JPS63156054A - Manufacture of polycomponent ceramics - Google Patents

Manufacture of polycomponent ceramics

Info

Publication number
JPS63156054A
JPS63156054A JP61300745A JP30074586A JPS63156054A JP S63156054 A JPS63156054 A JP S63156054A JP 61300745 A JP61300745 A JP 61300745A JP 30074586 A JP30074586 A JP 30074586A JP S63156054 A JPS63156054 A JP S63156054A
Authority
JP
Japan
Prior art keywords
powder
calcined
mixed
particle size
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61300745A
Other languages
Japanese (ja)
Other versions
JP2598786B2 (en
Inventor
信一 白崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Denso Corp
Original Assignee
National Institute for Research in Inorganic Material
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material, NipponDenso Co Ltd filed Critical National Institute for Research in Inorganic Material
Priority to JP61300745A priority Critical patent/JP2598786B2/en
Publication of JPS63156054A publication Critical patent/JPS63156054A/en
Priority to US07/364,498 priority patent/US4970182A/en
Application granted granted Critical
Publication of JP2598786B2 publication Critical patent/JP2598786B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、高性能の機能性材料、構造材セラミックス
として広い範囲の分野で利用される多成分系セラミック
スの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing multicomponent ceramics that are used in a wide range of fields as high-performance functional materials and structural ceramics.

[従来技術] セラミック焼結体は、通常原料粉末を混合粉砕して形成
される、比較的大きな粒径の粉末(数ミクロン)を成形
し、これを焼成するようにして製造している。このため
、高密度で且つ高度な機能を有するセラミックスを得る
ことは困難であった。
[Prior Art] Ceramic sintered bodies are usually manufactured by mixing and pulverizing raw material powders, molding relatively large particle size powder (several microns), and firing the molded powder. For this reason, it has been difficult to obtain ceramics with high density and advanced functionality.

[発明の解決しようとする問題点] この発明は上記のような点に鑑みなされたもので、特に
焼結性に優れ且つ高かさ密度の多成分系粉末を形成し、
さらにこの粉末を焼成して、高性能で且つ均質な高密度
の多成分系セラミックス材料を製造する方法を提供しよ
うとするものである。
[Problems to be Solved by the Invention] This invention has been made in view of the above points, and it is possible to form a multi-component powder with particularly excellent sinterability and high bulk density.
Furthermore, it is an object of the present invention to provide a method for producing a high-performance, homogeneous, and high-density multicomponent ceramic material by firing this powder.

[問題点を解決するための手段] この発明に係る多成分系セラミックスの製造方法におい
ては、基本的には以下の工程よりなる。
[Means for Solving the Problems] The method for producing multicomponent ceramics according to the present invention basically includes the following steps.

a)多成分系セラミック化合物を構成する一成分(x)
以外の少なくとも一成分の適Q(Y)と、上記一成分(
X)の溶液との混合溶液を作り、この液から沈澱物を取
出してこれを粉体化し、700〜1300℃で仮焼して
粒径0.01〜1.0μmの粉末粒子からなる変性粉体
を形成する工程と、 b)この仮焼物からなる☆性粉体と、目的とする多成分
系セラミックス組成の残りの構成部分と、さらに上記中
なくとも一成分の適u (Y)の残分とを混合して50
0〜1300℃で仮焼する工程と、 c)lx記工程で得られた仮焼粉末を成形し、700〜
2000℃で焼成する工程とよりなる。
a) One component (x) constituting the multicomponent ceramic compound
suitability Q(Y) of at least one component other than
A mixed solution with the solution of b) the ☆ powder made of this calcined product, the remaining constituent parts of the desired multi-component ceramic composition, and the remainder of at least one of the above components (Y); Mix with 50 minutes
a step of calcining at 0 to 1300°C; c) molding the calcined powder obtained in step lx;
It consists of a step of firing at 2000°C.

尚、この発明において、上記a)工程により得た粒子の
粒径の好ましい範囲は、0.01〜0.06がよい。
In this invention, the particle size of the particles obtained in step a) is preferably in the range of 0.01 to 0.06.

この発明において得られた沈澱物あるいは析出物の仮焼
温度は、700〜1300℃である。
The calcination temperature of the precipitate or precipitate obtained in this invention is 700 to 1300°C.

700℃より低いと凝集し易く、1300℃を越えると
粒子が粗大化する。また、沈澱物あるいは0i出物を1
ユ記のように仮焼後に別の成分を混合して、この混合物
を仮焼するものであるが、同相反応がほぼまたは完全に
完了する最低温度具1−で、また顕著な粒子成長が生じ
ない最高温度範囲内であることが必要であり、500〜
1300℃の範囲がよい。このようにした仮焼物は70
0〜2000℃で焼成されるが、700℃より低いと全
体の焼成が不十分であり、2000℃を越えると粒子が
t■大化したり構成成分の揮発が起きる。
If the temperature is lower than 700°C, it tends to aggregate, and if it exceeds 1300°C, the particles become coarse. In addition, the precipitate or Oi product was
As in Yuki, after calcination, another component is mixed and this mixture is calcined, but at the lowest temperature tool 1- where the in-phase reaction is almost or completely completed, significant particle growth also occurs. It is necessary that the maximum temperature is within the range of 500~
A range of 1300°C is preferable. The calcined product made in this way is 70
It is fired at a temperature of 0 to 2,000°C, but if it is lower than 700°C, the entire firing will be insufficient, and if it exceeds 2,000°C, the particles will increase in size or the constituent components will volatilize.

[作用] 上記a)の工程においては、粒径0.01〜1.0μm
とサブミクロン級の粉末であり、且つ成分の混合度合い
の良い粉末に、b)の工程で目的の成分組成とされる。
[Operation] In the step a) above, the particle size is 0.01 to 1.0 μm.
In the step b), the powder is submicron-sized and has a good degree of mixing of components, and the desired component composition is obtained in step b).

したがって、これにさらに残分成分を加えることによっ
て、上記上程a)の特徴を生かしたままの粉体特性の粉
末が製造されるようになる。このため、工程a)でのみ
目的の組成の多成分セラミックスを製造するよりも、−
殻粉末原料を用いるようになるものであるため、充分に
安価に製造可能となる。また、低温焼成がnI能となる
ものであるため、焼成密度の高い高品質なセラミックス
が得られるようになる。
Therefore, by further adding a residual component to this powder, a powder having powder properties that maintains the above characteristics a) can be produced. For this reason, rather than producing a multicomponent ceramic of the desired composition only in step a), -
Since the shell powder raw material is used, it can be manufactured at a sufficiently low cost. In addition, since low temperature firing is possible, high quality ceramics with high firing density can be obtained.

[実施例1] 四塩化チタン水溶液(1,3317)/mol濃度)4
3.57ccとオキシ硝酸ジルコニウム水溶液(1,1
46j!/1Iol濃文)150ccとを混合した。こ
の混合水溶液を撹拌している6N−アンモニヤ水1ノ中
に徐々に添加して、Ti4+とZr’十の水酸化物」(
沈澱体を得た。これを洗浄、乾燥した後1100℃で仮
焼して(T 10.2Zro、g)02粉末を作成した
[Example 1] Titanium tetrachloride aqueous solution (1,3317)/mol concentration) 4
3.57cc and zirconium oxynitrate aqueous solution (1,1
46j! /1Iol concentrated) 150cc were mixed. This mixed aqueous solution was gradually added to 1 volume of stirring 6N-ammonium water to prepare hydroxides of Ti4+ and Zr' (
A precipitate was obtained. This was washed, dried, and then calcined at 1100°C (T 10.2Zro, g) to produce 02 powder.

この粉末の平均粒径は0.32μmであった。The average particle size of this powder was 0.32 μm.

このようにして得られた粉末3.5779gとrlJ販
のT i 02微粉末1.4981g、PbO粉末(’
P−均粒径15μm)11.16gとをボールミルで一
昼夜混合した後、740℃で1時間仮焼してPb (Z
r  −TI  )03粉末を得た。そ0.5  0.
5 の平均粒径は0.32μmであった。この仮焼粉末は1
t/cI2で成形しタブレットを形成するもので、この
タブレットは鉛蒸気、酸化ガス共存雰囲気のもとに12
20℃で1時間焼結した。この焼結されたタブレットの
密度は7.95に達し、これは理論密度に極めて近い値
となる。
3.5779 g of the powder thus obtained, 1.4981 g of T i 02 fine powder sold by RLJ, and PbO powder ('
After mixing 11.16 g of P (average particle size 15 μm) in a ball mill for a day and night, the mixture was calcined at 740°C for 1 hour to obtain Pb (Z
r-TI)03 powder was obtained. So0.5 0.
The average particle size of No. 5 was 0.32 μm. This calcined powder is 1
It is molded at t/cI2 to form a tablet, and this tablet is molded at 12 m in an atmosphere where lead vapor and oxidizing gas coexist.
Sintering was performed at 20°C for 1 hour. The density of this sintered tablet reaches 7.95, which is very close to the theoretical density.

この実施例で製造された組成物は、一般式ABO3で示
されるもので、このペロブスカイト化合物のA成分(酸
素12配位金属元素)としては、例えばP b s B
 a SCa s S rおよびLaなどの希土類元素
が挙げられる。またB成分(酸素6配位金属元素)とし
ては、ジルコニウムの他、例えば、Ti5Mg5Sc%
Hf、Th%W1N b s T a −、Cr、Mo
、Mn5Fe、、CosN l % Cd %A 1 
% S n SA s s B を等が挙げられる。
The composition produced in this example is represented by the general formula ABO3, and the A component (oxygen 12-coordinated metal element) of this perovskite compound is, for example, P b s B
Examples include rare earth elements such as a SCa S r and La. In addition to zirconium, the B component (oxygen hexacoordination metal element) includes, for example, Ti5Mg5Sc%
Hf, Th%W1N b s Ta −, Cr, Mo
, Mn5Fe, , CosN l % Cd % A 1
% S n SA s s B and the like.

なお、本発明においては、これらのA成分とB成分のモ
ル比が1,0より高い値あるいは低い値にずらしたもの
も含む。
Note that the present invention also includes those in which the molar ratio of component A and component B is shifted to a value higher or lower than 1.0.

また、ペロブスカイト系機能性セラミックスにおいては
、その焼結性や特性を改善するために、一般に微量の助
剤を添加するのが通例であり、これらの助剤は第1ある
いは第2段階の工程で適当に添加すればよい。
Furthermore, in order to improve the sinterability and properties of perovskite-based functional ceramics, it is customary to add a small amount of auxiliary agents, and these auxiliary agents are added in the first or second stage of the process. Just add it appropriately.

ジルコニウム溶液(水溶液またアルコール溶液)を作成
するための化合物としては、オキシ塩化ジルコニウム、
オキシ硝酸ジルコニウム、塩化ジルコニウム、硝酸ジル
コニウムおよび金属ジルコニウムが挙げられる。
Compounds for making zirconium solutions (aqueous or alcoholic solutions) include zirconium oxychloride,
Mention may be made of zirconium oxynitrate, zirconium chloride, zirconium nitrate and zirconium metal.

沈澱形成液作成のための試薬としては、例えばアンモニ
ヤ、炭酸アンモニウム、苛性アルカリ、しゅう酸、しゅ
う酸アンモニウムやアミン、オキシン等の有機試薬が挙
げられる。
Examples of reagents for preparing the precipitate-forming solution include organic reagents such as ammonia, ammonium carbonate, caustic alkali, oxalic acid, ammonium oxalate, amines, and oxine.

ジルコニウム溶液に溶解するペロブスカイトの構成成分
の種類とその量は、構成成分の添加によって最終的に得
られるジルコニヤ粉末の凝集を抑制し得られるもの、ま
たペロブスカイト機能セラミックスに共通して含まれる
成分であることが好ましい。得られた共沈体の仮焼温度
は、700〜1300℃であると良好な焼結体が得られ
るもので、0.01〜1.0μmの粉末が得られる。
The types and amounts of perovskite components dissolved in the zirconium solution are those that can suppress agglomeration of the zirconia powder that is finally obtained by adding the components, and those that are commonly included in perovskite functional ceramics. It is preferable. When the calcination temperature of the obtained coprecipitate is 700 to 1300°C, a good sintered body can be obtained, and a powder of 0.01 to 1.0 μm can be obtained.

700℃より低いと凝集が顕著に起り、1300℃を越
えると粒子が粗大化する傾向がある。このようにして得
られたものに、ジルコニウム以外の構成成分の不足分を
加えて混合する。もちろん、ジルコニヤに添加した成分
の不足分も補充する必要がある。この場合、いずれの化
合物粉末(主として酸化物)の粒度はサブミクロン級の
ものを使用する。ただ、酸化鉛粉末は粗大粒径のものを
使用しても、得られるペロブスカイト粉末の特性にほと
んど影響を与えない。
When the temperature is lower than 700°C, significant aggregation occurs, and when the temperature exceeds 1300°C, the particles tend to become coarse. To the thus obtained mixture, the remaining components other than zirconium are added and mixed. Of course, it is also necessary to replenish any missing ingredients added to zirconia. In this case, the particle size of any compound powder (mainly oxide) used is submicron grade. However, even if coarse lead oxide powder is used, it has little effect on the properties of the resulting perovskite powder.

これら混合物の仮焼温度は、pbを含む場合、BaやS
「を含む場合、またNbやTaを含む場合とで、500
〜1300℃の範囲で大幅に変化する。要は固相反応が
ほぼまたは完全に完了する最低温度以上で、顕著な粒子
成長が生じない最高温度範囲内であることが必要である
The calcination temperature of these mixtures is
500 in cases containing “Nb and Ta”.
It varies significantly in the range of ~1300°C. In short, the temperature needs to be higher than the minimum temperature at which the solid phase reaction is almost or completely completed, and within the maximum temperature range at which significant particle growth does not occur.

このようにして得られた粉末を成形して焼結する。焼結
温度は前記の混合物の仮焼温度と同様にその構成成分の
種類によって異なるが、一般的に700〜1700℃の
範囲である。700℃より低いとpbを含むペロブスカ
イトでも焼結が不充分であり、1700℃を越えると粒
子が粗大化したり、あるいは構成成分の揮発が起こる。
The powder thus obtained is shaped and sintered. The sintering temperature, like the calcination temperature of the mixture described above, varies depending on the types of constituent components, but is generally in the range of 700 to 1700°C. If the temperature is lower than 700°C, even perovskite containing PB will not be sintered sufficiently, and if the temperature exceeds 1700°C, the particles will become coarse or the constituent components will volatilize.

[実施例2] 実施例1と同様の工程にして、水酸化物共沈体の仮焼温
度だけを変化させて実験を行った。
[Example 2] An experiment was conducted using the same steps as in Example 1, but only changing the calcination temperature of the hydroxide coprecipitate.

図面に700〜1300℃で仮焼した仮焼物の平均粒径
(S EM観察による)および1220℃×1時間の焼
成で得られた焼結体の密度を示す。
The drawings show the average particle size (according to SEM observation) of the calcined product calcined at 700 to 1300°C and the density of the sintered body obtained by firing at 1220°C for 1 hour.

[実施例3] 四塩化チタン水溶液(1,3317)/l1ol@度)
43.57ccとオキシ塩化ジルコニウム水溶液(1,
146,+?/sol 8度)150ccとを混合した
。この混合水溶液を100℃で100時間保持すること
によって加水分解反応を行ない、T14+と24+を含
むゾルを得た。このゾルを洗浄、乾燥した後1100℃
で仮焼して< T +o、2Z ro、g) 02粉末
を作成した。
[Example 3] Titanium tetrachloride aqueous solution (1,3317)/l1ol@degree)
43.57cc and zirconium oxychloride aqueous solution (1,
146,+? /sol 8 degrees) and 150 cc. This mixed aqueous solution was maintained at 100° C. for 100 hours to carry out a hydrolysis reaction to obtain a sol containing T14+ and 24+. After washing and drying this sol, 1100℃
< T + o, 2Z ro, g) 02 powder was prepared by calcining at <T+o, 2Z ro, g).

この粉末の平均粒径は0.32μmであった。The average particle size of this powder was 0.32 μm.

この仮焼粉末3.5779gと市販のT i O2微粉
末1.4981g、PbO扮末(平均粒径15μm)1
1.16gとを、ボールミルで一昼夜混合した後、74
0 ’Cで1時間仮焼してPb (Zr  −Ti  
)03粉末を得た。その・1′。
3.5779 g of this calcined powder, 1.4981 g of commercially available T i O2 fine powder, and PbO powder (average particle size 15 μm) 1
After mixing 1.16g in a ball mill for a day and night, 74g
Pb (Zr -Ti
)03 powder was obtained. Part 1'.

0.5  0.5 均粒径は0.32μmであった。そしてこの粉末をit
/ca+2で成形してタブレットを形成し、このタブレ
ットを鉛蒸気、酸素ガス共存雰囲気のもとで1220℃
で1時間焼結した。得られたものの密度は7.95に達
し、これは理論密度に極めて近い値である。
0.5 0.5 The average particle size was 0.32 μm. and add this powder to it
/ca+2 to form a tablet, and the tablet was heated at 1220°C in an atmosphere coexisting with lead vapor and oxygen gas.
It was sintered for 1 hour. The density of the obtained product reaches 7.95, which is very close to the theoretical density.

[比較例1コ (実施例1〜3に対する)市販のPbO
,TiO2、ZrO2粉末をpb(Zr  ・Tio、
5) 03の組成になるように配合0.5 し、ボールミルで1昼夜混合した後、850℃で2時間
仮焼した。この粉末をit/dで成形し、実施例1と同
じ条件下で焼結した。
[Comparative Example 1 (compared to Examples 1 to 3) Commercially available PbO
, TiO2, ZrO2 powder in pb (Zr ・Tio,
5) The mixture was blended to have a composition of 0.5 and mixed in a ball mill for one day and night, and then calcined at 850° C. for 2 hours. This powder was compacted at it/d and sintered under the same conditions as in Example 1.

得られたセラミックスの密度は6.5程度であった。な
お、仮焼時での粉末の平均粒径は2.3μmであった。
The density of the obtained ceramic was about 6.5. Note that the average particle size of the powder at the time of calcination was 2.3 μm.

[実施例4] 硝酸第2鉄水溶液(1,5J!/mol溶液)225c
cとニオブ酸ナトリウム水溶液(1,2)/mol溶液
)180ccとを混合した。
[Example 4] Ferric nitrate aqueous solution (1.5 J!/mol solution) 225c
c and 180 cc of sodium niobate aqueous solution (1,2)/mol solution) were mixed.

この混合水溶液を撹拌している6N−アンモニア水11
!中に徐々に添加してFe3+とNb5+の水酸化共沈
体を得た。これを洗浄、乾燥した後700℃で仮焼して
FeNb0t粉末を作製した。
6N-ammonia water 11 stirring this mixed aqueous solution
! was added gradually to obtain a hydroxylated coprecipitate of Fe3+ and Nb5+. This was washed, dried, and then calcined at 700°C to produce FeNb0t powder.

そして、この仮焼粉末10gに市販のFe2O3を1.
349g、WO3を1.964g5Pb0を28.34
6gとをボールミルで一昼夜混合した後、700℃で1
時間仮焼して は0.3μmである。この粉末を 0、 7Loa+ /co+2で成形し、大気中にて8
70℃で1時間焼成した。この時の密度は 8 、 1 g / am3、I K Hzにおける誘
電率、誘電損失はεr−10200、tanδ−2%で
あった。
Then, 1.0 g of commercially available Fe2O3 was added to 10 g of this calcined powder.
349g, WO3 1.964g5Pb0 28.34
After mixing with 6g in a ball mill for a day and night, 1
After time calcination, the thickness is 0.3 μm. This powder was molded at 0.7Loa+/co+2 and heated to 8
It was baked at 70°C for 1 hour. The density at this time was 8.1 g/am3, the dielectric constant at I KHz, and the dielectric loss were εr-10200 and tan δ-2%.

また比抵抗は、1.11010Ω・elmを示し良好な
材料を得た。
Further, the specific resistance was 1.11010 Ω·elm, and a good material was obtained.

[実施例5] 塩化第2鉄16.23gと5塩化ニオブ27.04gと
を1ノ水中に溶かし混合溶液を得この混合水溶液は10
0℃で90時間保持し、た。これによって加水分解反応
を行ない、Fe3+とNbS+を含むゾルを得た。これ
を洗浄、乾燥した後700℃で仮焼してF e N b
 O4粉末を作製した。この粉末10gに市販のFe2
O3を1.349g%WO3を1.96g。
[Example 5] 16.23 g of ferric chloride and 27.04 g of niobium pentachloride were dissolved in 1 liter of water to obtain a mixed solution.
It was kept at 0°C for 90 hours. As a result, a hydrolysis reaction was carried out to obtain a sol containing Fe3+ and NbS+. After washing and drying this, it is calcined at 700°C to obtain F e N b
O4 powder was produced. Commercially available Fe2 is added to 10g of this powder.
1.349g O3% 1.96g WO3.

pboを28.35gとをボールミルで一昼夜混合した
後、700°Cで1時間仮焼して0.8Pb03粉末を
得た。その粒径は0.25℃μmである。そして、この
仮焼粉末を0.7ton/dで成形し、人気中において
870℃で1時間焼成した。
After mixing 28.35 g of pbo in a ball mill overnight, the mixture was calcined at 700°C for 1 hour to obtain 0.8Pb03 powder. Its particle size is 0.25°C μm. Then, this calcined powder was molded at 0.7 ton/d and fired at 870° C. for 1 hour in a hot pot.

この時の密度は8 、 22 g / am3、I K
 Hzにおける誘電率、誘電損失はεr−10000゜
tanδ−1,5%であった。また比抵抗は1.2X 
I Q I OΩ・elを示し良好なキイ料をiすた。
The density at this time is 8.22 g/am3, IK
The dielectric constant and dielectric loss at Hz were εr-10000° tan δ-1.5%. Also, the specific resistance is 1.2X
I Q I OΩ・el, indicating a good key material.

[比較例2] (実施例4.5に対する)市販のP b
OSF e203 、Nb205、るよう秤量し、この
秤口した粉末100gをボールミル中で一昼夜混合した
後、700℃で1時間仮焼し、1.5μmの粉末を得た
。これを実施例と同様にプレス成形し、870℃で1時
間焼成した。この場合のかさ比重は7.1g/en+3
低く、e r−5400、tanδ−1096、比抵抗
は7X107Ω、 Caと低い値を示した。またこの材
料の密度が最大となる焼成温度は980℃であり、実施
例に対して110℃も高い焼成温度であった。
[Comparative Example 2] Commercially available P b (relative to Example 4.5)
OSF e203 and Nb205 were weighed, and 100 g of the weighed powder was mixed in a ball mill for a day and night, and then calcined at 700° C. for 1 hour to obtain a powder of 1.5 μm. This was press-molded in the same manner as in the example and fired at 870°C for 1 hour. In this case, the bulk specific gravity is 7.1g/en+3
It showed low values of er-5400, tan δ-1096, and specific resistance of 7×107Ω and Ca. Further, the firing temperature at which the density of this material reached its maximum was 980°C, which was 110°C higher than that of the example.

[実施例6] この実施例は(Z r、8S n、2) T t 04
に関するものであり、四塩化チタン水溶液 (1,3’う17f/mol濃度)43.57ccとオ
キシ硝酸ジルコニウム水溶液 (1,146j?/mol濃度)150ccとを混合し
た。この混合水溶液を6N−アンモニア水溶液に添加し
Ti4+とZr’十を含む共沈澱物を得た。
[Example 6] This example is (Z r, 8S n, 2) T t 04
43.57 cc of titanium tetrachloride aqueous solution (1,3' 17 f/mol concentration) and 150 cc of zirconium oxynitrate aqueous solution (1,146 j?/mol concentration) were mixed. This mixed aqueous solution was added to a 6N ammonia aqueous solution to obtain a coprecipitate containing Ti4+ and Zr'.

これを洗浄、乾燥した後1100℃で仮焼して(Z r
o、gT 1o4) 02扮宋を作成した。
After washing and drying this, it was calcined at 1100℃ (Z r
o, gT 1o4) Created 02 Song Song.

この粉末の平均粒径は0.32μmであった。The average particle size of this powder was 0.32 μm.

この仮焼粉末3.5779gと市販のTiO□微粉末1
.9963g、、5n024.7065gとを(Z r
o、8S n、2) T t O4の組成になるように
配合しボールミルで一昼夜液混合した後、1000℃で
1時間仮焼して(Z r、8S n□、2)T i 0
4粉末を得た。粒径は約0.36μmであった。そして
、この粉末を1ton/ciでタブレット成形し、この
タブレットを大気中で1450℃で2間焼成した。この
ようにして得られたタブレットの特性は密度4.94g
/ccεr−36.0、Q値5,500であった。
3.5779 g of this calcined powder and 1 commercially available TiO□ fine powder
.. 9963g, 5n024.7065g (Z r
o, 8S n, 2) T t O4 The mixture was mixed overnight in a ball mill, and then calcined at 1000°C for 1 hour (Z r, 8S n, 2) T i 0
4 powders were obtained. The particle size was approximately 0.36 μm. Then, this powder was formed into a tablet at 1 ton/ci, and the tablet was fired at 1450° C. for 2 hours in the air. The properties of the tablet thus obtained are that the density is 4.94 g.
/ccεr-36.0, and the Q value was 5,500.

[実施例7] この実施例は(Z r□、gS no、2) T i 
Oaに関するもので、四塩化チタン水溶液(1,331
7)/l101濃度)43.57ccとオキシ塩化ジル
コニウム水溶岐(1,146,ff/sol濃度)15
0ccとを混合した。この混合水溶液を100℃で10
0時間保持することによって加水分解反応を行ない、T
i4+とZr’十を含むゾルを得た。これを洗浄、乾燥
した後1100℃で仮焼して(Z ro、aT t、2
) 02粉末を作製した。
[Example 7] This example is (Z r□, gS no, 2) T i
Regarding Oa, titanium tetrachloride aqueous solution (1,331
7)/l101 concentration) 43.57cc and zirconium oxychloride water dissolution (1,146, ff/sol concentration) 15
0cc was mixed. This mixed aqueous solution was heated to 100°C for 10
A hydrolysis reaction is carried out by holding for 0 hours, and T
A sol containing i4+ and Zr' was obtained. After washing and drying this, it was calcined at 1100℃ (Z ro, aT t, 2
) 02 powder was produced.

この粉末の(1シ均粒径は0.28μmであった。The average particle size of this powder was 0.28 μm.

この仮焼粉末3.5779gも市販のTiO2微粉末1
.9963g5Sn024.7065gとを(Z r、
8S n、2) T i O4の組成となるように配合
し、ボールミルで一昼夜混合した後、1000℃で1時
間仮焼して(Zr0.8Sno、2)T i 04粉末
を得た。この粉末の粒径は約0.33μmであった。そ
して、この粉末を1ton/dでタブレットに成形し、
このタブレットを大気のもとて1450℃で2時間焼成
した。
3.5779 g of this calcined powder is also commercially available TiO2 fine powder 1
.. 9963g5Sn024.7065g (Z r,
8Sn, 2) T i O4 powder was mixed in a ball mill for a day and night, and then calcined for 1 hour at 1000° C. to obtain (Zr0.8Sno, 2) T i 04 powder. The particle size of this powder was approximately 0.33 μm. Then, this powder was molded into tablets at 1 ton/d.
This tablet was fired at 1450° C. for 2 hours in the atmosphere.

得られたものの特性は密度4.97g/cc。The properties of the obtained product were a density of 4.97 g/cc.

εr−37.0、Q値: 6000であった。εr-37.0, Q value: 6000.

[比較例3] (実施例6.7に対する)比較例として
市販のZ ro2.5n02、TiO2粉末を(Zr0
.8Sno、2)Ti04の組成になるように、Zr0
2−9.857g。
[Comparative Example 3] As a comparative example (relative to Example 6.7), commercially available Z ro2.5n02, TiO2 powder (Zr0
.. 8Sno, 2) Zr0 to have a composition of Ti04
2-9.857g.

5n02−3.014g、TiO27,990gを配合
し、ボールミルで1昼夜混合した後1000℃で1時間
仮焼した。仮焼粉末の粒径は2.1μm稈度であった。
5n02-3.014g and TiO27,990g were mixed in a ball mill for one day and night, and then calcined at 1000°C for 1 hour. The particle size of the calcined powder was 2.1 μm, and the culmability was 2.1 μm.

この粉末を1ton/cIjで成形し、実施例と同じ条
件下で焼成した。その特性は密度4.22g/cc、 
εr−27.2、Q値: 2000であった。
This powder was molded at 1 ton/cIj and fired under the same conditions as in the example. Its characteristics are density 4.22g/cc,
εr-27.2, Q value: 2000.

[実施例8] テトライソプロポキシチタン [T i  (iso −0C3Hy ) 4 ] l
l1ol とテトラエトキシシラン[S i  (OC
2H5) 4 ]  1molおよび1.2I!のエタ
ノール[C2H50H]の混合溶液を作成し、この混合
溶液を撹拌しながら6Nの塩酸80WII!を滴下し、
加水分解して、シリカチタニアゾル溶液を調整した。こ
のゾル溶液は撹拌している6N−アンモニア水1.i?
中に150ccの割合いで徐々に添加し、Ti4+とS
i4+の水酸化物共沈体を得た。これを洗浄乾燥した後
に、1100℃のアンモニア気流中で10時間還元窒化
処理を行ない、仮焼窒化物を得た。この仮焼窒化物の粒
径は0.1〜0.3μmであった。
[Example 8] Tetraisopropoxy titanium [T i (iso-0C3Hy) 4 ] l
l1ol and tetraethoxysilane [S i (OC
2H5) 4] 1 mol and 1.2I! A mixed solution of ethanol [C2H50H] is prepared, and while stirring this mixed solution, 6N hydrochloric acid 80WII! drip,
A silica titania sol solution was prepared by hydrolysis. This sol solution was mixed with 6N ammonia water while stirring. i?
Ti4+ and S were gradually added at a rate of 150cc into
A hydroxide coprecipitate of i4+ was obtained. After washing and drying this, a reduction nitriding treatment was performed for 10 hours in an ammonia stream at 1100° C. to obtain a calcined nitride. The grain size of this calcined nitride was 0.1 to 0.3 μm.

次に」二足仮焼窒化物にさらに゛1也均tel径0.8
μmの窒化珪素(Si3N4)粉末を 0.411Iol と焼結助剤としてスピネル(MgA
 1204 )0.04mol 、酸化イツトリウム(
Y203 )0.025aolを混合した。
Next, the two-legged calcined nitride was further added with an average tel diameter of 0.8.
Micron silicon nitride (Si3N4) powder was mixed with 0.411 Iol and spinel (MgA) was used as a sintering aid.
1204) 0.04mol, yttrium oxide (
Y203) 0.025 aol was mixed.

この混合粉末を溶媒としての何機溶剤およびバインダー
とともに混合し、スラリーを形成し、収縮率を6慮して
所定の形状に成形後、360℃で脱脂し、その後175
0℃で4時間窒素雰囲気中にて焼成を行った。その後焼
結体の表面を研磨を行ない必要寸法の試験片を?17た
This mixed powder is mixed with a solvent and a binder to form a slurry, which is molded into a predetermined shape taking into account the shrinkage rate, degreased at 360°C, and then heated to 175°C.
Firing was performed at 0° C. for 4 hours in a nitrogen atmosphere. After that, the surface of the sintered body is polished to obtain a test piece with the required dimensions. 17.

[実施例9] テトライソプロポキシチタン [T i  (lso −0C3H7) 4 ] 1a
+ol とテトラエトキシシラン[Si (oC2H5
)4]および1、  =I!のエタノール[C2H50
H]の混合溶液を作成した。この混合溶液を撹拌しなが
ら6Nの塩酸80m/を滴ドしていき、加水分解してシ
リカチタニアゾル溶液を1周整した。これを50℃てゲ
ル化し、30間乾燥させた。このようにして得られたシ
リカ−チタニアゲルを1100”Cのアンモニア気流中
で10時時間光窒化処理を行ない、仮焼窒化物を1りた
。この仮焼窒化物の粒径は0.05〜0.3umであっ
た。
[Example 9] Tetraisopropoxy titanium [T i (lso -0C3H7) 4 ] 1a
+ol and tetraethoxysilane [Si (oC2H5
)4] and 1, =I! of ethanol [C2H50
A mixed solution of H] was prepared. While stirring this mixed solution, 80 mL of 6N hydrochloric acid was added dropwise to hydrolyze it, and the silica titania sol solution was prepared once. This was gelatinized at 50°C and dried for 30 hours. The silica-titania gel thus obtained was subjected to photo-nitriding treatment for 10 hours in an ammonia stream at 1100"C to obtain a calcined nitride. The particle size of this calcined nitride was 0.05~ It was 0.3 um.

次に上記仮焼窒化物にさらに平均粒径 0.8μmの窒化珪素(Si3N4)粉末を0.411
Iol と焼結助剤としてスピネル(MgA 120+
 )0.04sol 、酸化イツトリウム(Y203 
) 0. 025101を混合した。
Next, 0.411% of silicon nitride (Si3N4) powder with an average particle size of 0.8 μm was added to the above calcined nitride.
Iol and spinel (MgA 120+) as a sintering aid.
)0.04sol, yttrium oxide (Y203
) 0. 025101 was mixed.

この混合粉末を溶媒としての有機溶剤およびバインダー
とともに混合し、スラリーを形成し収縮率を考慮して所
定の形状に成形後360”Cで脱脂し、その後1750
℃で4時間窒素雰囲気中にて焼成を行った。その後焼結
体の表面を研磨を行ない必要寸法の試験片を青だ。
This mixed powder is mixed with an organic solvent as a solvent and a binder to form a slurry, which is molded into a predetermined shape considering the shrinkage rate, degreased at 360"C, and then heated to 1750"C.
Firing was performed at ℃ for 4 hours in a nitrogen atmosphere. After that, the surface of the sintered body was polished and a test piece of the required size was obtained.

[比較例4コ (実施例8.9に対する)この実施例で
は、最終焼結体のTiNとSi3N4の成分割合を分析
した結果、モル比でTiN : S i3 N4 =5
7.5 :42.5となったが、比較のため、通常の方
法にて同一組成となるよう以下の方法で比較試験片を作
成した。
[Comparative Example 4] In this example (compared to Example 8.9), as a result of analyzing the component ratio of TiN and Si3N4 in the final sintered body, the molar ratio of TiN: Si3 N4 = 5
7.5:42.5, but for comparison, a comparative test piece was prepared using the following method so as to have the same composition using a normal method.

・1也均拉逢0.8μmの窒化珪素、・ト均粒径0.5
μmの窒化チタンの所要はを秤量し、窒化珪素41 m
ol 96、窒化チタン55.4 a+o1%の組成の
混合粉末を調整した、なおこの混合粉末にはMgA 1
2042. 211101%、Y2O31,4ao1%
の焼結助剤が混合されている。
・Silicon nitride with a uniform particle size of 0.8 μm, ・A uniform particle size of 0.5
The required amount of titanium nitride is weighed and the silicon nitride is 41 m
ol 96, titanium nitride 55.4% a+o1%, this mixed powder also contained MgA 1%.
2042. 211101%, Y2O31,4ao1%
sintering aid is mixed.

この混合粉末を溶媒としての有機溶剤およびバインダー
とともに混合し、スラリーを形成し、収縮率を考慮して
所定の形状に成形後、360℃で脱脂し、その後175
0℃で4時間窒素雰囲(−中にて焼成を行った。その後
焼結体の表面を研磨し、必要寸法の比較試験を得た。
This mixed powder is mixed with an organic solvent as a solvent and a binder to form a slurry, which is molded into a predetermined shape considering the shrinkage rate, degreased at 360°C, and then heated to 175°C.
Firing was performed at 0° C. for 4 hours in a nitrogen atmosphere (−).The surface of the sintered body was then polished to obtain a comparative test of required dimensions.

第1]二程の変性組成物の粒子径0.01〜1.0μm
を得るf段として、実施例1.2,3゜5.8では、中
和共沈法を示し、実施例3,5゜7.9では塩化水溶液
およびアルコキシド混合溶液の加水分解法を示している
1st] Particle size of the modified composition in step 2: 0.01 to 1.0 μm
Examples 1.2 and 3゜5.8 show a neutralization coprecipitation method, and Examples 3 and 5゜7.9 show a hydrolysis method of an aqueous chloride solution and an alkoxide mixed solution. There is.

その他の高温(120℃〜200℃)高圧(数気圧)ド
での水熱加水分解法、アルコキシドの加水分解法、また
金属粉末を高温(400〜700℃)高圧水(約100
0気圧)ドにおいて酸化物微粉末を得る熱水酸化法、さ
らに金属塩などの混合溶液を蒸発乾固し、それを高温で
熱分解することによって粉末を得るノJ”法(この具体
的)j法としては噴霧乾燥法、凍結乾燥法、自゛機繊維
含浸熱分解法、アルコキシドの熱分解法)がある。さら
に真空容器中での気相法なども第1の[程での微粉末を
製造する方法として適しているものである。
Other hydrothermal hydrolysis methods at high temperatures (120 to 200 degrees Celsius) and high pressures (several atmospheres), alkoxide hydrolysis methods, and metal powder
0 atm) method to obtain fine oxide powder, and the method to obtain powder by evaporating a mixed solution of metal salts etc. to dryness and thermally decomposing it at high temperature (this specific example). Methods include spray drying, freeze drying, automatic fiber impregnation pyrolysis, alkoxide pyrolysis).Furthermore, gas phase methods in a vacuum container are also available. This method is suitable for manufacturing.

[その他の実施例] その他のド記多成分組成物においても前記実施例と同様
高密度化し、それにけう諸特性の改溌が得られた。
[Other Examples] In other multi-component compositions as described above, high densities were achieved in the same manner as in the above examples, and improvements in various properties were obtained accordingly.

圧電体磁器 0・8Pb(TlyZry)O・−〇・2Pb(Mgy
3N−)0・0・8Pb(TlyZr y )O・−0
・2Pb(Yy2Nb3/2)0・透明磁器 0.022(Pb   La   )”0.978(Z
r、65Tl、35)00.91 0.09 0.022(Pb   Ba   )’0.978(Z
ro、53Tl、47)00.95 0.05 0.022(Pb   Sr   )−0,978(Z
ro、53Tl、4丁)OQ、95 0.05 0.022(Pb    旧   ) ・0.978(
Zr、65T!、35)00.91 0.09 0.022(Pb   1.a   )  ・0.97
8(111’、65Tlo、35)00.91 0.0
9 反強誘電体PbZrO3 半導体コンデンサ (S  B  C)Ti03  (x+y+z=1)r
X  ag  az 共振器磁器 (SrO,73BaO,27)(Z’O,Q73  (
1,027)0゜Ti Ha (Zno 、 aaNbo 、 53TaO、t
 3) o38″(Zn′/3Nb3□ゝ 0・ Ba Ti 40s PTC磁器 (BaO,999Yo、oot)TI  O3磁性材料 Bad、6Fe20j+3mo1%Zr02NjO−F
e203 低膨張材料ZrT’i04 アルミナ磁器 0.8AJ  O−0,2(0,95ZrO−0,05
Y  O)0.98 AiO−0,02(3Y  0 
 ・5AiO)ジルコニア磁器 0.95Zr02  o、05Y203導電材料 0.27TiN−0,73AIN 導電材料 0.25TiC−0,75SiC 基板 0.975AIN−0,025Y203基板 0.975AI!N −0,025Y 2030.51
A I! 203 0.35S i O20,14Pb
Piezoelectric porcelain 0.8Pb (TlyZry) O・-〇・2Pb (Mgy
3N-)0.0.8Pb(TlyZry)O.-0
・2Pb (Yy2Nb3/2) 0 ・Transparent porcelain 0.022 (Pb La )"0.978 (Z
r, 65Tl, 35) 00.91 0.09 0.022 (Pb Ba )'0.978 (Z
ro, 53Tl, 47) 00.95 0.05 0.022(PbSr)-0,978(Z
ro, 53Tl, 4 guns) OQ, 95 0.05 0.022 (Pb old) ・0.978 (
Zr, 65T! , 35) 00.91 0.09 0.022 (Pb 1.a) ・0.97
8 (111', 65Tlo, 35) 00.91 0.0
9 Antiferroelectric PbZrO3 Semiconductor capacitor (S B C) Ti03 (x+y+z=1)r
X ag az resonator porcelain (SrO, 73BaO, 27) (Z'O, Q73 (
1,027) 0゜Ti Ha (Zno, aaNbo, 53TaO, t
3) o38''(Zn'/3Nb3□ゝ 0. Ba Ti 40s PTC porcelain (BaO, 999Yo, oot) TI O3 magnetic material Bad, 6Fe20j+3mo1%Zr02NjO-F
e203 Low expansion material ZrT'i04 Alumina porcelain 0.8AJ O-0,2 (0,95ZrO-0,05
YO) 0.98 AiO-0,02(3Y 0
・5AiO) Zirconia porcelain 0.95Zr02 o, 05Y203 Conductive material 0.27TiN-0,73AIN Conductive material 0.25TiC-0,75SiC Substrate 0.975AIN-0,025Y203 Substrate 0.975AI! N -0,025Y 2030.51
AI! 203 0.35S i O20,14Pb
O

【図面の簡単な説明】[Brief explanation of the drawing]

添附図面はこの発明の実施例2において得られる仮焼物
の9i焼温戊と仮焼物の粒径および密度の関係を示す図
である。 出願人代理人 弁理1. 鈴 江 武 α型1−b銅 
The attached drawing is a diagram showing the relationship between the 9i calcination temperature of the calcined material obtained in Example 2 of the present invention, and the particle size and density of the calcined material. Applicant's agent Patent attorney 1. Takeshi Suzue α type 1-b copper
3

Claims (1)

【特許請求の範囲】  多成分系セラミックス化合物を構成する一成分(X)
以外の少なくとも一成分適量(Y)と、上記一成分(X
)との混合溶液を形成し、この混合溶液から上記各成分
を含む沈澱物あるいは析出物を形成し、この沈澱物ある
いは析出物を700〜1300℃で仮焼して粒径0.0
1〜 1.0μmの変性粉末となる微粉末を形成する第1の工
程と、 上記工程で得られた変性粉末と、目的とする多成分系セ
ラミック組成の残りの構成成分と、上記少なくとも一成
分の適量(Y)の残分とを混合し、500〜1300℃
で仮焼する第2の工程と、この第2の工程で得られた仮
焼物から仮焼物粉末を形成し、700〜2000℃で焼
成する第3の工程と、 を具備したことを特徴とする多成分系セラミックスの製
造方法。
[Claims] One component (X) constituting a multicomponent ceramic compound
an appropriate amount of at least one component other than (Y), and one component (X
), from this mixed solution a precipitate or precipitate containing each of the above components is formed, and this precipitate or precipitate is calcined at 700 to 1300°C to obtain a particle size of 0.0
a first step of forming a fine powder that becomes a modified powder of 1 to 1.0 μm; the modified powder obtained in the above step; the remaining components of the desired multicomponent ceramic composition; and at least one of the above components. Mix with the appropriate amount (Y) of the remainder and heat at 500 to 1300°C.
and a third step of forming a calcined powder from the calcined product obtained in the second step and firing it at 700 to 2000°C. Method for producing multicomponent ceramics.
JP61300745A 1986-12-17 1986-12-17 Method for producing perovskite-based functional ceramic Expired - Lifetime JP2598786B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61300745A JP2598786B2 (en) 1986-12-17 1986-12-17 Method for producing perovskite-based functional ceramic
US07/364,498 US4970182A (en) 1986-12-17 1989-06-09 Method for producing multi-component ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61300745A JP2598786B2 (en) 1986-12-17 1986-12-17 Method for producing perovskite-based functional ceramic

Publications (2)

Publication Number Publication Date
JPS63156054A true JPS63156054A (en) 1988-06-29
JP2598786B2 JP2598786B2 (en) 1997-04-09

Family

ID=17888592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61300745A Expired - Lifetime JP2598786B2 (en) 1986-12-17 1986-12-17 Method for producing perovskite-based functional ceramic

Country Status (2)

Country Link
US (1) US4970182A (en)
JP (1) JP2598786B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233036A (en) * 1987-03-23 1988-09-28 科学技術庁無機材質研究所長 Manufacture of polycomponent ceramics
JPS63248774A (en) * 1987-04-03 1988-10-17 科学技術庁無機材質研究所長 Manufacture of polycomponent ceramics

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191687A (en) * 1990-09-28 1993-03-09 Caterpillar Inc. Process for making piezoelectric stacks
US5434000A (en) * 1992-07-30 1995-07-18 Toyo Boseki Kabushiki Kaisha Biaxially oriented polyester film
US5271133A (en) * 1992-09-21 1993-12-21 Caterpillar Inc. Method for making a piezoelectric stack
US5384294A (en) * 1993-11-30 1995-01-24 The United States Of America As Represented By The Secretary Of The Air Force Sol-gel derived lead oxide containing ceramics
US5585136A (en) * 1995-03-22 1996-12-17 Queen's University At Kingston Method for producing thick ceramic films by a sol gel coating process
US5792379A (en) * 1997-03-27 1998-08-11 Motorola Inc. Low-loss PZT ceramic composition cofirable with silver at a reduced sintering temperature and process for producing same
US7049347B2 (en) * 2003-07-18 2006-05-23 Ut-Battelle, Llc Method for making fine and ultrafine spherical particles of zirconium titanate and other mixed metal oxide systems
TWM310414U (en) * 2006-09-08 2007-04-21 Formolight Technologies Inc Improved structure of message display board
KR101803107B1 (en) * 2009-05-20 2017-11-29 다나카 기킨조쿠 고교 가부시키가이샤 Catalysts for lean burn engines
JPWO2012008041A1 (en) * 2010-07-12 2013-09-05 株式会社ユーテック Ferroelectric film, sol-gel solution, film forming method, and method for manufacturing ferroelectric film
CN105669199B (en) * 2016-04-13 2018-09-07 苏州子波电子科技有限公司 A kind of microwave-medium ceramics and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153114A (en) * 1984-08-18 1986-03-17 Natl Inst For Res In Inorg Mater Production of powdery raw material of easily sintering perovskite solid solution
JPS61186223A (en) * 1985-02-13 1986-08-19 Natl Inst For Res In Inorg Mater Production of fine powder of dielectric material
JPS61186219A (en) * 1985-02-13 1986-08-19 Natl Inst For Res In Inorg Mater Production of lead-containing fine powder

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915503B2 (en) * 1974-11-21 1984-04-10 日本電気株式会社 Method for producing multi-component crystallized fine powder for piezoelectric porcelain containing zircon and lead titanate
SU829603A1 (en) * 1979-05-30 1981-05-15 Предприятие П/Я А-3390 Method of producing segnetoceramic materials
JPS6051664A (en) * 1983-08-30 1985-03-23 日本特殊陶業株式会社 Manufacture of lead zirconate titanate ceramic
DE3472398D1 (en) * 1983-10-17 1988-08-04 Tosoh Corp High-strength zirconia type sintered body and process for preparation thereof
JPS6131345A (en) * 1984-07-25 1986-02-13 堺化学工業株式会社 Manufacture of composition
US4696810A (en) * 1984-08-16 1987-09-29 National Institute For Researches In Inorganic Materials Wet process for the production of a readily sinterable powder material of perovskite or its solid solution
US4812426A (en) * 1984-08-21 1989-03-14 Denki Kagaku Kogyo Kabushiki Kaisha Lead-containing oxide powder
JPS62191465A (en) * 1985-09-24 1987-08-21 科学技術庁無機材質研究所長 Manufacture of perovskite ceramics containing zirconium
JPH01111918A (en) * 1987-10-26 1989-04-28 Penta Ocean Constr Co Ltd Formation of soil mortar pile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153114A (en) * 1984-08-18 1986-03-17 Natl Inst For Res In Inorg Mater Production of powdery raw material of easily sintering perovskite solid solution
JPS61186223A (en) * 1985-02-13 1986-08-19 Natl Inst For Res In Inorg Mater Production of fine powder of dielectric material
JPS61186219A (en) * 1985-02-13 1986-08-19 Natl Inst For Res In Inorg Mater Production of lead-containing fine powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233036A (en) * 1987-03-23 1988-09-28 科学技術庁無機材質研究所長 Manufacture of polycomponent ceramics
JPS63248774A (en) * 1987-04-03 1988-10-17 科学技術庁無機材質研究所長 Manufacture of polycomponent ceramics

Also Published As

Publication number Publication date
JP2598786B2 (en) 1997-04-09
US4970182A (en) 1990-11-13

Similar Documents

Publication Publication Date Title
KR101323697B1 (en) Zirconium oxide and method for the production thereof
Rao et al. Reactive PZT precursor powder by coprecipitation
JPS63156054A (en) Manufacture of polycomponent ceramics
JPH07277814A (en) Alumina-based ceramic sintered compact
JPS63103827A (en) Manufacture of barium titanate
JPS63156057A (en) Manufacture of high density perovskite ceramics
JPH05330824A (en) Barium titanate and its production
JPS62869B2 (en)
JP2006298677A (en) Method for synthesizing ceramic powder
US4990324A (en) Method for producing two-component or three-component lead zirconate-titanate
US6592805B1 (en) Method for producing sintered electroceramic materials from hydroxide and oxalate precursors
JPS63236713A (en) Production of inorganic fine powder of perovskite-type compound
JPS63151672A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JPH0664924A (en) Powder of spherical barium titanate semiconductor ceramic material and its production
JPS63151673A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JP3319795B2 (en) Perovskite-type compound fine particle powder
WO2023032412A1 (en) Perovskite-type ceramic compact and method for manufacturing same
JPS63288960A (en) Production of (pb, bi) (zr, ti)o3
JPH06318405A (en) Dielectric composition, manufacture thereof, and thin film capacitor
JPH0818867B2 (en) Method for producing perovskite ceramics containing zirconium
JPS63292508A (en) Manufacture of dielectric resonator material
JPS63291872A (en) Production of optical ceramic
JPS63151676A (en) Manufacture of zirconium titanate base ceramics
JP4144209B2 (en) Method for producing composite metal oxide powder
JPH02157155A (en) Production of dielectric ceramics composition of high permittivity

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term