JPH0712979B2 - Method for manufacturing carbide-oxide composite sintered body - Google Patents

Method for manufacturing carbide-oxide composite sintered body

Info

Publication number
JPH0712979B2
JPH0712979B2 JP61079704A JP7970486A JPH0712979B2 JP H0712979 B2 JPH0712979 B2 JP H0712979B2 JP 61079704 A JP61079704 A JP 61079704A JP 7970486 A JP7970486 A JP 7970486A JP H0712979 B2 JPH0712979 B2 JP H0712979B2
Authority
JP
Japan
Prior art keywords
oxide
powder
carbide
sintered body
composite sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61079704A
Other languages
Japanese (ja)
Other versions
JPS62235258A (en
Inventor
隆博 和田
成司 安達
敏弘 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61079704A priority Critical patent/JPH0712979B2/en
Publication of JPS62235258A publication Critical patent/JPS62235258A/en
Publication of JPH0712979B2 publication Critical patent/JPH0712979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超硬工具や高温構造材として用いられる炭化
物−酸化物複合焼結体の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a carbide-oxide composite sintered body used as a cemented carbide tool or a high-temperature structural material.

従来の技術 従来、炭化物−酸化物複合焼結体は、まず金属またはそ
の酸化物に炭素粉末または固形炭素を混合し、高温で反
応させることによって合成した炭化物粉末と酸化物粉末
を十分に混合した後高温高圧下で焼結させることによっ
て製造していた。
2. Description of the Related Art Conventionally, a carbide-oxide composite sintered body has been prepared by sufficiently mixing a metal powder or solid oxide thereof with carbon powder or solid carbon and reacting them at a high temperature to sufficiently synthesize a carbide powder and an oxide powder. After that, it was manufactured by sintering under high temperature and high pressure.

発明が解決しようとする問題点 この方法は、製造工程が長く複雑であるため不純物が混
入しやすく、しかもエネルギー消費が非常に大きかっ
た。
Problems to be Solved by the Invention Since the manufacturing process of this method is long and complicated, impurities are easily mixed in, and energy consumption is very large.

問題点を解決するための手段 本発明の特徴は、還元用金属粉末(反応後には酸化物と
なる)と酸化物(反応後には炭化物になる)それに炭素
とからなる混合物の成形体に圧力をかけた状態で、その
成形体の一部を強熱点火して燃焼反応を起こさせ、この
化学反応によって炭化物と酸化物の粒子を合成し、反応
熱によってこれらの粒子を焼結して炭化物−酸化物複合
焼結体を得ることにある。
Means for Solving the Problems A feature of the present invention is that a pressure is applied to a compact of a mixture of a reducing metal powder (which becomes an oxide after the reaction), an oxide (which becomes a carbide after the reaction), and carbon. In the applied state, a part of the molded body is ignited by a strong heat to cause a combustion reaction, the particles of carbide and oxide are synthesized by this chemical reaction, and these particles are sintered by the heat of reaction to form a carbide- To obtain an oxide composite sintered body.

作 用 本発明によれば、加圧で成形体に点火するだけで高密度
の炭化物−酸化物焼結体が容易に得られる。したがって
従来の炭化物と酸化物の粉末を用いて作成する焼結体の
製造方法と比較してきわめて省エネルギーであり、しか
も得られる焼結体もきわめて高純度である。また本発明
の製造方法によれば、従来の製造方法では困難であった
炭化物と酸化物の複合焼結体もきわめて容易に作製でき
る。
Operation According to the present invention, a high-density carbide-oxide sintered body can be easily obtained only by igniting the molded body with pressure. Therefore, compared with the conventional method for producing a sintered body prepared by using powders of carbides and oxides, energy saving is extremely high, and the obtained sintered body is also extremely high in purity. Further, according to the manufacturing method of the present invention, a composite sintered body of a carbide and an oxide, which has been difficult with the conventional manufacturing method, can be manufactured very easily.

実施例 実施例1 出発原料として粒径10μm以下のアルミニウム粉末、平
均粒径2μmの二酸化チタン(TiO2)粉末、それにアセ
チレンを原料とするカーボンブラックを用い、それらを
4:3:3のモル比で混合後、直径10mm,高さ10mmの柱状にプ
レス成形した。この成形体を炭化ケイ素製の型材を用い
た一軸加圧真空ホットプレスを用いて焼結を行った。成
形体への着火は、タングステンフィラメントに通電する
ことによって行った。試料を室温・真空(1mmHg)雰囲
気・0.1GPaの圧力条件下で、着火用ヒーターに通電して
反応を開始させた。得られた焼結体をX線回折を用いて
同定したところ炭化チタンと酸化アルミニウムの回折線
しか見られなかった。またこの焼結体の相対密度は、9
3.5%であった。焼結体組織は平均粒径が約20μmのほ
ぼ均一な炭化チタンの粒子と約5μmのほぼ均一な酸化
アルミニウムの粒子からなっていた。
Examples Example 1 As starting materials, aluminum powder having a particle size of 10 μm or less, titanium dioxide (TiO 2 ) powder having an average particle size of 2 μm, and carbon black using acetylene as a raw material were used.
After mixing in a molar ratio of 4: 3: 3, it was press-molded into a column having a diameter of 10 mm and a height of 10 mm. The compact was sintered using a uniaxial pressure vacuum hot press using a silicon carbide mold material. Ignition of the molded body was performed by energizing the tungsten filament. The sample was heated at room temperature in a vacuum (1 mmHg) atmosphere under a pressure of 0.1 GPa to energize the ignition heater to start the reaction. When the obtained sintered body was identified by X-ray diffraction, only diffraction lines of titanium carbide and aluminum oxide were found. The relative density of this sintered body is 9
It was 3.5%. The structure of the sintered body was composed of particles of titanium carbide having a uniform average particle diameter of about 20 μm and particles of aluminum oxide having a uniform particle diameter of about 5 μm.

プロセスの化学反応式は以下のようになる。The chemical reaction formula of the process is as follows.

4Al+3TiO2+3C→2Al2O3+3TiC この化学反応式からわかるようにこの反応は、Alによる
TiO2の還元を基本にして、還元されたTi金属がCと反応
してTiCになるのである。このときの反応熱が大きいの
で外部から加熱しなくても試料が高温(2000℃程度まで
上昇する)になり、しかも加圧しているのでAl2O3粒子
とTiC粒子が焼結してAl2O3−TiC複合焼結体が得られる
のである。
4Al + 3TiO 2 + 3C → 2Al 2 O 3 + 3TiC As can be seen from this chemical reaction formula, this reaction depends on Al.
Based on the reduction of TiO 2, the reduced Ti metal reacts with C to form TiC. Since the reaction heat at this time is large, the sample will reach a high temperature (up to about 2000 ° C) without being heated from the outside, and since pressure is applied, the Al 2 O 3 particles and the TiC particles will sinter and become Al 2 O 3 particles. Thus, an O 3 —TiC composite sintered body can be obtained.

実施例2 出発原料として粒径10μm以下のアルミニウム粉末、平
均粒径2μmの酸化ジルコニウム粉末(ZrO2)、それに
アセチレンを原料とするカーボンブラックを用い、それ
らを4:3:3のモル比で混合後、実施例1と同様のプロセ
スで処理した。但し、本実施例では500℃まで加熱して
から、タングステンフィラメントに通電して反応を開始
させた。得られた焼結体をX線回折を用いて同定したと
ころ炭化ジルコニウムと酸化アルミニウムの回折線しか
見られなかった。またこの焼結体の相対密度は、93.5%
であった。焼結体組織は平均粒径が約10μmのほぼ均一
な炭化ジルコニウムの粒子と約5μmのほぼ均一な酸化
アルミニウムの粒子からなっていた。
Example 2 As starting materials, aluminum powder having a particle size of 10 μm or less, zirconium oxide powder (ZrO 2 ) having an average particle size of 2 μm, and carbon black using acetylene as a raw material were mixed in a molar ratio of 4: 3: 3. Then, the same process as in Example 1 was performed. However, in this example, after heating to 500 ° C., the tungsten filament was energized to start the reaction. When the obtained sintered body was identified by X-ray diffraction, only diffraction lines of zirconium carbide and aluminum oxide were found. The relative density of this sintered body is 93.5%.
Met. The sintered body structure consisted of substantially uniform zirconium carbide particles having an average particle size of about 10 μm and substantially uniform aluminum oxide particles having an average particle size of about 5 μm.

実施例3 出発原料として粒径10μm以下のアルミニウム粉末、焼
成非晶質二酸化ケイ素(シオノギ製薬製カープレックス
CS−5)それにアセチレンを原料とするカーボンブラッ
クを用い、それらを4:3:3のモル比で混合後、実施例1
と同様のプロセスで処理した。但し、本実施例では200
℃まで加熱してから、タングステンフィラメントに通電
して反応を開始させた。得られた焼結体をX線回折を用
いて同定したところ炭化ケイ素と酸化アルミニウムの回
折線しか見られなかった。またこの焼結体の相対密度
は、87.3%であった。焼結体組織は平均粒径が約5μm
のほぼ均一な炭化ケイ素の粒子と約5μmのほぼ均一な
酸化アルミニウムの粒子からなっていた。
Example 3 Aluminum powder having a particle size of 10 μm or less as starting material, calcined amorphous silicon dioxide (Carplex manufactured by Shionogi Pharmaceutical Co., Ltd.)
CS-5) Using carbon black made from acetylene as a raw material, mixing them in a molar ratio of 4: 3: 3,
It was processed in the same process as. However, in this embodiment, 200
After heating to ° C, the tungsten filament was energized to initiate the reaction. When the obtained sintered body was identified by X-ray diffraction, only diffraction lines of silicon carbide and aluminum oxide were found. The relative density of this sintered body was 87.3%. The average grain size of the sintered structure is about 5 μm
Of substantially uniform silicon carbide particles and approximately 5 μm of substantially uniform aluminum oxide particles.

実施例4 出発原料として、粒径10μm以下のアルミニウム粉末
と、平均粒径1μmの五酸化ニオブ (Nb2O5)及びアセチレンを原料とするカーボンブラッ
クを用い、本実施例ではさらに平均粒径0.5μmの酸化
アルミニウム粉末を加えた。それらを 20:6:12:2のモル比で混合後、実施例1と同様のプロセ
スで処理した。得られた焼結体をX線回折を用いて同定
したところ炭化ニオブと酸化アルミニウムの回折線しか
見られなかった。またこの焼結体の相対密度は、89.6%
であった。焼結体組織は平均粒径が約10μmのほぼ均一
な炭化ニオブの粒子と約5μmのほぼ均一な酸化アルミ
ニウムの粒子からなっていた。
Example 4 As starting materials, aluminum powder having a particle size of 10 μm or less and carbon black made of niobium pentoxide (Nb 2 O 5 ) and acetylene having an average particle size of 1 μm were used as starting materials. μm aluminum oxide powder was added. After mixing them in a molar ratio of 20: 6: 12: 2, they were treated in the same process as in Example 1. When the obtained sintered body was identified by X-ray diffraction, only diffraction lines of niobium carbide and aluminum oxide were found. The relative density of this sintered body is 89.6%.
Met. The sintered body structure consisted of substantially uniform niobium carbide particles having an average particle size of about 10 μm and substantially uniform aluminum oxide particles of about 5 μm.

実施例5 出発原料として粒径325メッシュ以下のアルミニウム粉
末、平均粒径1μmの五酸化タンタル(Ta2O5)及びア
セチレンを原料とするカーボンブラックを用い、本実施
例ではさらに平均粒径0.5μmの酸化アルミニウム粉末
を加えた。それらを20:6:12:1のモル比で混合後、実施
例1と同様のプロセスで処理した。得られた焼結体をX
線回折を用いて同定したところ炭化タンタルと酸化アル
ミニウムの回折線しか見られなかった。またこの焼結体
の相対密度は、91.2%であった。
Example 5 As a starting material, aluminum powder having a particle size of 325 mesh or less, tantalum pentoxide (Ta 2 O 5 ) having an average particle size of 1 μm, and carbon black made of acetylene were used. In this example, an average particle size of 0.5 μm was used. Aluminum oxide powder was added. After mixing them in a molar ratio of 20: 6: 12: 1, they were treated in the same process as in Example 1. The obtained sintered body is X
When identified using line diffraction, only diffraction lines of tantalum carbide and aluminum oxide were found. The relative density of this sintered body was 91.2%.

実施例6 出発原料として粒径1000メッシュ以下のアルミニウム粉
末、平均粒径3μmの三酸化タングステン(WO3)をれ
にアセチレンを原料とするカーボンブラックを用い、本
実施例では実施例4と同様に平均粒径0.5μmの酸化ア
ルミニウム粉末を加え、それらを2:1:1:0.5のモル比で
混合後、実施例1と同様のプロセスで処理した。得られ
た焼結体をX線回折を用いて同定したところα型の炭化
タングステンと酸化アルミニウムの回折線しか見られな
かった。またこの焼結体の相対密度は、90.3%であっ
た。
Example 6 As starting material, aluminum powder having a particle size of 1000 mesh or less, and carbon black made of acetylene as a raw material of tungsten trioxide (WO 3 ) having an average particle size of 3 μm were used. Aluminum oxide powder having an average particle size of 0.5 μm was added, and after mixing them at a molar ratio of 2: 1: 1: 0.5, the same process as in Example 1 was performed. When the obtained sintered body was identified by X-ray diffraction, only diffraction lines of α-type tungsten carbide and aluminum oxide were found. The relative density of this sintered body was 90.3%.

実施例7 出発原料として、粒径200メッシュ以下のマグネシウム
粉末、平均粒径2μmの酸化チタン(TiO2)、それにア
セチレンを原料とするカーボンブラックを用い、それら
を2:1:1のモル比で混合後、実施例1と同様のプロセス
で処理した。得られた焼結体をX線回折を用いて同定し
たところ炭化チタンと酸化マグネシウムの回折線しか見
られなかった。またこの焼結体の相対密度は、92.7%で
あった。
Example 7 As starting materials, magnesium powder having a particle size of 200 mesh or less, titanium oxide (TiO 2 ) having an average particle size of 2 μm, and carbon black using acetylene as a raw material were used, and they were used in a molar ratio of 2: 1: 1. After mixing, the same process as in Example 1 was carried out. When the obtained sintered body was identified by X-ray diffraction, only diffraction lines of titanium carbide and magnesium oxide were found. The relative density of this sintered body was 92.7%.

発明の効果 本発明の製造方法によれば、金属粉末と酸化物それに炭
素とからなる混合物の成形体に圧力をかけた状態で、そ
の成形体の一部を強熱点火して燃焼反応を起こさせるだ
けで炭化物−酸化物複合焼結体が作製できる。従って、
本発明の製造方法によれば、従来の炭化物粉末と酸化物
粉末を用いた製造方法に比較してはるかに低温のプロセ
スで、つまり、きわめて小さなエネルギーで炭化物−酸
化物複合焼結体が作製できる。しかも、得られた焼結体
は、従来の製造方法によって作製した焼結体と全く変わ
らない特性を有している。また本発明の製造方法によれ
ば従来の製造方法では困難であった炭化物−酸化物複合
焼結体もきわめて容易に作製できるという特徴も有して
いる。
EFFECTS OF THE INVENTION According to the production method of the present invention, in a state where pressure is applied to a molded body of a mixture of a metal powder, an oxide and carbon, a part of the molded body is ignited by ignition to cause a combustion reaction. A carbide-oxide composite sintered body can be produced only by performing the above. Therefore,
According to the production method of the present invention, a carbide-oxide composite sintered body can be produced by a process at a much lower temperature than that of a conventional production method using a carbide powder and an oxide powder, that is, with extremely small energy. . Moreover, the obtained sintered body has the same characteristics as the sintered body produced by the conventional manufacturing method. Further, according to the manufacturing method of the present invention, it is also possible to extremely easily manufacture a carbide-oxide composite sintered body, which was difficult with the conventional manufacturing method.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/64 C04B 35/10 E 35/56 101 U U T ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location C04B 35/64 C04B 35/10 E 35/56 101 UUT

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】還元用金属粉末と酸化物粉末と炭素とから
なる成形体を、加圧条件下でその成形体の一部に点火し
て燃焼過程を開始させ、還元用金属粉末による酸化物粉
末の還元反応(還元用金属粉末は酸化物に変化し酸化物
粉末は金属になる反応)によって発生する熱及びその還
元反応によって生成した金属と炭素とが反応して炭化物
が生成する際に発生する熱によって、生成した炭化物と
酸化物の焼結を進行させる炭化物−酸化物複合焼結体の
製造方法。
1. An oxide formed by a reducing metal powder by igniting a part of the reducing metal powder, an oxide powder, and carbon under pressure to ignite a combustion process. Heat generated by reduction reaction of powder (reduction metal powder changes to oxide and oxide powder becomes metal) and metal generated by the reduction reaction reacts with carbon to generate carbide A method of manufacturing a carbide-oxide composite sintered body, in which the sintering of the generated carbide and oxide is promoted by the heat applied.
【請求項2】加圧・加熱の条件下で、還元用金属粉末
と、酸化物粉末それに炭素とからなる成形体に点火して
燃焼過程を開始させることを特徴とする特許請求の範囲
第1項記載の炭化物−酸化物複合焼結体の製造方法。
2. A pressurization / heating condition for igniting a compact made of a reducing metal powder, an oxide powder and carbon to start a combustion process. Item 7. A method for producing a carbide-oxide composite sintered body according to item.
【請求項3】還元用金属粉末が、アルミニウム粉末およ
びマグネシウム粉末のうちいずれかである特許請求の範
囲第1項記載の炭化物−酸化物複合焼結体の製造方法。
3. The method for producing a carbide-oxide composite sintered body according to claim 1, wherein the reducing metal powder is either aluminum powder or magnesium powder.
【請求項4】酸化物粉末が周期律表第4族、5b族、6b族
のいずれかの元素の酸化物である特許請求の範囲第1項
記載の炭化物−酸化物複合焼結体の製造方法。
4. The production of a carbide-oxide composite sintered body according to claim 1, wherein the oxide powder is an oxide of any one of the elements belonging to Group 4, 5b and 6b of the periodic table. Method.
【請求項5】還元用金属粉末と酸化物粉末と炭素、さら
に化学反応に関与しない酸化物とからなる成形体を、加
圧条件下でその成形体の一部に点火して燃焼過程を開始
させ、還元用金属粉末による酸化物粉末の還元反応(還
元用金属粉末は酸化物に変化し酸化物粉末は金属になる
反応)によって発生する熱及びその還元反応によって生
成した金属と炭素とが反応して炭化物が生成する際に発
生する熱によって、生成した炭化物と酸化物それに化学
反応に関与しない酸化物粉末の焼結を進行させる炭化物
−酸化物複合焼結体の製造方法。
5. A combustion process is started by igniting a part of the compact, which is composed of a reducing metal powder, an oxide powder, carbon, and an oxide that does not participate in a chemical reaction, under pressure. The heat generated by the reduction reaction of the oxide powder with the reducing metal powder (the reaction of the reducing metal powder into an oxide and the oxide powder becoming a metal) and the metal generated by the reducing reaction react with carbon. A method for producing a carbide-oxide composite sintered body, in which the generated carbide, the oxide, and the oxide powder not involved in the chemical reaction are allowed to proceed with the heat generated when the carbide is generated.
【請求項6】反応に関与しない酸化物粉末が還元用金属
粉末の酸化物である特許請求の範囲第5項記載の炭化物
−酸化物複合焼結体の製造方法。
6. The method for producing a carbide-oxide composite sintered body according to claim 5, wherein the oxide powder not involved in the reaction is an oxide of a reducing metal powder.
JP61079704A 1986-04-07 1986-04-07 Method for manufacturing carbide-oxide composite sintered body Expired - Fee Related JPH0712979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61079704A JPH0712979B2 (en) 1986-04-07 1986-04-07 Method for manufacturing carbide-oxide composite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61079704A JPH0712979B2 (en) 1986-04-07 1986-04-07 Method for manufacturing carbide-oxide composite sintered body

Publications (2)

Publication Number Publication Date
JPS62235258A JPS62235258A (en) 1987-10-15
JPH0712979B2 true JPH0712979B2 (en) 1995-02-15

Family

ID=13697593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61079704A Expired - Fee Related JPH0712979B2 (en) 1986-04-07 1986-04-07 Method for manufacturing carbide-oxide composite sintered body

Country Status (1)

Country Link
JP (1) JPH0712979B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2756685B2 (en) * 1989-02-10 1998-05-25 株式会社豊田中央研究所 Method for producing composite material and raw material composition

Also Published As

Publication number Publication date
JPS62235258A (en) 1987-10-15

Similar Documents

Publication Publication Date Title
US4902457A (en) Method for manufacturing a porous material or a composite sintered product comprising zirconium oxide and a carbide
US5160716A (en) Process for making highly reactive sub-micron amorphous titanium diboride power and products made therefrom
US4944930A (en) Synthesis of fine-grained α-silicon nitride by a combustion process
JPH0712979B2 (en) Method for manufacturing carbide-oxide composite sintered body
JPH0672062B2 (en) Method for producing composite sintered body composed of carbide and complex oxide
JPS62256767A (en) Manufacture of composite sintered body comprising carbonitride and oxide
EP0489729B1 (en) Process for making highly reactive sub-micron amorphous titanium diboride power and products made therefrom
JPS62288166A (en) Manufacture of tungsten carbide-oxide composite sintered body
US5334339A (en) Boron nitride sinter and process for its production
JPH0672048B2 (en) Method for producing zirconium oxide-based composite sintered body
JPH075369B2 (en) Method for producing composite sintered body composed of carbide and two or more kinds of oxides
JPH075368B2 (en) Method for producing composite sintered body composed of titanium carbide and oxide
KR970001051B1 (en) Process for the preparation of al203 and tic using self propagating high temperature synthesis
JPS63282165A (en) Powder mixture containing zirconium oxide and boride and production of composite sintered body containing said powder
KR102445158B1 (en) Method for manufacturing ZrC having a controlled size, shape, and porosity
JPS62256766A (en) Manufacture of composite sintered body comprising nitride and oxide
JPS63156069A (en) Manufacture of mixed powder comprising zirconium oxide, aluminum oxide and carbide
JPH0772103B2 (en) Method for producing composite sintered body composed of carbide and complex oxide
JPS5988374A (en) Manufacture of silicon nitride ceramics
JPH01145380A (en) Production of silicon nitride sintered form
JPS62275067A (en) Manufacture of silicon nitride sintered body
JPS63156015A (en) Production of powdery mixture consisting of zirconium oxide and carbide
JPS62283874A (en) Manufacture of composite sintered body comprising molybdenum silicate and oxide
JPS6395155A (en) Composite sintered body comprising carbide and oxide
CN114477996A (en) Preparation method of barium titanate-based ceramic

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees