JPS63156015A - Production of powdery mixture consisting of zirconium oxide and carbide - Google Patents

Production of powdery mixture consisting of zirconium oxide and carbide

Info

Publication number
JPS63156015A
JPS63156015A JP61304197A JP30419786A JPS63156015A JP S63156015 A JPS63156015 A JP S63156015A JP 61304197 A JP61304197 A JP 61304197A JP 30419786 A JP30419786 A JP 30419786A JP S63156015 A JPS63156015 A JP S63156015A
Authority
JP
Japan
Prior art keywords
powder
oxide
particle size
zirconium oxide
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61304197A
Other languages
Japanese (ja)
Inventor
Takahiro Wada
隆博 和田
Seiji Adachi
成司 安達
Toshihiro Mihara
三原 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61304197A priority Critical patent/JPS63156015A/en
Priority to US07/041,810 priority patent/US4902457A/en
Publication of JPS63156015A publication Critical patent/JPS63156015A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain the titled powdery mixture having minute particle size and high purity with saved energy consumption at low temp., by firing a part of a molded body consisting of carbon-contg. powdery Zr and powdery oxide, burning the molded body and advancing the reaction with the generated combustion heat. CONSTITUTION:The molded body is obtained by combining, for instance, the powdery Zr having <=10mu particle size with the powder of the oxide such as TiO2 or niobium oxide, an oxide powder of an element stabilizing ZrO2, if necessary, and a carbon such as acetylene black, and molding the combined mixture, for instance, with the pressure molding. Then the powdery mixture having 0.1-0.5mu particle size and high purity is obtained by igniting a part of the molded body by supplying the electric current to, for instance, a tungsten filament provided on the upper part of the molded body, starting the combustion and advancing the reaction with utilizing the combustion heat.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超硬工具や高温構造材用の原料として用いら
れる酸化ジルコニウムと炭化物よりなる混合粉末の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a mixed powder of zirconium oxide and carbide, which is used as a raw material for cemented carbide tools and high-temperature structural materials.

従来の技術 従来、酸化ジルコニウム−炭化物複合焼結体用の混合粉
末は、まず金属またはその酸化物に炭素粉末または固形
炭素を混合し、高温で反応させることによって合成した
炭化物粉末と酸化ジルコニウム粉末を十分に混合するこ
とによって製造していた。
Conventional technology Conventionally, mixed powder for zirconium oxide-carbide composite sintered bodies has been prepared by mixing carbide powder and zirconium oxide powder, which are synthesized by first mixing metal or its oxide with carbon powder or solid carbon and reacting at high temperature. Manufactured by thorough mixing.

発明が解決しようとする問題点 この方法は、製造工程が長(複雑であるため不純物が混
入しやす<、シかもエネルギー消費が非常に大きかった
Problems to be Solved by the Invention This method requires a long manufacturing process (because it is complex, it is easy for impurities to be mixed in), and consumes a lot of energy.

問題点を解決するための手段 本発明の特徴は、ジルコニウム金属粉末(反応後には酸
化ジルコニウムとなる)と、酸化物(反応後には炭化物
になる)と、炭素とからなる混合物の成形体の一部を強
熱点火して燃焼反応を起こさせ、この化学反応によって
炭化物と酸化ジルコニウムの粒子を合成することにある
Means for Solving the Problems The present invention is characterized by a molded body of a mixture of zirconium metal powder (which becomes zirconium oxide after reaction), oxide (which becomes carbide after reaction), and carbon. The purpose is to ignite the parts at high heat to cause a combustion reaction, and through this chemical reaction, synthesize carbide and zirconium oxide particles.

作用 本発明によれば、成形体に点火するだけで高純度の酸化
ジルコニウムと炭化物よりなる混合粉末が容易に得られ
る。したがって従来の炭化物と酸化ジルコニウムの粉末
を混合する製造方法と比較してきわめて省エネルギーで
あり、しかも得られる粉体もきわめて高純度である。
According to the present invention, a mixed powder of high purity zirconium oxide and carbide can be easily obtained by simply igniting a compact. Therefore, compared to the conventional manufacturing method of mixing carbide and zirconium oxide powders, this method is extremely energy-saving, and the resulting powder is also extremely pure.

実施例 実施例1 出発原料として粒径1θμ■以下のジルコニウム粉末、
平均粒径1μmの二酸化チタン(TiC2)粉末、それ
にアセチレンを原料とするカーボンブラックを用い、そ
れらを1 : 1 :0.95のモル比で混合後、直径
20g+o+ 、高さ20mmの柱状にプレス成形した
。成形体への着火は、試料上部に設けたタングステンフ
ィラメントに通電することによって行った。成形体を室
温・真空(Iga+Hg)雰囲気下で、着火用ヒーター
に通電して反応を開始させた。得られた多孔体をボール
ミルを用いて粉砕した後、X線回折で同定したところ炭
化チタンと酸化ジルコニウムの回折線しか見られなかっ
た。得られた混合粉末の粒径は、それぞれ0.2〜0.
3μmであり、出発原料の粒径よりも小さくなっていた
Examples Example 1 Zirconium powder with a particle size of 1θμ or less as a starting material,
Using titanium dioxide (TiC2) powder with an average particle size of 1 μm and carbon black made from acetylene, they were mixed at a molar ratio of 1:1:0.95, and then press-molded into a column with a diameter of 20g+o+ and a height of 20mm. did. The molded body was ignited by energizing a tungsten filament provided above the sample. The reaction was started by applying electricity to the ignition heater at room temperature and in a vacuum (Iga+Hg) atmosphere. After pulverizing the obtained porous body using a ball mill, it was identified by X-ray diffraction, and only the diffraction lines of titanium carbide and zirconium oxide were observed. The particle size of the obtained mixed powder is 0.2 to 0.0.
The particle size was 3 μm, which was smaller than the particle size of the starting material.

このプロセスの化学反応式は以下のようになる。The chemical reaction equation for this process is as follows.

Zr+TiOz+o、95cmZrO2+Tiにの化学
反応式かられかるようにこの反応は、Zr金属によるT
iO2の還元を基本にして、還元されたTi金g(融解
して液体になっているものと思われる)がCと反応して
TiCになるのである。
As can be seen from the chemical reaction formula for Zr+TiOz+o, 95cmZrO2+Ti, this reaction
Based on the reduction of iO2, the reduced Ti gold (which is thought to have melted into a liquid) reacts with C to become TiC.

このときの反応熱が大きいので外部から加熱しなくても
試料が高温(2000℃程度まで上昇する)になりZr
O2とTiCからなる混合粉末が得られるのである。
Since the heat of reaction at this time is large, the sample reaches a high temperature (up to about 2000°C) even without external heating, and the Zr
A mixed powder consisting of O2 and TiC is obtained.

実施例2 出発原料として粒径10μ■以下のジルコニウム粉末、
焼成非晶質二酸化ケイ素(ジオツギ製薬製カープレック
スC3−5)それにアセチレンを原料とするカーボンブ
ラックを用い、それらを1:1:2のモル比で混合後、
実施例1と同様のプロセスで処理した。但し、本実施例
では500℃まで加熱して反応を開始させた。得られた
試料を、700℃に加熱して余ったカーボンを除去した
後、X線回折を用いて同定したところ炭化ケイ素と酸化
ジルコニウムの回折線しか見られなかった。得られた混
合粉末の粒径は、それぞれ0.1〜0.5μ曽であり、
出発原料の粒径よりも小さくなっていた。
Example 2 Zirconium powder with a particle size of 10μ or less as a starting material,
After mixing calcined amorphous silicon dioxide (Carplex C3-5 manufactured by Geotsugi Pharmaceutical) and carbon black made from acetylene at a molar ratio of 1:1:2,
The same process as in Example 1 was used. However, in this example, the reaction was started by heating to 500°C. The obtained sample was heated to 700° C. to remove excess carbon, and then identified using X-ray diffraction, and only diffraction lines of silicon carbide and zirconium oxide were observed. The particle size of the obtained mixed powder is 0.1 to 0.5μ, respectively,
The particle size was smaller than that of the starting material.

実施例3 出発原料として、粒径325メツシユ以下のマグネシウ
ムを5mo1%含有したジルコニウム粉末と、平均粒径
1μ■の五酸化ニオブ(Nb20s)それにアセチレン
を原料とするカーボンブラックを用い、本実施例ではさ
らに平均粒径0.5μmのマグネシウムで安定化した酸
化ジルコニウム粉末を加えた、それらを1 : 0.3
9 : 0.78 ; 0.1のモル比で混合後、実施
例1と同様のプロセスで処理した。得られた混合粉末を
X線回折を用いて同定したところ炭化ニオブと酸化ジル
コニウムの回折線しか見られなかった。得られた混合粉
末の粒径は、それぞれ0.2〜0.4μ−であり、出発
原料の粒径よりも小さくなっていた。
Example 3 As starting materials, zirconium powder containing 5 mo1% of magnesium with a particle size of 325 mesh or less, niobium pentoxide (Nb20s) with an average particle size of 1 μm, and carbon black made from acetylene were used. Furthermore, zirconium oxide powder stabilized with magnesium with an average particle size of 0.5 μm was added, and the mixture was mixed in a ratio of 1:0.3.
After mixing at a molar ratio of 9:0.78;0.1, the same process as in Example 1 was performed. When the obtained mixed powder was identified using X-ray diffraction, only the diffraction lines of niobium carbide and zirconium oxide were observed. The particle size of the obtained mixed powders was 0.2 to 0.4 .mu.-, which was smaller than the particle size of the starting materials.

実施例4 出発原料として、粒径lOμ霞以下のジルコニウム粉末
、平均粒径3μIの三酸化二チタン(Ti203 )そ
れにアセチレンを原料とするカーボンブラックを用い、
それらを3:2:3.9のモル比で混合後、実施例1と
同様のプロセスで処理した。得られた混合粉末をX線回
折を用いて同定したところ炭化チタンと酸化ジルコニウ
ムの回折線しか見られなかった。得られた混合粉末の粒
径は、それぞれ0.3〜0.5μmであり、出発原料の
粒径よりも小さくなっていた。
Example 4 As starting materials, zirconium powder with a particle size of 1Oμ or less, dititanium trioxide (Ti203) with an average particle size of 3μI, and carbon black made from acetylene were used.
After mixing them in a molar ratio of 3:2:3.9, they were treated in the same process as in Example 1. When the obtained mixed powder was identified using X-ray diffraction, only the diffraction lines of titanium carbide and zirconium oxide were observed. The particle size of the obtained mixed powder was 0.3 to 0.5 μm, which was smaller than the particle size of the starting raw material.

発明の効果 本発明の製造方法によれば、ジルコニウム粉末と酸化物
それに炭素とからなる混合物の成形体の一部に点火して
燃焼反応を起こさせるだけで酸化ジルコニウムと炭化物
からなる混合粉末が作製できる。従って、本発明の製造
方法によれば、従来の炭化物粉末と酸化物粉末を混合す
る製造方法に比較してはるかに低温のプロセスで、つま
り、きわめて小さなエネルギーで酸化ジルコニウムと炭
化物の混合粉末が作製できる。また、得られる混合粉末
は純度が高く、その粒径はいずれも0.1〜0.5μm
の範囲で分布していて、出発原料の粒径よりも小さくな
っている。したがって焼結体作製の原料粉末として非常
に適したものである。
Effects of the Invention According to the manufacturing method of the present invention, a mixed powder of zirconium oxide and carbide can be produced by simply igniting a part of a compact of a mixture of zirconium powder, oxide, and carbon to cause a combustion reaction. can. Therefore, according to the production method of the present invention, a mixed powder of zirconium oxide and carbide can be produced using a much lower temperature process than the conventional production method of mixing carbide powder and oxide powder, that is, with extremely low energy. can. In addition, the obtained mixed powder has high purity, and its particle size is 0.1 to 0.5 μm.
The particle size is smaller than that of the starting material. Therefore, it is very suitable as a raw material powder for producing a sintered body.

Claims (5)

【特許請求の範囲】[Claims] (1)ジルコニウム粉末と酸化物粉末と炭素とからなる
成形体の一部に点火して燃焼過程を開始させ、その後の
ジルコニウム粉末と酸化物粉末と炭素の反応を、燃焼過
程の結果発生する熱によって進行させることを特徴とす
る酸化ジルコニウムと炭化物よりなる混合粉末の製造方
法。
(1) A part of the compact made of zirconium powder, oxide powder, and carbon is ignited to start the combustion process, and the subsequent reaction between the zirconium powder, oxide powder, and carbon is controlled by the heat generated as a result of the combustion process. 1. A method for producing a mixed powder of zirconium oxide and carbide, characterized in that the process proceeds by:
(2)加熱の条件下で、ジルコニウム粉末と酸化物粉末
と炭素とからなる成形体に点火して燃焼過程を開始させ
ることを特徴とする特許請求の範囲第1項記載の酸化ジ
ルコニウムと炭化物よりなる混合粉末の製造方法。
(2) From zirconium oxide and carbide according to claim 1, the compacted body made of zirconium powder, oxide powder, and carbon is ignited under heating conditions to start a combustion process. A method for producing a mixed powder.
(3)酸化物粉末が酸化チタンあるいは酸化ニオブのい
ずれかである特許請求の範囲第1項記載の酸化ジルコニ
ウムと炭化物よりなる混合粉末の製造方法。
(3) The method for producing a mixed powder of zirconium oxide and carbide according to claim 1, wherein the oxide powder is either titanium oxide or niobium oxide.
(4)成形体中に酸化ジルコニウムの安定化元素の金属
粉末、あるいは酸化物粉末を混合する特許請求の範囲第
1項記載の酸化ジルコニウムと炭化物よりなる混合粉末
の製造方法。
(4) A method for producing a mixed powder of zirconium oxide and carbide according to claim 1, wherein a metal powder or oxide powder of a stabilizing element of zirconium oxide is mixed into the compact.
(5)成形体中に酸化ジルコニウムを混合する特許請求
の範囲第1項記載の酸化ジルコニウムと炭化物よりなる
混合粉末の製造方法。
(5) A method for producing a mixed powder of zirconium oxide and carbide according to claim 1, wherein zirconium oxide is mixed into a compact.
JP61304197A 1986-04-07 1986-12-19 Production of powdery mixture consisting of zirconium oxide and carbide Pending JPS63156015A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61304197A JPS63156015A (en) 1986-12-19 1986-12-19 Production of powdery mixture consisting of zirconium oxide and carbide
US07/041,810 US4902457A (en) 1986-04-07 1987-04-07 Method for manufacturing a porous material or a composite sintered product comprising zirconium oxide and a carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61304197A JPS63156015A (en) 1986-12-19 1986-12-19 Production of powdery mixture consisting of zirconium oxide and carbide

Publications (1)

Publication Number Publication Date
JPS63156015A true JPS63156015A (en) 1988-06-29

Family

ID=17930186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61304197A Pending JPS63156015A (en) 1986-04-07 1986-12-19 Production of powdery mixture consisting of zirconium oxide and carbide

Country Status (1)

Country Link
JP (1) JPS63156015A (en)

Similar Documents

Publication Publication Date Title
KR920000783B1 (en) Neodymium titanate and barium neodymium titanate processes for their preparation and thetr applications in ceramic compositions
JPS63156015A (en) Production of powdery mixture consisting of zirconium oxide and carbide
RU2639244C1 (en) Method of producing zirconium tungstate powder
JPS62256767A (en) Manufacture of composite sintered body comprising carbonitride and oxide
JPS62235258A (en) Manufacture of carbide oxide composite sintered body
JP2747916B2 (en) Potassium titanate long fiber and method for producing titania fiber using the same
JPS63156069A (en) Manufacture of mixed powder comprising zirconium oxide, aluminum oxide and carbide
JPH0672048B2 (en) Method for producing zirconium oxide-based composite sintered body
JPH0672062B2 (en) Method for producing composite sintered body composed of carbide and complex oxide
JPS63282165A (en) Powder mixture containing zirconium oxide and boride and production of composite sintered body containing said powder
JPS62288166A (en) Manufacture of tungsten carbide-oxide composite sintered body
JPH0158131B2 (en)
JPS62288165A (en) Manufacture of titanium carbide-oxide composite sintered body
JPS63288960A (en) Production of (pb, bi) (zr, ti)o3
JPS6317219A (en) Production of ceramic powder
JPH075369B2 (en) Method for producing composite sintered body composed of carbide and two or more kinds of oxides
JPS6221714A (en) Production of high-purity stabilized zirconia powder
JPS62256766A (en) Manufacture of composite sintered body comprising nitride and oxide
JPS62288164A (en) Manufacture of vanadium carbide-oxide composite sintered body
JPH0478580B2 (en)
JPS6278113A (en) Production of stabilized zirconia powder
JPS58204813A (en) Preparation of powdery carbide and nitride of silicon
JPS63147807A (en) Production of silicon nitride having high content of alpha form
JPS6186427A (en) Preparation of low melting point glass
JPH06166566A (en) Production of fine powder of tetragonal zironia containing ceria as solid solution