫氧化鎂泥餅乾燥,而獲得氫氧化鎂微粒子 的步驟(D~4)。 步驟(D-1)是將水熱處理過的氩氧化鎂泥漿過濾、水 洗,藉此而獲得第一的氳氧化鎂泥餅的步驟。水洗是在過 f後對乾燥氫氧化鎂投入其質量基準的5至1〇〇倍,較佳 疋20至5〇倍的純水而實施。 步驟(D-2)是在第一的氫氧化鎂泥餅 ,加入對於乾燥 氫氧化鎂質量基準量的5至1〇〇倍的純水,攪拌後、過濾、 水洗,而獲得第二的氫氧化鎂泥餅的步驟,是碎漿 (epulping)洗淨的步驟。在該步驟中,例如,對第一的氫 氧化鎂泥餅投入以乾燥氫氧化鎂質量基準計為5至100倍 的純水’獲得第二的氫氧化觀漿,將該第二的氫氧化鎮 泥聚,搜拌後,過滤、、水洗,而獲得第二的氣氧化鎖泥餅。 攪拌是,例如,可在10至5(rc,以1〇〇至8〇〇rpm的旋轉 =度實施G. 5至5㈣^拌結束後,誠是可使用遽紙 而實施,水洗是可投人對於乾職氧化鎂質量基準之5 323520 13 201219307 至100倍的純水而實施。 步驟(D-3)是代替第一的氫氧化鎂泥餅,而對第二的 氫氧化鎂泥餅,將步驟(D-2)的碎漿清洗做為丨次,而將此 反覆1至20次,而獲得高純度氫氧化鎮泥餅的步驟。 步驟(EM)是將高純度氫氧化鎂泥餅乾燥,而獲得氫 氧化鎂微粒子的步驟。 如此,可獲得本發明的氫氧化鎂粒子。 ^本發明的氧化鎂微粒子是,在步驟(E)中將本發明的 氣氧化鎂徵粒子,在大氣環境中,以5〇〇至^擔。C锻燒而 獲得。 、驟中,例如,财風軋化鎂微粒子在大氣環境 B 速度1至2〇ΐ/分(較佳是3至10°c/分,更佳 昇溫到5GQ°C至112G °C,較佳是到6()(rc至 。(:煅炉〇 Γ&quot;後在5〇〇t:至12〇〇°C,較佳是在600至800 子。:5小時’藉此而可獲得本發明的氧化鎮微粒 燥,輕輕地解= =3)所獲得的高純度氫氧化鎂泥餅乾 ^ 再做上述的锻燒處理也可以。 微粒子:氧純度而粒徑小’且均勻的氫氧化鎂 本發明的氫氧化 各樣的領域中的有 +及乳化歸粒子是,在各式 而言,可列舉.傲、㊅。㈣如就氫氧化鎂微粒子的用途 劑等,做為_填1添加劑,可用在噴墨輕的印墨定影 的原料、難燃#!、、^,可用在二次電池用的分隔耐熱層 、’片的改質劑(耐熱性、彎曲性提升) 323520 14 201219307 等’做為高功能性材料,可用在燃料電池用陶瓷的原料、 螢光體原料、超傳導薄膜底材用的原料,穿隨磁阻(tmr, tunnel magnet〇resistance)元件用的隧道屏障(tunnel barrier)原料等,做為觸媒,可使用在排水處理,及排氣 處理等。又,就氧化鎂微粒子的用途而古,讦舉高功能性 材料、及觸媒等。又,氧化鎂微粒子在活用其高活性之情 形下,做為耐火物,可用在陶瓷燒結助劑等,做為添加劑, 可用在噴墨用紙的印墨定影劑等,做為樹脂填充料,可用 在二次電池用的分隔耐熱層的原料、膜薄片的改質劑(耐熱 性,彎曲性提升)等,做為高功能性村料,可用在LED密封 樹月曰的折射率調整劑、光擴散劑、燃料電池用陶瓷的原料、 螢光體原料、超傳導薄膜底材用的原料、穿隧磁陴元件(TMR 用的隧道屏障原料等,做為電磁鋼板材料,可用 電礤鋼板用絕緣材的原料、壓粉鐵心用絶緣被膜材等, 做為觸媒’可用在排水處理,及排氣處理等用。 [實施例] &lt;以下,就本發明,藉實施例更詳細説明。但本發明是 不文這些實施例所限定。 所獲得的氫氧化鎂微粒子及氧化鎮微粒子的粒徑、比 表面積、純度及活性度是以下述的方法測定。 (1)雷射繞射散射式粒度分佈測定 使用雷射繞射散射式粒度分佈測定裝置(商品名: MT33〇〇,日機裝公司製),測定體積基準的累積10%粒徑 10),體積基準的累積50%粒徑(D 5〇及體積基箏的累積90% 15 323520 201219307 粒徑(D9。)。體積基準的平均粒徑(Dv)及個數基準的平均粒 徑(Dn)也同樣以上述裳置測定。 (2) BET比表面積測定法 使用比表面積測定裝置(商品名:Macsorbl210, 〈Mounteck公司製),以氣體吸附法的bet法測定比表面積。 (3) 氫氧化鎂及氧化鎂不純物元素的質量測定法 測疋對象的不純物元素(Ag,Al,B,Ba,Bi,Cd,Co,〇♦, WD,. It is preferably 5 or less. Preferably, the range of the magnesium oxide fine particles of the present invention is 'the elution of the impurities is more than: -&quot; In functional materials. The oxygen day of the present invention: tantalum can be suitably used in a high mass% or more. The purity of the particles is preferably 99. £. The magnesium oxide bismuth of the present invention is preferably Fe'Ti, Ni, Cr, M〇323520 8 201219307 'f, and the content of the gum is 500 mass% or less. . The total amount of these people is right. * When the amount is less than 500 mils in the summer, the metal impurity is dissolved in the blister. It is suitable for use in additives, resin fillers, and highly functional materials. The content is preferably _ or less. Force 4 material section. In general, the magnesium oxide fine particles of the present invention preferably have a chlorine content of 5 liters or less. When the content is 5 〇〇 mass Å or less, the chlorine is extremely suppressed, and it is suitable for use as an additive material. Preferably, the content is less than or equal to the gamma quality. Preferably, the oxidized granules of the hair enthalpy are the volume-based average particle diameter ^" the ratio of the average particle diameter (10) of the solid number reference Dv/Dn is from i to 10. When the =L is at 1 to 1 G, the ink is applied to the fixing agent (4) of the ink. When it is added to the tree, the heat resistance, the flame retardancy, the bending property, the light diffusion effect, and the catalytic effect are good, and the acidity and the moisture resistance are good, and it is more preferably 1 to 8. The magnesium oxide fine particles of the present invention preferably have a citric acid activity (final rate of 40/.20.0 C) of 20 to 2 sec. The citric acid activity is excellent in reactivity to 2_(four)' occupational iron, and it can be suitably used as an insulating material for electromagnetic steel sheets and an insulating coating material for dust cores as an electromagnetic steel sheet. The citric acid activity is preferably from 2 to 5 sec. The magnesium hydroxide fine particles of the present invention are obtained by the following steps: preparing the magnesium carbonate aqueous solution (A); and gasifying the lock 7JC/liquid mixture with the i to 18N aqueous solution at a reaction rate Step 1 (8) to obtain a magnesium hydroxide slurry to 210 ribs; 323520 9 201219307 The hydrogenation is maintained at a concentration of lGi to the test. The severity of c, and the step of obtaining the hydrothermally treated gas-gas-locked mud (6); and the gas-oxidized town of Jiang, which is finely pulverized, washed and dried, obtained in the step of oxidizing the test particles (D) . Preferably m is to prepare the gas phase water soluble (four) (four). The aqueous solution of chlorine is =^0.410mol/L, _0.im, the production efficiency is not good. In addition, the viscosity is higher than the viscosity of the l0moi pulp, and the operation is paid from the 才 贝 虱 虱 虱 虱 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 Preferably, the step (A) of the emulsified aqueous solution is such that the step (A) may include the following steps: a step of preparing a crude aqueous magnesium chloride solution (Ay). The ratio is obtained by reacting an alkaline aqueous solution of 1 to UN with a reaction lb. Crude hydrogenation m step (A_2); after adding the aggregating agent to the coarse magnesium hydroxide slurry, the hydrogen and oxygen are used as the mash to obtain the vaporization % / 隼 precipitation, and the two m aggregating agent obtains the gas oxidized condensate to obtain gasification Step of the aqueous solution of the town (A-3). / A]) is a step-by-step magnesium preparation for coarse gasification of magnesium solution (for gasification of magnesium, gas can be used, for example, in chlorine town, bite, seawater μ Γ 6 water and water or anhydrous magnesium chloride or sea water, alkaline water Or bitter juice) added to the fat and refined to the conductivity of the water) and: = crude magnesium chloride solution can be used as two ^ 1 〇:, preferably (1) er, more preferably 2 to yang i / L steps (A - slave pair Pure pour water test, smear / 323520 10 201219307 30mol% way, react with hydrazine to 18N alkaline aqueous solution to obtain the crude magnesium hydroxide slurry. The reaction rate refers to the alkali required for all magnesium chloride to become magnesium hydroxide. The amount is calculated as l〇〇mol%. For example, 2〇〇m〇i% means the equivalent of 2 times the equivalent amount. For the alkaline aqueous solution, an aqueous sodium hydroxide solution can be used, and the concentration can be set. It is 1 to 18 mol/L, preferably 5 to 1 Smol/L, more preferably 10 to 18 mol/L. Step (A-3) is to filter magnesium hydroxide after adding a flocculating agent to the coarse magnesium hydroxide slurry. Obtaining a magnesium chloride solution for the filtrate, or adding a flocculating agent to cause the magnesium hydroxide to aggregate and precipitate, and obtaining the magnesium carbonate aqueous solution as the supernatant liquid. In the case of aggregating agent, the main component is acrylamide/sodium acrylate copolymer, acrylamide, acrylamide-methyl-2-methylpropane sulfonate copolymer, polypropylene decylamine, alkylamine group. A fourth-stage ammonium salt polymer of methacrylic acid, an acrylacrylic acid grade 4 ammonium salt, an acrylamide copolymer, a polyammine hydrochloride or the like, preferably acrylamide. Sodium acrylate copolymer. The amount of the aggregating agent added may be set to 1 〇〇 to 1 〇〇〇 mass ppm of the amount of dry magnesium hydroxide in the coarse magnesium hydroxide slurry. The concentration of the aqueous magnesium chloride solution obtained in this manner is The adjustment can be made to a concentration of 0.1 to 10. 〇mol/L of an aqueous solution of magnesium chloride. Step (B) is to obtain an aqueous solution of magnesium chloride with an aqueous solution of 1 to 18 N at a reaction rate of 101 to 210 mol% to obtain a hydroxide. The step of magnesium mud. When the reaction rate is less than l〇lm〇l%, the crystal growth is excessive in the hydrothermal treatment of magnesium hydroxide mud, and the particle size will become too large. Also, when the anti-deer rate is 323520 11 201219307 than 21 〇111〇1% south, the shell lJ is specified by the high pressure dad container The elements (Fe, Ti, Ni, Cr'Mo and Μη) are eluted and easily mixed with impurities. The reaction rate is better ^ 103 to 200 _ 'more preferably 1 〇 5 to 18 〇 1%. ^ Qualitative, solution Preferably, the aqueous solution of sodium hydroxide has a concentration of 1 to 18 mol/L. When the concentration of hydrogen A axis reading (four) is less than lmQl/L, the production efficiency is not t X, and when the agricultural degree is higher than 18 m〇1/L, the nitrogen is nitrogen. The oxidized money mud is similar in its charm. The operability is not good. The concentration of sodium hydroxide water (4) is preferably 4 to 16 mol/L. (C) 搅拌 stir the magnesium hydroxide slurry and keep it at ιοί A step of obtaining a hydrothermally treated magnesium hydroxide slurry by a degree of separation of 2 〇〇C. . The hydrothermal treatment is carried out by pouring hydrogen and oxygen into a mud, for example, using a high pressure dad, and maintaining it at 101 C to 200 C while stirring. When the hydrothermal treatment temperature is lower than 101 C, the crystal does not grow, and aggregated particles are formed and the dispersion is not good. Further, when the hydrothermal treatment temperature is higher than the case, the occupational crystals are excessively grown, and the particle diameter tends to become excessively large. The hydrothermal treatment temperature is preferably from 1 〇 5 to (10). c. Hydrothermal treatment time u 〇. 5 to 3 hours. When the hydrothermal treatment time is in this range, the crystal growth and particle size can be controlled within a suitable range. The hydrothermal treatment time is preferably from 1 to 2 days. In order to obtain stable fine particles having a uniform particle size, if necessary, pure water may be used to adjust the concentration of the hydrothermal slurry of the hydrothermal treatment to 30 g/L to I50 g/L. Step (D) A step of obtaining the magnesium hydroxide fine particles by subjecting the hydrothermally treated oxidized slurry to excessive care, washing, and drying. The step (D) is a step (D-1) which may contain, for example,: 323520 12 201219307, the hydrothermally treated magnesium arsenate slurry is filtered and washed to obtain the first magnesia cake; a magnesium hydroxide mud cake, which is added to the dry magnesium hydroxide mass standard by 5 to 100 times, is stirred, filtered, and washed with water to obtain the first magnesium oxyapatite cake step (d-2); a magnesium hydroxide mudcake, and the second magnesium hydroxide mudcake' step (D-2) is repeated 1 to 20 times to obtain a high-purity magnesium hydroxide cake (D-3); The high-purity magnesium hydroxide cake is dried to obtain magnesium hydroxide microparticles (D~4). The step (D-1) is a step of filtering and washing the hydrothermally treated magnesium arsenate slurry to obtain the first magnesium sulphate cake. The water washing is carried out by adding dry magnesium hydroxide to the pure water of 5 to 1 times, preferably 20 to 5 times, of the mass basis after the passage of f. Step (D-2) is the first magnesium hydroxide mud cake, adding 5 to 1 times of pure water for the dry magnesium hydroxide mass basis amount, stirring, filtering, washing with water to obtain a second hydrogen The step of the magnesium oxide cake is the step of epulping washing. In this step, for example, the first magnesium hydroxide cake is charged with 5 to 100 times pure water on a dry magnesium hydroxide basis to obtain a second hydrogenation slurry, and the second hydrogen peroxide is obtained. The town gathers the mud, mixes it, filters it, and washes it to obtain the second gas-oxidized lock mud cake. The stirring is, for example, carried out at 10 to 5 (rc, at a rotation of 1 Torr to 8 rpm, G. 5 to 5 (4). After the end of the mixing, it is possible to use crepe paper, and the washing is possible. The person performs the 5,323,520, 2012, 2012,307 to 100 times of pure water on the basis of the quality of the magnesium oxide. The step (D-3) is to replace the first magnesium hydroxide cake, and the second magnesium hydroxide cake, The pulp of the step (D-2) is washed as a pass, and this step is repeated 1 to 20 times to obtain a step of obtaining a high-purity hydroxide cake. The step (EM) is a high-purity magnesium hydroxide cake. The step of obtaining magnesium hydroxide fine particles by drying. Thus, the magnesium hydroxide particles of the present invention can be obtained. The magnesium oxide fine particles of the present invention are the particles of the magnesium oxide particles of the present invention in the step (E). In the environment, it is obtained by calcination of 5 〇〇 to ^. C. In the middle of the process, for example, the magnesium powder in the atmosphere is at a speed of 1 to 2 〇ΐ / min (preferably 3 to 10 ° C). /min, more preferably to 5GQ °C to 112G °C, preferably to 6 () (rc to. (: calciner 〇Γ &quot; after 5〇〇t: to 12 ° ° C, preferably It is in the range of 600 to 800.: 5 hours, thereby obtaining the high-purity magnesium hydroxide mud biscuit obtained by the oxidized town particle drying of the present invention, and gently solving ==3) Microparticles: Oxygen purity and small particle size, and uniform magnesium hydroxide. In the various fields of the hydrogen peroxide of the present invention, there are + and emulsified particles, and in various formulas, arrogant and hexaphoric may be mentioned. (4) For the use of magnesium hydroxide microparticles, etc., as a _fill 1 additive, it can be used as a raw material for inkjet light ink fixing, flame retardant #!, ^, which can be used for the separation heat-resistant layer for secondary batteries, 'The modifier of the film (heat resistance, flexibility) 323520 14 201219307, etc. As a highly functional material, it can be used as a raw material for ceramics for fuel cells, a raw material for phosphors, and a material for superconducting film substrates. The tunnel barrier material used for the magneto-resistance (tmr, tunnel magnet〇resistance) element can be used as a catalyst for drainage treatment, exhaust treatment, etc. Further, the use of magnesium oxide microparticles is ancient. , 讦 高 high functional materials, and catalysts. The magnesium oxide fine particles can be used as a refractory in the case of utilizing their high activity, and can be used as a ceramic sintering aid or the like as an additive, and can be used as an ink filling agent for inkjet paper, and can be used as a resin filler. A raw material for separating a heat-resistant layer for a secondary battery, a modifier (heat resistance, and improved flexibility) of a film sheet, etc., as a highly functional village material, can be used as a refractive index adjuster for LED sealing tree, and light diffusion. Materials for ceramics, fuel cell materials, phosphor materials, materials for superconducting film substrates, tunneling magnetic yoke elements (tunneling materials for tunnel barriers, etc.), as electromagnetic steel sheet materials, can be used as insulation materials for electric steel sheets. The raw material, the insulating coating material for the powdered iron core, etc., can be used as a catalyst for drainage treatment and exhaust treatment. [Examples] &lt;Followingly, the present invention will be described in more detail by way of examples. However, the invention is not limited to these embodiments. The particle diameter, specific surface area, purity and activity of the obtained magnesium hydroxide fine particles and oxidized fine particles were measured by the following methods. (1) Measurement of the laser diffraction scattering type particle size distribution using a laser diffraction scattering type particle size distribution measuring apparatus (trade name: MT33〇〇, manufactured by Nikkiso Co., Ltd.), and measuring the cumulative 10% particle diameter of the volume basis 10), Accumulated 50% particle size of volume basis (D 5〇 and cumulative 90% of volume kite 15 323520 201219307 Particle size (D9.). Volume-based average particle size (Dv) and number-based average particle size (Dn) In the same manner, the BET specific surface area measurement method was used to measure the specific surface area by the bet method of the gas adsorption method using a specific surface area measuring device (trade name: Macsorbl 210, manufactured by Mounteck Co., Ltd.). (3) Magnesium hydroxide And mass spectrometry of magnesium oxide impurity elements to measure the impurity elements of the object (Ag, Al, B, Ba, Bi, Cd, Co,

Cr ’ Cu ’ Fe ’ Ga ’ In,κ,Li,Μη,Mo,Na,Ni,P,Pb,S,Cr ′ Cu ′ Fe ′ Ga ′ In, κ, Li, Μη, Mo, Na, Ni, P, Pb, S,

Si ’Sr* ’ΤΙ ’V ’Zn ’Ti及Zr)是使用ICP發光分析裝置(商 品名.SPS-5100 ’ Seiko Instruments 公司製),將試料溶 解於酸後,測定質量。 C1量是使用分光光度計(商品名:uv-2550,島津製作 所公司製),將試料溶解於酸後,測定質量。 (4) 純度測定法 氮氧化鎮及氧化鎂微粒子的純度是,由1〇〇質量%減 去以上述的「氫氧化鎂及氧化鎂不純物量測定法」所測定 的不純物兀素的質量的合計做為測定値而算出。 (5) 檸檬酸活性度(4 0 %)測定方法 以0.4N棒樣酸水溶液i〇〇ml相當於氧化鎂的中和量 之40%的方式秤取氧化鎂微粒子2. 〇2 g,在汕^下攪拌該 -檸榡酸水溶液中,加入.該氧化鎂微粒子,測定全部檸檬酸 與氧化鎖反應的時間,即測定超過ρΗ7所需的時間。 (實施例1) 16 323520 201219307 做為粗氣化鎂水溶液,而準備純度⑽質量%以上,濃 度.5mol/L的水各液。在該氯化鎮水溶液添加純水(透過 =交換樹脂而精製成電導率在以下的水)而調 濃度,成為漠度2.〇 mol/L的粗氣化鎂水溶液。 其^對濃度2. 〇 mQl/L的粗氯化鎂水溶液,添加濃 =.^nM/L的氫氧化鈉水溶液俾使反應率為施㈣而 反應’再者,做為凝集劑將丙_胺•丙烯酸納共聚物, 對生成氫氧化祕加5〇〇 „ ppm,錢氧化鎂凝集沈殿, 取出上澄液,藉此而獲得氯化鎂水溶液。 調整所獲得的氣化鎂水溶液的濃度,作成為濃度2 〇 m〇l/L的氣化鎮水溶液。將該氣化鎮水溶液,與濃度 17.84mQl/L的氫氧化鈉水溶液反應,俾使反應率成為 200Π1Ο1%,調製濃度1〇〇g/L的氫氧化鎂泥漿。 將所獲得的氫氧化鎂泥衆使用高壓爸在保持15〇ϊίγ 攪拌1小時,實施水熱處理(加熱攪拌處理)。將水熱處理 過的第一的氫氧化鎂泥漿過濾,水洗而藉此獲得第—的氫 氧化鎂泥餅。水洗是在過濾之後,投入相對於乾燥氫氧化 鎂以質量基準計為40倍的純水而實施。 其次,對所獲得的第一的氫氧化鎂泥餅實施碎漿清 洗。在碎漿清洗中,首先,投入相對於第一的氫氧化鎂泥 餅的乾燥氫氧化鎂以質量基準計為40倍的純水,而獲得第 二的氫氧化鎂泥漿。其次,將該第二的氫氧化鎂泥漿,在 常溫下使用攪拌裝置,以500rpm的旋轉速度攪拌丨小時, 再將攪拌結束後的第二的氫氧化鎂泥漿,使用濾紙過渡, 323520 17 201219307 將相對於乾燥氫氧化鎂以質量基準計為20倍的純水,在過 濾後予以投入,水洗,而獲得第二的氫氧化鎂泥餅。將上 述的碎漿清洗作為1次,再將碎漿清洗反覆10次,藉此獲 得高純度氫氧化鎂泥餅。將高純度氫氧化鎂泥餅乾燥,獲 得高純度氫氧化鎂微粒子。 (實施例2) 氯化鎮水溶液與氫氧化納水溶液的反應中的反應率 改為120mol%,水熱處理時間改為0. 5小時以外,與實施 例1同樣實施。 (實施例3) 氯化錤水溶液與氳氧化鈉水溶液的反應中的反應率 改為105m〇r/。,水熱處理時間改為3小時以外,與實施例1 同樣實施。 (實施例4) 水熱處理溫度改為130°C,氫氧化鈉水溶液以純水稀 釋為8. 92mol/L以外,與實施例1同樣實施。 (實施例5) 水熱處理溫度改為105°C,將要做水熱處理的氫氧化 鎂泥漿改為130g/L以外,與實施例1同樣實施。 18 323520 201219307 (實施例6) 將氫氧化納水溶液以純水稀釋為4. 96mol/L以外,與 實施例1同樣實施。 (實施例7) 將要做水熱處理的氫氧化鎂泥漿以純水稀釋,作成為 50g/L以外,與實施例1同樣實施。 (比較例1) 氯化鎮水溶液與氫氧化鈉水溶液的反應中的反應率 改為250 mol%以外,與實施例1同樣實施。 (比較例2) 氯化鎂水溶液與氫氧化鈉水溶液的反應中的反應率 改為90mol%以外,與實施例1同樣實施。 (比較例3) 氯化鎂水溶液與氫氧化納水溶液的反應中的反應率 改為105mol%,沒有實施水熱處理以外,與實施例1同樣 實施。 (比較例4) 將氫氧化鈉水溶液以純水作成為21mol/L以外,與實 施例1同樣實施。 19 323520 201219307 (實施例8) 將在實施例1作成的氫氧化鎂微粒子,在大氣環境 中,以1000°C煅燒1小時,藉此而獲得氧化鎂微粒子。 (實施例9) 將在實施例3作成的氫氧化鎂微粒子,在大氣環境 中,以600°C煅燒1小時,藉此而獲得氧化鎂微粒子。 (比較例5) 將實施例1作成的氫氧化鎂微粒子,在大氣環境中, 以140(TC煅燒1小時,藉此而獲得氧化鎂微粒子。 藉由以上的實施例及比較例所獲得的關於氫氧化鎂 微粒子的測定結果示於第1表,將關於氧化鎂微粒子的測 定結束,示於第2表。 實施例的氫氧化鎂微粒子及氧化鎂微粒子,均是純度 在99.9質量°/◦以上,粒徑小,且均勻。 20 323520 201219307 &lt;1—I躲 (質量%) 1 &gt;99.9 1 &gt;99.9 | &gt;99.9 &gt;99.9 &gt;99.9 &gt;99.9 &gt;99.9 &gt;99.9 &gt;99.9 丨 &gt;99.9 &gt;99.9 不純物量 ^ ^ 5 〇 I-H cn 寸 CO CN Ό CS i-H cs OO 寸 Ό »-Η v〇 Cl (ppm) Pi 寸 00 CO OO CM 寸 m 荨 卜 OO 荨 卜 S ON 令 妨埃: 4 ! D90/D10 P 寸· 〇\ cn VO 寸’ 0 寸· OO — Ο) On 1不能 測定 CO US 粒徑 Dv/Dn 00 寸 (N CN cn CN «-Η cs P; &lt;N OO m ro CN j 11.99 1 不能 測定 CN 寸 oi j D90 (μιη). 1 〇 〇\ 00 〇 〇\ 00 0 1 0,574 1 l 0.467 1 1 0.759 1 i〇.855 I 12.105 [24.29 不能 測定 0.911 D50 (μπι) | 0.473 I | 0.375 I 1 0.383 1 1 0.287 1 I 0.183 I 1 0.438 1 1 0.483 1 0.846 I σ\ cs CN 不能 測定 0.569 Dio (μπι) | 0.178 | | 0.224 | ! 0.183 1 ! 0.147 1 0.102 1 0.192 1 OO 0 0.183 0.248」 1不能 測定 0.173 BET 比; 表面積 (m2/g) | 10.87 1 寸 〇\ 1 17.15 1 18.63 22.27 11.87 49.66 16.81 16.71 1 97.16 17.20 作成條件 氫氧化 鎂泥漿 濃度 Cff/L) 〇 〇 〇 0 〇 〇 0 CO 〇 0 t-H Ο 〇 1-H 0 r*^ 氫氧化 鈉濃度 (mol/L) 17.84 | 17.84 I 1 17.84 I cs 〇\ 06 17.84 Ό ON I 17.84 I 17.84 1 17.84 I 丨 17.8/4 Se ^ 隹έ rH 〇 m T-H rH t-H i-H τ-Η 1 溫度 (°C) 〇 ι〇 〇 m 0 0 cn 0 〇 〇 »£) 〇 Ο 1 〇 1-H 反應率 (mol%) 〇 (N 0 CN I-H 0 〇 CN 0 0 &lt;N 0 CN 〇 &lt;N CN S r-H 〇 CN |實施例11 1實施例2 I 1實施例31 1實施例4 I 1實施例5 I 施例61 1實施例7 I 匕較例11 [^匕較例2 1 比較例3 比較例4 21 323520 201219307 1^1 Ό 2252 純度 (質 量%) &gt;99.9 &gt;99.9 &gt;99.9 不純物量 Fe,Ti,N i,Cr,Mo 及Μη 的合計 含有量 (PPm) Μ Ό σ\ Cl (ppm) CN v〇 00 r-H 粒度 分佈 00 CO S 粒徑 Q ο v〇 CO 00 ra CO σ\ 00 D90 (μιη) 0.855 0.486 1.428 〇5〇 (μιη) 0.483 0.193 i 1 0.862 1 Dio (μιη) 〇〇 ί-Η d 0.112 0.235 BET比 表面積 (m2/g) 49.66 41.63 g 作成條件 烺燒 溫度 (°C) 1000 〇 v〇 1400 氫氧化 鎂泥漿 濃度 (g/L) 0 r-H 〇 r~H 〇 r-H “铋〇 17.84 17.84 17.84 Se ^ 世3 r*H 1—H 溫度 (°C) 〇 r*H 反應率 (mol%) 〇 (N s r-H 〇 cN 實施 例8 實施 例9 比較 例5 22 323520 201219307 (產業上的利用可能性) 本發明的氫氧化錢粒子及氧切微粒子是高純 小’且均勻’分散性好(板度分佈窄小(細)), 在=樣的領域中的有用性高。χ,依本發 :二 上述的微粒子,便利性高。例如以氫氧 =子的用途而言’可舉添力,、樹脂填充料、= 月匕性材料,及觸媒等。 η力 黑定°可使用於做為添加劑’有喷墨用紙的印 墨疋影劑等;做為樹脂填夯 巧印 層的原料、難燃劑、膜薄片的改質^次電池用的分隔耐熱 等;做為高功能性㈣,有㈣=耐熱性’料性提升) 處理等的用途。 做為觸媒,有排水處理、及排氣 加劑又樹= 用途而言,可舉:耐火物、添 等。 、〆回功此性材料、電磁鋼板材料及觸媒 等,做^力。叫可使用於:做為耐火物,有陶兗燒結助劑 填充劑,有二雷,墨用紙的印敎影劑等;做為樹脂 質劑(耐熱隔耐熱層的原料、膜薄片的改 密封樹脂的折射率做為高功能性材料,有LED 原料、螢光體光擴散劑、燃料電池用陶究的 元件⑽元二、超傳導薄膜底材用的原料、穿隨磁阻 件)用的隧道屏障原料等;做為電磁鋼板材 323520 23 201219307 料,有電磁鋼板用絶緣材的原料、壓粉鐵心用絶緣被膜材 等,做為觸媒,有排水處理、及排氣處理等的用途。 【圖式簡單說明】 無。 【主要元件符號說明】 無。 24 323520Si ’Sr* ’ΤΙ ’V ’Zn ’Ti and Zr) were measured by dissolving the sample in an acid using an ICP emission spectrometer (trade name: SPS-5100' manufactured by Seiko Instruments Co., Ltd.). The amount of C1 was measured by dissolving the sample in an acid using a spectrophotometer (trade name: uv-2550, manufactured by Shimadzu Corporation). (4) Purity measurement method The purity of the nitrogen oxide town and the magnesium oxide fine particles is the total mass of the impurity substance measured by the above-mentioned "measurement method of magnesium hydroxide and magnesium oxide impurity amount" by 1% by mass. It is calculated as a measurement. (5) The citric acid activity (40%) is determined by weighing 0.4% of the magnesium oxide solution in an amount of 40% of the magnesium oxide solution. The magnesium nitrate microparticles were added to the aqueous solution of the citric acid, and the time during which all of the citric acid reacted with the oxidative lock was measured, that is, the time required to exceed ρΗ7 was measured. (Example 1) 16 323520 201219307 As a crude gasification magnesium solution, water each having a purity (10) mass% or more and a concentration of .5 mol/L was prepared. In the chlorinated aqueous solution, pure water (purified by the exchange resin and refined to a water having the following conductivity) was added to adjust the concentration to obtain a coarse magnesium carbonate aqueous solution having a degree of infiltration of 2. 〇 mol/L. The solution of the crude magnesium chloride solution having a concentration of 〇mQl/L is added with a concentrated aqueous solution of sodium hydroxide in a concentration of .NM/L, and the reaction rate is (4) and the reaction is carried out. Further, as a coagulant, the propylamine is used. The sodium acrylate copolymer adds 5 〇〇 ppm to the hydrogen hydroxide, and the magnesia agglomerates the sulphate, and removes the supernatant liquid, thereby obtaining an aqueous solution of magnesium chloride. Adjusting the concentration of the obtained magnesium hydride solution to a concentration of 2气m〇l/L gasification town aqueous solution. The gasification town aqueous solution is reacted with a sodium hydroxide aqueous solution having a concentration of 17.84mQl/L, and the reaction rate is 200Π1Ο1%, and the hydrogen concentration is adjusted to 1〇〇g/L. Magnesium oxide slurry. The obtained magnesium hydroxide mud was stirred with a high pressure dad for 15 hours while maintaining a temperature of 1 Torr, and subjected to hydrothermal treatment (heating and stirring treatment). The hydrothermally treated first magnesium hydroxide slurry was filtered and washed with water. Thereby, the first magnesium hydroxide cake was obtained. The water washing was carried out by adding pure water which was 40 times by mass based on the dry magnesium hydroxide after filtration. Next, the first magnesium hydroxide obtained was obtained. Mud cake for pulp washing In the pulp washing, first, the dry magnesium hydroxide relative to the first magnesium hydroxide cake is put into 40 times of pure water on a mass basis to obtain a second magnesium hydroxide slurry. Next, the first The magnesium hydroxide slurry of the second is stirred at a normal temperature using a stirring device at a rotational speed of 500 rpm for a few hours, and then the second magnesium hydroxide slurry after the stirring is completed, using a filter paper transition, 323520 17 201219307 will be relative to the dry oxidized hydroxide. Magnesium is 20 times pure water on a mass basis, and after filtration, it is put into water and washed to obtain a second magnesium hydroxide cake. The above-mentioned pulp is washed once, and then the pulp is washed 10 times. Thereby, a high-purity magnesium hydroxide mud cake is obtained. The high-purity magnesium hydroxide mud cake is dried to obtain high-purity magnesium hydroxide fine particles. (Example 2) The reaction rate in the reaction of the chlorinated aqueous solution and the aqueous sodium hydroxide solution is changed. In the same manner as in Example 1 except that the hydrothermal treatment time was changed to 0.5 mol%, the reaction rate in the reaction of the aqueous solution of ruthenium chloride and the aqueous sodium ruthenium oxide solution was changed to 105 m〇r/. The same procedure as in Example 1 was carried out except that the heat treatment time was changed to 3 hours. (Example 4) The hydrothermal treatment temperature was changed to 130 ° C, and the aqueous sodium hydroxide solution was diluted with pure water to 8.92 mol/L, and the same as in Example 1. (Example 5) The hydrothermal treatment temperature was changed to 105 ° C, and the magnesium hydroxide slurry to be hydrothermally treated was changed to 130 g/L, and the same procedure as in Example 1 was carried out. 18 323520 201219307 (Example 6) Hydrogen peroxide The aqueous sodium hydroxide solution was diluted with pure water to 4.96 mol/L, and was carried out in the same manner as in Example 1. (Example 7) The magnesium hydroxide slurry to be hydrothermally treated was diluted with pure water to obtain 50 g/L, and Examples 1 is also implemented. (Comparative Example 1) The same procedure as in Example 1 was carried out except that the reaction rate in the reaction between the chlorinated aqueous solution and the aqueous sodium hydroxide solution was changed to 250 mol%. (Comparative Example 2) The reaction was carried out in the same manner as in Example 1 except that the reaction rate in the reaction between the aqueous magnesium chloride solution and the aqueous sodium hydroxide solution was changed to 90 mol%. (Comparative Example 3) The reaction rate in the reaction between the aqueous magnesium chloride solution and the aqueous sodium hydroxide solution was changed to 105 mol%, and the same as in Example 1 except that the hydrothermal treatment was not carried out. (Comparative Example 4) The same procedure as in Example 1 was carried out except that the aqueous sodium hydroxide solution was changed to 21 mol/L in pure water. 19 323520 201219307 (Example 8) The magnesium hydroxide fine particles prepared in Example 1 were calcined at 1000 ° C for 1 hour in an atmosphere to obtain magnesium oxide fine particles. (Example 9) Magnesium oxide fine particles prepared in Example 3 were calcined at 600 ° C for 1 hour in an atmosphere to obtain magnesium oxide fine particles. (Comparative Example 5) The magnesium hydroxide fine particles prepared in Example 1 were obtained by calcining at 140 (TC) for 1 hour in an atmosphere to obtain magnesium oxide fine particles. The obtained by the above examples and comparative examples were as follows. The measurement results of the magnesium hydroxide fine particles are shown in the first table, and the measurement of the magnesium oxide fine particles is completed, and is shown in the second table. The magnesium hydroxide fine particles and the magnesium oxide fine particles of the examples all have a purity of 99.9 mass%/◦ or more. The particle size is small and uniform. 20 323520 201219307 &lt;1—I hiding (% by mass) 1 &gt;99.9 1 &gt;99.9 | &gt;99.9 &gt;99.9 &gt;99.9 &gt;99.9 &gt;99.9 &gt;99.9 &gt; 99.9 丨&gt;99.9 &gt;99.9 Impurity quantity ^ ^ 5 〇IH cn inch CO CN Ό CS iH cs OO inch Ό »-Η v〇Cl (ppm) Pi inch 00 CO OO CM inch m 荨 OO 荨 S S ON令妨: 4 ! D90/D10 P inch · 〇 \ cn VO inch ' 0 inch · OO — Ο) On 1 can not measure CO US particle size Dv / Dn 00 inch (N CN cn CN «-Η cs P; &lt ;N OO m ro CN j 11.99 1 Cannot measure CN inch oi j D90 (μιη). 1 〇〇\ 00 〇〇\ 00 0 1 0,574 1 l 0.467 1 1 0.759 1 i .855 I 12.105 [24.29 Cannot measure 0.911 D50 (μπι) | 0.473 I | 0.375 I 1 0.383 1 1 0.287 1 I 0.183 I 1 0.438 1 1 0.483 1 0.846 I σ\ cs CN Cannot measure 0.569 Dio (μπι) | 0.178 | 0.224 | ! 0.183 1 ! 0.147 1 0.102 1 0.192 1 OO 0 0.183 0.248" 1 Cannot measure 0.173 BET ratio; Surface area (m2/g) | 10.87 1 inch 〇 \ 1 17.15 1 18.63 22.27 11.87 49.66 16.81 16.71 1 97.16 17.20 Condition Magnesium Hydroxide Mud Concentration Cff/L) 〇〇〇0 〇〇0 CO 〇0 tH Ο 〇1-H 0 r*^ Sodium hydroxide concentration (mol/L) 17.84 | 17.84 I 1 17.84 I cs 〇\ 06 17.84 Ό ON I 17.84 I 17.84 1 17.84 I 丨17.8/4 Se ^ 隹έ rH 〇m TH rH tH iH τ-Η 1 Temperature (°C) 〇ι〇〇m 0 0 cn 0 〇〇»£) 〇Ο 1 〇1-H Reaction rate (mol%) 〇(N 0 CN IH 0 〇CN 0 0 &lt;N 0 CN 〇&lt;N CN S rH 〇CN | Example 11 1 Example 2 I 1 Example 31 1 Example 4 I 1 Example 5 I Example 61 1 Example 7 I 匕 Comparative Example 11 [^ 匕 Comparative Example 2 1 Comparative Example 3 Comparative Example 4 21 323520 201219307 1^1 Ό 2252 Purity (% by mass) &gt;99.9 &gt;99.9 &gt;99.9 Impurity content Total content of Fe, Ti, Ni, Cr, Mo and Μη (PPm) Μ σ σ\ Cl (ppm) CN v〇00 rH Particle size distribution 00 CO S Particle size Q ο v〇CO 00 ra CO σ\ 00 D90 (μιη) 0.855 0.486 1.428 〇5〇(μιη) 0.483 0.193 i 1 0.862 1 Dio (μιη) 〇〇ί-Η d 0.112 0.235 BET specific surface area (m2/g) 49.66 41.63 g Condition of calcination (°C) 1000 〇v〇1400 Magnesium hydroxide slurry concentration (g/L) 0 rH 〇r~H 〇rH “铋〇 17.84 17.84 17.84 Se ^ World 3 r*H 1— H temperature (°C) 〇r*H Reaction rate (mol%) 〇(N s rH 〇cN Example 8 Example 9 Comparative Example 5 22 323520 201219307 (industrial use possibility) The hydroxide particle of the present invention The oxygen-cut microparticles are high-purity and 'uniform' and have good dispersibility (small platelet distribution (fine)), and are highly useful in the field of the sample. χ, according to the hair: two of the above particles, the convenience is high. For example, in the case of use of hydrogen oxygen = sub-, a force can be added, a resin filler, a moon-like material, and a catalyst. η力黑定° can be used as an additive for inkjet inks, etc.; as a raw material for resin filling, a flame retardant, and a modification of film sheets. Heat resistance, etc.; for high functionality (4), there are (four) = heat resistance 'material improvement" treatment. As a catalyst, there are drainage treatment, and exhaust gas addition and tree = use, refractory, addition, etc. 〆Return to this material, electromagnetic steel plate material and catalyst, etc. It can be used for: as a refractory, there is a filler for ceramics sintering aid, two Ray, ink-printing agent for ink paper, etc.; as a resin agent (heat-resistant heat-resistant layer of raw materials, film sheet seal The refractive index of the resin is used as a highly functional material, and is used for LED raw materials, phosphor light diffusing agents, ceramic cells for fuel cells (10), raw materials for superconducting thin film substrates, and magnetic reluctance members. As a material for the electromagnetic barrier steel plate 323520 23 201219307, it is used as a raw material for an insulating material for electromagnetic steel sheets and an insulating coating material for a powdered iron core, and is used as a catalyst for drainage treatment and exhaust treatment. [Simple description of the diagram] None. [Main component symbol description] None. 24 323520

Claims (1)

201219307 七 1. 、申請專利範圍: -種氫氧化鎂微粒子,其BET比表面積在5 雷射繞射散射式粒度分佛— ’ 積識粒徑㈤在〇1至〇則5疋法所得的體積基準的累 分佈測定法所得的體積二;;,雷射繞射散射式粒度 積基準的累積10%粒徑(Dh)與體 =的累積9°%粒綠。)的比D4。為10以下,吨 度9 9· 5質量%以上。 Ά 2 ·如申清專利範圍第1馆路、+, Λ + nn 員所述的虱氧化鎂微粒子,j:吨 度在99.9質量%以上。 3. 如申凊專利範圍第1項哎篦9ή 子,其中,Fe、Ti、NrCrT,^ 500質量卿以下。M。及此的合計含有量在 4. 如申請專利範圍第1項至第3項中任-項所述的氫氧 化鎮微粒子,其中,氯含有量在_質量卿以下 6. 5. 如申請專利範圍第i項至第4項中任一項所述的氣氧 化鎮微粒子,其中,體積基準的平均粒徑㈤虚個數 基準的平均粒徑(Dn)的比…/如是丨至仞。 -種氧化鎮微粒子,其BET比表面積在5mVg以上 射繞射散射絲度分_定法所得_積基準的 50%粒徑㈤為〇. !至〇. 5⑽,雷射繞射散射式粒度分 佈測定法所得的體積基準的g積⑽粒徑(D ^盘體積 基準的累積90%粒徑(D9fl)的比WDi。在1〇以 99. 5質量%以上。 •又 7·如ΐ請專·圍第6項所述的氧化鎂微粒子,其純度 323520 1 201219307 在99. 9質量%以上。 8. 如申請專利範圍第6項或第7項所述的的氧化鎂微粒 子,其中,卩6、1^、^^、〇、诞0及贼11的合計含有量在 500質量ppm以下。 9. 如申請專利範圍第6項至第8項中任一項所述的的氧 化鎮微粒子,其中,氣含有量在500質量ppm以下。 10. 如申請專利範圍第6項至第9項中任一項所述的的氧 化鎂微粒子,其檸檬酸活性度(40%)在20至2000秒。 11. 如申請專利範圍第6項至第10項中任一項所述的的氧 化鎂微粒子,其中,體積基準的平均粒徑(Dv)與個數 基準的平均粒徑(Dn)的比Dv/Dn是1至1 0 。 12. —種氬氧化鎂微粒子的製造方法,係包含如下的步驟: 準備氣化鎂水溶液的步驟(A); 使氯化鎮水溶液與1至18N的驗性水溶液,以反 應率101至210mol%反應,而獲得氫氧化鎂泥漿的步驟 (B) ; 將氫氧化鎂泥漿一面攪拌一面保持於101至200 °C的溫度,獲得水熱處理過的氫氧化鎂泥漿的步驟 (C) ;以及 將水熱處理過的氫氧化鎂泥聚過濾、水洗及乾 燥,而獲得氫氧化鎮微粒子的步驟(D)。 13. 如申請專利範圍第12項所述的氫氧化鎂徵粒子的製造 方法,其中,步驟(D)含有如下步驟: 將水熱處理過的氫氧化鎂泥漿過濾、、水洗,而獲 2 323520 201219307 得第一的氫氧化鎂泥餅的步驟; 在第一的氫氧化鎂泥餅中,添加相對於乾燥氫氧 化鎂質量基準量為5至100倍的純水,攪拌後,過濾、 水洗而獲得第二的氫氧化鎂泥餅的步驟(D_2); 代替第一的氫氧化鎂泥餅,而對第二的氫氧化鎂 泥餅,將步驟(D-2)反覆1至2〇次,獲得高純度氫氧 化鎂泥餅的步驟(D-3);及 將高純度氫氧化鎂泥餅乾燥,而獲得氫氧化錄 粒子的步驟(D-4)。 14. 如申請專利範圍第12項或第13項所述的氩氧化鎂微 粒子的製造方法,其中,步驟(A)係含有如下述的步驟: 準備粗氯化鎂水溶液的步驟(A-ι); 使粗氯化鎂水溶液與1至18N的驗性水溶液,以 反應率1至30 mol%反應,而獲得粗氩氧化鎂泥漿步驟 (A-2);及 在粗氫氧化鎂泥漿添加凝集劑後,將氫氧化鎂過 遽’作為濾液而獲得氯化鎂溶液,或添加凝集劑,使 氮氧化鎂凝集沉澱,而作為上澄液獲得氯化鎂水溶液 的步驟(A- 3)。 15. —種氧化鎂微粒子的製造方法,其含有:將申請專利 範圍第1項至第5項中任一項所述的氫氧化鎂微粒子 或以申睛專利範圍第12項至第14項中任一項所述的 方法所獲得的氫氧化鎂微粒子,在大氣環境中,在5〇〇 至1500°C下煅燒的步驟(E)。 3 323520 201219307 四、指定代表圖:本案無圖式。 (一) 本案指定代表圖為:無。 駟 (二) 本代表圖之元件符號簡單說明:無。 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 本案無化學式。 323520201219307 VII 1. Patent application scope: - A kind of magnesium hydroxide microparticles with a BET specific surface area of 5 laser diffraction scattering particle size - 'Accumulate the particle size (5) in the volume of 〇1 to 〇5疋Volume 2 obtained from the basis of the cumulative distribution measurement;; cumulative 10% particle size (Dh) of the laser diffraction scattering type particle size reference and cumulative 9°% granular green of the body =. ) than D4. It is 10 or less, and the tonnage is 99.5 mass% or more. Ά 2 · For example, the bismuth magnesium oxide granules described in the scope of the patent scope, Hall 1, Road, +, Λ + nn, j: ton is 99.9 mass% or more. 3. For example, the scope of the patent application is 哎篦9ή, where Fe, Ti, NrCrT, ^500 are below the quality. M. And the total content of the oxidized granules as described in any one of the above-mentioned claims, wherein the chlorine content is below _mass. 6. 5. The gas-oxidized granule fine particles according to any one of the items 4 to 4, wherein the ratio of the volume-based average particle diameter (f) to the virtual number-based average particle diameter (Dn) is /. - Oxidized town microparticles, the BET specific surface area of 5 mVg or more of the diffraction diffraction filament fraction _ method obtained from the _ product basis 50% particle size (five) is 〇.! to 〇. 5 (10), laser diffraction scattering particle size distribution determination The volume-based g-product (10) particle diameter obtained by the method (D ^ disk volume basis of the cumulative 90% particle diameter (D9fl) ratio WDi. 1 〇 to 99.5 mass% or more. The magnesium oxide fine particles according to the sixth aspect, wherein the purity is 323520 1 201219307, which is 99.9% by mass or more. 8. The magnesium oxide fine particles according to claim 6 or 7, wherein 卩6, The oxidized town granules of any one of the above-mentioned items of the ninth aspect of the present invention, wherein The magnesium oxide microparticles according to any one of claims 6 to 9 have a citric acid activity (40%) of 20 to 2000 seconds. The magnesium oxide fine particles according to any one of claims 6 to 10, wherein the volume-based average particles The ratio Dv/Dn of the average particle diameter (Dn) of (Dv) to the number standard is 1 to 10. 12. A method for producing an argon magnesium oxide fine particle, comprising the steps of: preparing a magnesium carbonate aqueous solution (A): a step (B) of obtaining a magnesium hydroxide slurry by reacting a chlorinated aqueous solution with an aqueous solution of 1 to 18 N at a reaction rate of 101 to 210 mol%; maintaining the magnesium hydroxide slurry while maintaining 101 a step (C) of obtaining a hydrothermally treated magnesium hydroxide slurry at a temperature of 200 ° C; and a step (D) of collecting the water-treated magnesium hydroxide slurry by filtration, washing with water and drying to obtain oxidized granules 13. The method for producing magnesium hydroxide particles according to claim 12, wherein the step (D) comprises the steps of: filtering the hydrothermally treated magnesium hydroxide slurry and washing with water to obtain 2 323520 201219307 The step of obtaining the first magnesium hydroxide cake; adding the pure water of 5 to 100 times the mass basis of the dry magnesium hydroxide in the first magnesium hydroxide cake, stirring, filtering, washing with water Obtaining the second hydroxide Magnesium cake step (D_2); instead of the first magnesium hydroxide cake, and for the second magnesium hydroxide cake, step (D-2) is repeated 1 to 2 times to obtain high-purity magnesium hydroxide a step (D-3) of the mud cake; and a step (D-4) of drying the high-purity magnesium hydroxide cake to obtain the hydroxide particles. 14. As described in claim 12 or item 13 The method for producing an argon magnesium oxide fine particle, wherein the step (A) comprises the following steps: a step of preparing a crude magnesium chloride aqueous solution (A-I); and a crude magnesium chloride aqueous solution and an aqueous solution of 1 to 18 N at a reaction rate 1 to 30 mol% of the reaction, to obtain the crude argon magnesium oxide slurry step (A-2); and after adding the aggregating agent to the coarse magnesium hydroxide slurry, the magnesium hydroxide is used as a filtrate to obtain a magnesium chloride solution, or to add agglomeration And a step (A-3) of obtaining an aqueous solution of magnesium chloride as a supernatant liquid by agglomerating the magnesium oxynitride. A method for producing a magnesium oxide fine particle, comprising: the magnesium hydroxide fine particles according to any one of claims 1 to 5, or the items 12 to 14 of the scope of the patent application The magnesium hydroxide fine particles obtained by the method according to any one of the steps (E) calcined at 5 Torr to 1500 ° C in an atmosphere. 3 323520 201219307 IV. Designated representative map: There is no schema in this case. (1) The representative representative of the case is: No.驷 (2) The symbol of the symbol of this representative figure is simple: None. 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: There is no chemical formula in this case. 323520
TW100134937A 2010-09-28 2011-09-28 Method for producing magnesium hydroxide microparticle and magnesium oxide microparticle TWI529133B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010217166A JP5686563B2 (en) 2010-09-28 2010-09-28 Magnesium hydroxide fine particles and magnesium oxide fine particles, and methods for producing them

Publications (2)

Publication Number Publication Date
TW201219307A true TW201219307A (en) 2012-05-16
TWI529133B TWI529133B (en) 2016-04-11

Family

ID=45893003

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100134937A TWI529133B (en) 2010-09-28 2011-09-28 Method for producing magnesium hydroxide microparticle and magnesium oxide microparticle

Country Status (5)

Country Link
JP (1) JP5686563B2 (en)
KR (1) KR101495777B1 (en)
CN (1) CN103140446A (en)
TW (1) TWI529133B (en)
WO (1) WO2012043564A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015005031A2 (en) * 2012-09-13 2017-07-04 Kyowa Chem Ind Co Ltd magnesium oxide particles, and, process for the production of magnesium oxide
JP6199881B2 (en) * 2012-10-31 2017-09-20 宇部マテリアルズ株式会社 Magnesium oxide powder
JP2016106160A (en) * 2013-03-25 2016-06-16 神島化学工業株式会社 Magnesium oxide particle, resin composition, rubber composition and molding
JP5846392B2 (en) * 2013-03-29 2016-01-20 Jfeスチール株式会社 MgO for annealing separator and method for producing the same
JP6300020B2 (en) * 2014-06-16 2018-03-28 パナソニックIpマネジメント株式会社 Resin composition for printed wiring board, prepreg for printed wiring board, laminate, metal-clad laminate, printed wiring board, and magnesium oxide
JP6168173B2 (en) * 2015-01-30 2017-07-26 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP2016199460A (en) * 2015-04-10 2016-12-01 協和化学工業株式会社 Separation agent for annealing for grain oriented silicon steel sheet
JP6494555B2 (en) 2016-03-30 2019-04-03 タテホ化学工業株式会社 Magnesium oxide and grain-oriented electrical steel sheet for annealing separator
JP6472767B2 (en) 2016-03-30 2019-02-20 タテホ化学工業株式会社 Magnesium oxide and grain-oriented electrical steel sheet for annealing separator
CN117070729A (en) 2016-03-30 2023-11-17 达泰豪化学工业株式会社 Magnesium oxide for annealing separating agent and oriented electrical steel
KR102082873B1 (en) * 2017-02-28 2020-02-28 전남대학교산학협력단 Method for manufacturing magnesium hydroxide
WO2018159986A1 (en) * 2017-02-28 2018-09-07 전남대학교산학협력단 Method for preparing high-purity magnesium hydroxide
JPWO2018221709A1 (en) * 2017-06-02 2020-05-21 協和化学工業株式会社 Magnesium hydroxide used as separator for non-aqueous secondary battery, separator for non-aqueous secondary battery and non-aqueous secondary battery
CN107344727A (en) * 2017-06-09 2017-11-14 苏州市泽镁新材料科技有限公司 A kind of preparation method of hexagonal plate nano-sized magnesium hydroxide material
JP7454334B2 (en) * 2018-03-28 2024-03-22 タテホ化学工業株式会社 Method for manufacturing magnesium oxide and grain-oriented electrical steel sheet for annealing separator
JP7454335B2 (en) * 2018-03-28 2024-03-22 タテホ化学工業株式会社 Method for manufacturing magnesium oxide and grain-oriented electrical steel sheet for annealing separator
MX2021001571A (en) * 2018-08-09 2021-07-15 Joint Stock Company Kaustik Active highly pure magnesium oxide and method for the production thereof.
CN109775733B (en) * 2019-03-28 2021-05-04 青海大学 Preparation method of nano molybdenum oxide hybrid magnesium hydroxide flame retardant
CN112098257A (en) * 2019-06-17 2020-12-18 南京倍立达欧陆装饰艺术工程有限公司 Magnesium oxide activity detection method
CN110498435B (en) * 2019-09-29 2021-08-31 北京镁德百世科技有限公司 Method for purifying magnesium hydroxide and method for recovering magnesium hydroxide from magnesium air battery and preparing magnesium oxide therefrom
CN113388725B (en) * 2021-06-18 2022-12-02 协和化学工业株式会社 Method for producing annealing separator, and grain-oriented electromagnetic steel sheet
KR20240051289A (en) * 2021-09-27 2024-04-19 우베 마테리알즈 가부시키가이샤 Magnesium oxide powder, vulcanizing agent composition for rubber, rubber composition, method for producing magnesium oxide powder
CN114804163B (en) * 2022-05-16 2024-02-13 安徽大学绿色产业创新研究院 Method for preparing flame retardant magnesium hydroxide by wet dechlorination of industrial magnesium hydroxide

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319860C (en) * 1998-12-14 2007-06-06 协和化学工业株式会社 Magnesium hydroxide particles, flame retardant resin composition and formed products thereof
JP3965270B2 (en) * 2000-04-19 2007-08-29 宇部マテリアルズ株式会社 Highly dispersible high purity magnesium hydroxide powder, method for producing the same, and magnesium hydroxide slurry
CN1332116A (en) * 2001-08-20 2002-01-23 杜以波 Homogeneous fluid process of preparing nanometer magnesium hydroxide
JP4849807B2 (en) * 2005-02-21 2012-01-11 宇部マテリアルズ株式会社 Magnesium oxide fine particle dispersion
JP4698448B2 (en) * 2006-03-13 2011-06-08 新日本製鐵株式会社 MgO for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet with excellent magnetic properties and glass coating properties using the same
JP5016993B2 (en) * 2007-06-27 2012-09-05 タテホ化学工業株式会社 Magnesium oxide particle aggregate and method for producing the same
JP5125258B2 (en) * 2007-06-29 2013-01-23 堺化学工業株式会社 Spherical magnesium oxide particles and method for producing the same
JP5128882B2 (en) * 2007-09-05 2013-01-23 関東電化工業株式会社 Magnesium hydroxide fine particles and method for producing the same
CN101475197B (en) * 2009-01-09 2011-05-25 中国科学院青海盐湖研究所 Method for preparing ultra-fine high dispersing magnesium hydrate flame retardant from saline lake bittern or bischofite

Also Published As

Publication number Publication date
KR101495777B1 (en) 2015-02-25
TWI529133B (en) 2016-04-11
JP5686563B2 (en) 2015-03-18
WO2012043564A1 (en) 2012-04-05
JP2012072004A (en) 2012-04-12
CN103140446A (en) 2013-06-05
KR20130081293A (en) 2013-07-16

Similar Documents

Publication Publication Date Title
TW201219307A (en) Magnesium hydroxide microparticle and magnesium oxide microparticle, and method for producing the same
JP5415215B2 (en) Magnesium oxide powder having excellent dispersibility and method for producing the same
TW200904756A (en) Aggregate of magnesium oxide particles and method for making the same
JP4992003B2 (en) Method for producing metal oxide fine particles
JP4801617B2 (en) Conductive zinc oxide particles and method for producing the same
JP6480715B2 (en) Precursor of iron-based oxide magnetic particle powder and method for producing iron-based oxide magnetic particle powder using the same
JP6194618B2 (en) Trimanganese tetraoxide and method for producing the same
JP6099040B2 (en) Composite layered double hydroxide
JP4765051B2 (en) Tin-doped indium oxide powder
CN114466823A (en) Iron-based oxide magnetic powder and method for producing same
KR102047201B1 (en) Iron Oxy Hydroxide Nano Dispersion
Torres-Martínez et al. Synthesis by two methods and crystal structure determination of a new pyrochlore-related compound Sm2FeTaO7
TWI732445B (en) Iron-based oxide magnetic powder and method for producing the same
KR101621831B1 (en) Ultrafine particles of titanium dioxide and process for producing the same
TW200906728A (en) Magnesium oxide powder
TW200530131A (en) Electroconductive tin oxide powder and method for production thereof
Hirano et al. Direct precipitation of spinel-type Zn (Fe, Ga) 2O4 solid solutions from aqueous solutions at 90° C: Influence of iron valence of starting salt on their crystallite growth
TW200844052A (en) Cubic magnesium oxide powder and method for producing the same
JP3928023B2 (en) Method for producing bismuth oxide powder
KR102617880B1 (en) Manufacturing methode of tungsten-doped nickel(ii) oxide nanoparticles
TWI732454B (en) Adsorption material particles and manufacturing method thereof
JP2003119023A (en) Method for producing ito powder, and ito powder
WO2023190356A1 (en) Columnar zinc oxide manufacturing method and columnar zinc oxide
JP3681550B2 (en) Rare earth oxide and method for producing the same
JP2013230967A (en) Trimanganese tetraoxide composition and method for producing the same, and method for producing lithium manganese complex oxide using the same