JPH0672062B2 - Method for producing composite sintered body composed of carbide and complex oxide - Google Patents

Method for producing composite sintered body composed of carbide and complex oxide

Info

Publication number
JPH0672062B2
JPH0672062B2 JP61099634A JP9963486A JPH0672062B2 JP H0672062 B2 JPH0672062 B2 JP H0672062B2 JP 61099634 A JP61099634 A JP 61099634A JP 9963486 A JP9963486 A JP 9963486A JP H0672062 B2 JPH0672062 B2 JP H0672062B2
Authority
JP
Japan
Prior art keywords
oxide
powder
carbide
sintered body
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61099634A
Other languages
Japanese (ja)
Other versions
JPS62256773A (en
Inventor
隆博 和田
成司 安達
敏弘 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61099634A priority Critical patent/JPH0672062B2/en
Publication of JPS62256773A publication Critical patent/JPS62256773A/en
Publication of JPH0672062B2 publication Critical patent/JPH0672062B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超硬工具や高温構造材または各種機能材料と
して用いられる炭化物と複合酸化物からなる複合焼結体
の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a composite sintered body composed of a carbide and a composite oxide, which is used as a cemented carbide tool, a high temperature structural material or various functional materials.

従来の技術 従来、炭化物と複合酸化物からなる複合焼結体は、まず
金属またはその酸化物に炭素粉末または固形炭素を混合
し、高温で反応させることによって合成した炭化物粉末
と固相法等で合成した複合酸化物粉末を十分に混合した
後高温高圧下で焼結させることによって製造していた。
2. Description of the Related Art Conventionally, a composite sintered body composed of a carbide and a composite oxide is first prepared by mixing a carbon powder or solid carbon with a metal or an oxide thereof and reacting the mixture at a high temperature with a carbide powder and a solid phase method or the like. It was manufactured by thoroughly mixing the synthesized composite oxide powders and then sintering them under high temperature and high pressure.

発明が解決しようとする問題点 この方法は、製造工程が長く複雑であるため不純物が混
入しやすく、しかもエネルギー消費が非常に大きかっ
た。
Problems to be Solved by the Invention Since the manufacturing process of this method is long and complicated, impurities are easily mixed in, and energy consumption is very large.

問題点を解決するための手段 本発明の特徴は、二種類以上の還元用金属粉末(反応後
には複合酸化物となる)と、酸化物(反応後には炭化物
になる)と、炭素とからなる混合物の成形体に、圧力を
かけた状態でその成形体の一部に強熱点火して燃焼反応
を起こさせ、この化学反応によって炭化物と複合酸化物
の粒子を合成し、反応熱によってこれらの粒子を焼結し
て炭化物と複合酸化物からなる複合焼結体を得ることに
ある。
Means for Solving the Problems A feature of the present invention is that it comprises two or more kinds of reducing metal powders (which become complex oxides after the reaction), oxides (which become carbides after the reaction), and carbon. Under pressure, the molded body of the mixture is ignited partly of the molded body to ignite a combustion reaction, and the chemical reaction synthesizes particles of carbides and complex oxides. The purpose is to sinter the particles to obtain a composite sintered body composed of a carbide and a composite oxide.

作用 本発明によれば、加圧下で成形体に点火するだけで高密
度の炭化物と複合酸化物からなる複合焼結体が容易に得
られる。したがって従来の炭化物と複合酸化物の粉末を
用いて作成する焼結体の製造方法と比較してきわめて省
エネルギーであり、しかも得られる焼結体もきわめて高
純度である。また本発明に製造方法によれば、従来の製
造方法では困難であった炭化物と複合酸化物の複合焼結
体もきわめて容易に作製できる。
Effect According to the present invention, a composite sintered body composed of a high-density carbide and a composite oxide can be easily obtained by simply igniting the molded body under pressure. Therefore, compared with the conventional method for producing a sintered body using powders of carbides and complex oxides, energy saving is extremely high, and the obtained sintered body is also extremely high in purity. Further, according to the manufacturing method of the present invention, a composite sintered body of a carbide and a composite oxide, which has been difficult by the conventional manufacturing method, can be manufactured very easily.

実施例 実施例1 出発原料として粒径10μm以下のアルミニウム粉末、粒
径70μm以下のマグネシウム粉末、平均粒径0.5μmの
二酸化チタン(TiO2)粉末、それにアセチレンを原料と
するカーボンブラックを用い、それらを1:2:2:2のモル
比で混合後、直径10mm,高さ10mmの柱状にプレス成形し
た。この成形体を炭化ケイ素製の型材を用いた一軸加圧
真空ホットプレスを用いて焼結を行った。成形体への着
火は、タングステンフィラメントに通電することによっ
て行った。資料を室温・真空(1mmHg)雰囲気・0.1GPaの
圧力条件下で、着火用ヒーターに通電して反応を開始さ
せた。得られた焼結体をX線回折を用いて同定したとこ
ろ炭化チタンとマグネシウムアルミニウムスピネルの回
折線しか見られなかった。またこの焼結体の相対密度
は、91.2%であった。
Example 1 As starting materials, aluminum powder having a particle size of 10 μm or less, magnesium powder having a particle size of 70 μm or less, titanium dioxide (TiO 2 ) powder having an average particle size of 0.5 μm, and carbon black using acetylene as a raw material were used. Was mixed at a molar ratio of 1: 2: 2: 2, and then press-molded into a column having a diameter of 10 mm and a height of 10 mm. The compact was sintered using a uniaxial pressure vacuum hot press using a silicon carbide mold material. Ignition of the molded body was performed by energizing the tungsten filament. Under the conditions of room temperature, vacuum (1 mmHg) atmosphere, and pressure of 0.1 GPa, the ignition heater was energized to start the reaction. When the obtained sintered body was identified by X-ray diffraction, only diffraction lines of titanium carbide and magnesium aluminum spinel were found. The relative density of this sintered body was 91.2%.

プロセスの化学反応式は以下のようになる。The chemical reaction formula of the process is as follows.

Mg+2Al+2TiO2+2C →MgAl2O4+2TiC この化学反応式からわかるようにこの反応においては、
AlとMgによるTiO2の還元に基づいて、還元されたTi金属
がCと反応してTiOになるとともに、AlとMgが酸素を介
して結合してMgAl2O4ができるのである。このときの反
応熱が大きいので外部から加熱しなくても試料が高温
(2000℃程度まで上昇する)になり、しかも加圧してい
るのでMgAl2O4粒子とTiC粒子が焼結してMgAl2O4‐TiC複
合焼結体が得られるのである。
Mg + 2Al + 2TiO 2 + 2C → MgAl 2 O 4 + 2TiC As can be seen from this chemical reaction formula, in this reaction,
Based on the reduction of TiO 2 by Al and Mg, the reduced Ti metal reacts with C to form TiO, and Al and Mg combine through oxygen to form MgAl 2 O 4 . Since large reaction heat at this time becomes the sample without heating from the outside to a high temperature (increased to about 2000 ° C.), moreover pressurized since MgAl 2 O 4 particles and TiC particles are sintered MgAl 2 O 4 -TiC composite sintered body can be obtained.

実施例2 出発原料として粒径19μm以下のジルコニウム粉末、粒
径10μm以下のケイ素粉末、平均粒径1μmの酸化チタ
ン粉末、それにアセチレンを原料とするカーボンブラッ
クを用い、それらを1:1:2:2のモル比で混合後、実施例
1と同様のプロセスで処理した。但し、本実施例では40
0℃まで加熱して反応を開始させた。得られた燃焼体を
X線回折を用いて同定したところ炭化チタンとケイ酸ジ
ルコニウムの回折線しか見られなかった。またこの焼結
体の相対密度は、93.5%であった。
Example 2 As a starting material, zirconium powder having a particle size of 19 μm or less, silicon powder having a particle size of 10 μm or less, titanium oxide powder having an average particle size of 1 μm, and carbon black using acetylene as a raw material were used, and they were used in a ratio of 1: 1: 2: After mixing at a molar ratio of 2, the same process as in Example 1 was carried out. However, in this embodiment, 40
The reaction was started by heating to 0 ° C. When the obtained combustion body was identified by X-ray diffraction, only diffraction lines of titanium carbide and zirconium silicate were found. The relative density of this sintered body was 93.5%.

このプロセスの化学反応式は、 Zr+SiO+2TiO2+2C →ZrSiO4+2TiCである。The chemical reaction formula of this process is Zr + SiO + 2TiO 2 + 2C → ZrSiO 4 + 2TiC.

実施例3 出発原料として粒径10μm以下のチタン粉末、金属カル
シウム、焼成非晶質二酸化ケイ素(シオノギ製薬製カー
プレックスCS-5)それにアセチレンを原料とするカーボ
ンブラックを用い、それらを2:2:3:3のモル比で混合
後、実施例1と同様のプロセスで処理した。但し、本実
施例では200℃まで加熱して反応を開始させた。得られ
た焼結体をX線回折を用いて同定したところ炭化ケイ素
とチタン酸カルシウムの回折線しか見られなかった。ま
たこの焼結体の相対密度は、87.3%であった。
Example 3 As a starting material, titanium powder having a particle size of 10 μm or less, metallic calcium, calcined amorphous silicon dioxide (Carplex CS-5 manufactured by Shionogi Pharmaceutical Co., Ltd.) and carbon black using acetylene as a raw material were used, and they were mixed at 2: 2: After mixing in a molar ratio of 3: 3, the same process as in Example 1 was carried out. However, in this example, the reaction was started by heating to 200 ° C. When the obtained sintered body was identified by X-ray diffraction, only diffraction lines of silicon carbide and calcium titanate were found. The relative density of this sintered body was 87.3%.

このプロセスの化学反応式は、 2Ca+2Ti+3SiO3+3C →2CaTiO3+3SiCである。Chemical reaction formula of this process is the 2Ca + 2Ti + 3SiO 3 + 3C → 2CaTiO 3 + 3SiC.

実施例4 出発原料として、粒径10μm以下のアルミニウム粉末
と、粒径10μm以下のチタン粉末、平均粒径1μmの五
酸化ニオブ(Nb2O5)及びアセチレンを原料とするカーボ
ンブラックを用い、本実施例ではさらに平均粒径2μm
のチタン酸アルミニウム(Al2TiO5)を2:1:1:2:0.2のモル
比で混合後、実施例1と同様のプロセスで処理した。得
られた焼結体をX線回折を用いて同定したところ、炭化
ニオブとチタン酸アルミニウムの回折線しか見られなか
った。また、この焼結体の相対密度は、89.6%であっ
た。
Example 4 As starting materials, aluminum powder having a particle size of 10 μm or less, titanium powder having a particle size of 10 μm or less, carbon black made of niobium pentoxide (Nb 2 O 5 ) and acetylene having an average particle size of 1 μm as raw materials were used. Further, in the embodiment, the average particle diameter is 2 μm.
After mixing aluminum titanate (Al 2 TiO 5 ) in a molar ratio of 2: 1: 1: 2: 0.2, the mixture was treated in the same process as in Example 1. When the obtained sintered body was identified by X-ray diffraction, only diffraction lines of niobium carbide and aluminum titanate were found. The relative density of this sintered body was 89.6%.

このプロセスの化学反応式は、 2Al+Ti+Nb2O5+2C →Al2TiO4+2NbCである。The chemical reaction formula of this process is 2Al + Ti + Nb 2 O 5 + 2C → Al 2 TiO 4 + 2NbC.

また成形体に添加したチタン酸アルミニウムは化学反応
のコントロール材である。
Aluminum titanate added to the molded body is a chemical reaction control material.

実施例5 出発原料として粒径325メッシュ以下のアルミニウム粉
末、粒径325メッシュ以下の鉄粉、平均粒径1μmの五
酸化タンタル(Ta2O5)及びアセチレンを原料とするカー
ボンブラックを用い、本実施例ではさらに平均粒径0.5
μmの酸化アルミニウム粉末を加えた。それらを5:10:
4:8:0.4のモル比で混合後、実施例1と同様のプロセス
で処理した。得られた焼結体をX線回折を用いた同定し
たところ炭化タンタルとアルミニウム酸鉄それに化学反
応のコントロール材として添加した酸化アルミニウムの
回折線しか見られなかった。またこの焼結体の相対密度
は、93.7%であった。
Example 5 As starting materials, aluminum powder having a particle size of 325 mesh or less, iron powder having a particle size of 325 mesh or less, tantalum pentoxide (Ta 2 O 5 ) having an average particle size of 1 μm, and carbon black made of acetylene as raw materials were used. In the example, the average particle size is 0.5
μm aluminum oxide powder was added. 5:10:
After mixing at a molar ratio of 4: 8: 0.4, the same process as in Example 1 was carried out. When the obtained sintered body was identified by X-ray diffraction, only diffraction lines of tantalum carbide, iron aluminum oxide and aluminum oxide added as a control material for chemical reaction were seen. The relative density of this sintered body was 93.7%.

このプロセスの化学反応式は、 10Al+5Fe+4Ta2O5+8C →5FeAl2O4+8TaCである。The chemical reaction formula of this process is 10Al + 5Fe + 4Ta 2 O 5 + 8C → 5FeAl 2 O 4 + 8TaC.

実施例6 出発原料として粒径200メッシュ以下のマグネシウム粉
末、粒径400メッシュ以下のチタン粉末、粒径10μm以
下の二酸化タングステン(WO2)及びアセチレンを原料と
するカーボンブラックを用いた。それらを2:2:3:3のモ
ル比で混合後、実施例1と同様のプロセスで処理した。
得られた焼結体をX線回折を用いて同定したところα型
の炭化タングステンとチタン酸マグネシウムの回折線し
か見られなかった。またこの焼結体の相対密度は、88.7
%であった。
Example 6 As starting materials, magnesium powder having a particle size of 200 mesh or less, titanium powder having a particle size of 400 mesh or less, tungsten dioxide (WO 2 ) having a particle size of 10 μm or less, and carbon black made of acetylene were used. They were mixed in a molar ratio of 2: 2: 3: 3 and then treated in the same process as in Example 1.
When the obtained sintered body was identified by X-ray diffraction, only diffraction lines of α-type tungsten carbide and magnesium titanate were found. The relative density of this sintered body is 88.7.
%Met.

このプロセスの化学反応式は、 2Mg+2Ti+3WO3+3C →2MgTiO3+3WCである。Chemical reaction formula of this process is the 2Mg + 2Ti + 3WO 3 + 3C → 2MgTiO 3 + 3WC.

発明の効果 本発明の製造方法によれば、二種以上の還元用の粉末と
酸化物それに炭素とからなる混合物の成形体に圧力をか
けた状態で、その成形体の一部に強熱点火して燃焼反応
を起こさせるだけで炭化物と複合酸化物からなる複合焼
結体が作製できる。従って、本発明の製造方法によれ
ば、従来の炭化物粉末と複合酸化物粉末を用いた製造方
法に比較してはるかに低温のプロセスで、つまり、きわ
めて小さなエネルギーで炭化物と複合酸化物からなる複
合焼結体が作製できる。しかも、得られた焼結体は、従
来の製造方法によって作製した焼結体と全く変わらない
特性を有している。また本発明の製造方法によれば従来
の製造方法では困難であった炭化物と複合酸化物からな
る複合焼結体もきわめて容易に作製できるという特徴も
有している。
EFFECTS OF THE INVENTION According to the production method of the present invention, in a state in which pressure is applied to a molded body of a mixture of two or more kinds of reducing powders, oxides and carbon, ignition is ignited on a part of the molded body. Then, a composite sintered body composed of a carbide and a composite oxide can be produced only by causing a combustion reaction. Therefore, according to the production method of the present invention, a process comprising a carbide and a complex oxide is performed at a much lower temperature as compared with a conventional production method using a carbide powder and a complex oxide powder, that is, with a very small energy. A sintered body can be produced. Moreover, the obtained sintered body has the same characteristics as the sintered body produced by the conventional manufacturing method. Further, according to the manufacturing method of the present invention, it is also possible to extremely easily manufacture a composite sintered body composed of a carbide and a composite oxide, which has been difficult with the conventional manufacturing method.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】二種類以上の還元用金属粉末と酸化物粉末
と炭素とからなる成形体を、加圧条件下でその成形体の
一部に点火して燃焼過程を開始させ、その後の金属粉末
と酸化物粉末それに炭素との反応及び生成した炭化物と
複合酸化物の焼結を、燃焼過程の結果発生する熱によっ
て進行させる炭化物と複合酸化物からなる複合焼結体の
製造方法。
1. A molded body composed of two or more kinds of reducing metal powder, an oxide powder and carbon is ignited on a part of the molded body under a pressurized condition to start a combustion process, and then a metal is formed. A method for producing a composite sintered body composed of a carbide and a composite oxide, wherein the reaction between a powder and an oxide powder and carbon and the sintering of the generated carbide and the composite oxide proceed by heat generated as a result of a combustion process.
【請求項2】加圧・加熱の条件下で、二種類以上の還元
用金属粉末と酸化物粉末それに炭素とからなる成形体に
点火して燃焼過程を開始させることを特徴とする特許請
求の範囲第1項記載の炭化物と複合酸化物からなる複合
焼結体の製造方法。
2. A combustion process is started by igniting a compact consisting of two or more kinds of reducing metal powder, oxide powder and carbon under pressure and heating conditions. A method for producing a composite sintered body comprising a carbide and a composite oxide according to claim 1.
【請求項3】二種類以上の還元用金属粉末の内の少なく
とも一種が、アルミニウム粉末、マグネシウム粉末、ジ
ルコニウム粉末、及びチタン粉末から選ばれたいずれか
である特許請求の範囲第1項記載の炭化物と複合酸化物
からなる複合焼結体の製造方法。
3. The carbide according to claim 1, wherein at least one of the two or more reducing metal powders is selected from aluminum powder, magnesium powder, zirconium powder, and titanium powder. And a method for producing a composite sintered body comprising a composite oxide.
【請求項4】酸化物粉末が周期律表第4族、5b族、6b族
から選ばれたいずれかの元素の酸化物である特許請求の
範囲第1項記載の炭化物と複合酸化物からなる複合焼結
体の製造方法。
4. The carbide and complex oxide according to claim 1, wherein the oxide powder is an oxide of any element selected from groups 4, 5b and 6b of the periodic table. Method for manufacturing composite sintered body.
【請求項5】二種以上の還元用金属粉末と、酸化物粉末
と、炭素と、さらに反応に関与しない酸化物粉末とから
なる成形体を、加圧条件下でその成形体の一部に点火し
て燃焼過程を開始させ、その後の金属粉末と酸化物粉末
と炭素との反応、及び生成した炭化物と複合酸化物と反
応に関与しない酸化物の焼結を、燃焼過程の結果発生す
る熱によって進行させる炭化物と複合酸化物からなる複
合焼結体の製造方法。
5. A molded body comprising two or more kinds of reducing metal powders, an oxide powder, carbon, and an oxide powder that does not participate in the reaction is formed into a part of the molded body under pressure. The heat generated as a result of the combustion process is ignited to start the combustion process, and the subsequent reaction between the metal powder, the oxide powder and carbon, and the sintering of the generated carbide and the complex oxide with the oxide not involved in the reaction. A method for producing a composite sintered body comprising a carbide and a composite oxide, which is advanced by.
【請求項6】反応に関与しない酸化物粉末が還元用金属
粉末の酸化物である特許請求の範囲第5項記載の炭化物
と酸化物からなる複合焼結体の製造方法。
6. The method for producing a composite sintered body composed of a carbide and an oxide according to claim 5, wherein the oxide powder not involved in the reaction is an oxide of a reducing metal powder.
JP61099634A 1986-04-30 1986-04-30 Method for producing composite sintered body composed of carbide and complex oxide Expired - Lifetime JPH0672062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61099634A JPH0672062B2 (en) 1986-04-30 1986-04-30 Method for producing composite sintered body composed of carbide and complex oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61099634A JPH0672062B2 (en) 1986-04-30 1986-04-30 Method for producing composite sintered body composed of carbide and complex oxide

Publications (2)

Publication Number Publication Date
JPS62256773A JPS62256773A (en) 1987-11-09
JPH0672062B2 true JPH0672062B2 (en) 1994-09-14

Family

ID=14252502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61099634A Expired - Lifetime JPH0672062B2 (en) 1986-04-30 1986-04-30 Method for producing composite sintered body composed of carbide and complex oxide

Country Status (1)

Country Link
JP (1) JPH0672062B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190761A (en) * 1987-01-30 1988-08-08 京セラ株式会社 Aluminum nitride-base sintered body
DE3812266C1 (en) * 1988-04-13 1989-08-24 Nils Prof. Dr. 2107 Rosengarten De Claussen
JP2756685B2 (en) * 1989-02-10 1998-05-25 株式会社豊田中央研究所 Method for producing composite material and raw material composition

Also Published As

Publication number Publication date
JPS62256773A (en) 1987-11-09

Similar Documents

Publication Publication Date Title
US3839540A (en) Method of manufacturing silicon nitride products
TWI268916B (en) Method for producing aluminum magnesium titanate sintered product
US4902457A (en) Method for manufacturing a porous material or a composite sintered product comprising zirconium oxide and a carbide
US4944930A (en) Synthesis of fine-grained α-silicon nitride by a combustion process
JPH0672062B2 (en) Method for producing composite sintered body composed of carbide and complex oxide
JPH0712979B2 (en) Method for manufacturing carbide-oxide composite sintered body
JPS62256767A (en) Manufacture of composite sintered body comprising carbonitride and oxide
JPH075369B2 (en) Method for producing composite sintered body composed of carbide and two or more kinds of oxides
JPS62288166A (en) Manufacture of tungsten carbide-oxide composite sintered body
JPH075368B2 (en) Method for producing composite sintered body composed of titanium carbide and oxide
JPH0672048B2 (en) Method for producing zirconium oxide-based composite sintered body
WO1987003866A1 (en) Ceramics containing alpha-sialon
CN114477996B (en) Preparation method of barium titanate-based ceramic
JPH0772103B2 (en) Method for producing composite sintered body composed of carbide and complex oxide
JPS62275067A (en) Manufacture of silicon nitride sintered body
KR102445158B1 (en) Method for manufacturing ZrC having a controlled size, shape, and porosity
KR970001051B1 (en) Process for the preparation of al203 and tic using self propagating high temperature synthesis
JPS63282165A (en) Powder mixture containing zirconium oxide and boride and production of composite sintered body containing said powder
JPS62283874A (en) Manufacture of composite sintered body comprising molybdenum silicate and oxide
JP3228890B2 (en) Manufacturing method of porous inorganic material
JPS5988374A (en) Manufacture of silicon nitride ceramics
JPS62256766A (en) Manufacture of composite sintered body comprising nitride and oxide
JPH01145380A (en) Production of silicon nitride sintered form
JPS63156069A (en) Manufacture of mixed powder comprising zirconium oxide, aluminum oxide and carbide
JPS63156015A (en) Production of powdery mixture consisting of zirconium oxide and carbide