JPS61270217A - Production of crystalline zirconium oxide fine powder - Google Patents

Production of crystalline zirconium oxide fine powder

Info

Publication number
JPS61270217A
JPS61270217A JP11117985A JP11117985A JPS61270217A JP S61270217 A JPS61270217 A JP S61270217A JP 11117985 A JP11117985 A JP 11117985A JP 11117985 A JP11117985 A JP 11117985A JP S61270217 A JPS61270217 A JP S61270217A
Authority
JP
Japan
Prior art keywords
zirconium
fine powder
zirconium oxide
particles
oxide fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11117985A
Other languages
Japanese (ja)
Inventor
Seishi Nagasawa
長沢 晴司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP11117985A priority Critical patent/JPS61270217A/en
Publication of JPS61270217A publication Critical patent/JPS61270217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain the titled fine powder consisting of primary particles having excellent dispersibility and miscibility, and useful for O2 sensor, ceramics, etc., in high yield in a short time, by reacting Zr(OH)4 with H2O2 in strong alkali, and heating the produced H2O2 complex of Zr ion. CONSTITUTION:Slurry of Zr(OH)4 having a concentration of 0.1-1.0mol/l is adjusted to >=13.5pH with a strong alkali such as NaOH and mode to react with more than molar equivalent of H2O2 based on the Zr in the solution to obtain an H2O2 complex of water-soluble Zr ion. The titled fine powder consisting of agglomerate particles having a particle diameter of about 0.1mu and composed of agglomerated ultra-fine primary particles having particle diameter of about 200Angstrom can be produced by heating the complex at 80-200 deg.C.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、結晶質酸化ジルコニウム微粉末の製法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing crystalline zirconium oxide fine powder.

酸化ジルコニウムは、周波数フィルター、プデー、各種
超音波センサー等電子部品として多方面に利用されてい
る圧電体、自動車排ガス用や溶鋼炉用の酸素センサーと
して使用され始めている固体電解質、並びにAノ203
.813N4、SlC1MgO・Aノ、03(スピネル
) 3 Aj!203・2S10□(ムライト)等のセ
ラミック若しくはCo 、Ni系合金等の金属に微細な
正方晶型Zr02粒子を分散させた高強度、高靭性の分
散強化セラミック又は分散強化合金などのセラミック原
料として重要な位置を占め【いる。
Zirconium oxide is used in piezoelectric materials that are used in a wide variety of electronic components such as frequency filters, pads, and various ultrasonic sensors, solid electrolytes that are beginning to be used as oxygen sensors for automobile exhaust gas and steel melting furnaces, and Ano 203.
.. 813N4, SlC1MgO・Ano, 03 (spinel) 3 Aj! Important as a ceramic raw material for high-strength, high-toughness dispersion-strengthened ceramics or dispersion-strengthened alloys in which fine tetragonal Zr02 particles are dispersed in ceramics such as 203/2S10□ (mullite) or metals such as Co and Ni-based alloys. occupies a certain position.

これらの用途に使用される酸化ジルコニウムは、出発原
料が数百又以下の超微結晶であり、且つ強固な2次凝集
粒子を形成していないことが強く望まれているが、従来
このような単結晶超微粒子を生成させるのに多大な時間
を要したり、高価な原料若しくは装置を用いなげればな
らなかったりするので、その製造コストが高く、需要の
拡大が阻まれている。
It is strongly desired that the starting material of zirconium oxide used in these applications be ultrafine crystals of several hundred crystals or less, and that it should not form strong secondary agglomerated particles. Since it takes a lot of time to generate single crystal ultrafine particles and requires the use of expensive raw materials or equipment, the manufacturing cost is high, which is hindering the expansion of demand.

く従来技術と問題点〉 酸化ジルコニウム超微粒子の一般的な製法は、水溶性ジ
ルコニウム塩の水溶液全アンモニア水等のアルカリで難
溶性の水酸化物として沈殿させ、水洗・乾燥後数百℃で
仮焼熱分解するものである。
Conventional technology and problems> The general method for producing ultrafine zirconium oxide particles is to precipitate a water-soluble zirconium salt aqueous solution as a sparingly soluble hydroxide in an alkali such as aqueous ammonia, wash with water, dry, and then temporarily heat at several hundred degrees Celsius. It decomposes by pyrolysis.

しかしこの方法では出発原料の塩が残り、また粗大で粒
度分布の広い2次凝集粒子しか得られず、機械的摩砕が
不可欠であり、高純度を保つことが困難である。近年前
記製造方法の欠点である乾燥並びに仮焼熱分解時の粗大
で、且つ強固な2次凝集粒子の形成を回避する方法等が
いろいろ提案されている。
However, in this method, the salt of the starting material remains, and only coarse secondary agglomerated particles with a wide particle size distribution are obtained, mechanical grinding is essential, and it is difficult to maintain high purity. In recent years, various methods have been proposed to avoid the formation of coarse and strong secondary agglomerated particles during drying and calcining pyrolysis, which is a drawback of the above-mentioned production methods.

例えば、沈殿生成したジルコニウムの水酸化物スラリー
を還流下100時間位煮沸してコロイドゾルとした後、
ベンゼン、シクロヘキサン、n−オクチルアルコール等
の有機溶媒を加え、加熱蒸留により脱水、乾燥させ、得
られたジルコニウム水酸化物の微粒子を加熱分解させる
方法がある(%開昭56−145118号公報)。しか
しこの方法は前記説明からも明らかのように製造に長時
間を要し、しかも有機溶媒を使用するため製造コストが
高く、本方法により製造された酸化ジルコニウム微粉末
の用途は限定されたものになっている。
For example, after boiling the precipitated zirconium hydroxide slurry under reflux for about 100 hours to form a colloidal sol,
There is a method of adding an organic solvent such as benzene, cyclohexane, n-octyl alcohol, etc., dehydrating and drying it by heating distillation, and thermally decomposing the obtained fine particles of zirconium hydroxide (% JP-A-56-145118). However, as is clear from the above explanation, this method requires a long time to produce, and the production cost is high because it uses an organic solvent, so the use of the zirconium oxide fine powder produced by this method is limited. It has become.

マタ、ジルコニウムアルコキシドの加水分解によって生
成する非晶質ゾルを乾燥、仮焼する方法があるが、若干
の粒子凝集は不可避で、しかも原料コストが著しく高い
。また結晶性の微粒子を溶液中で生成させる方法として
ジルコニウム塩水溶液や水酸化ジルコニウムZr(OH
)4を常圧及び水熱加圧条件下で加熱処理する方法があ
る。常圧法としてはジルコニウム塩水溶液(水酸化ジル
コニウム沈殿が生成しない−<2.0の領域)に過酸化
水素水を添加し、温度80〜300℃に加熱処理する方
法(%開昭58−79818号公報)、ジルコニウム塩
水溶液を加熱処理し加水分解によるZrO2微粒子を生
成させた後、湿状態のzr(oH)。
There is a method of drying and calcining an amorphous sol produced by hydrolysis of zirconium alkoxide, but some particle aggregation is unavoidable and the raw material cost is extremely high. In addition, as a method for generating crystalline fine particles in a solution, a zirconium salt aqueous solution or zirconium hydroxide Zr (OH
) 4 under normal pressure and hydrothermal pressure conditions. As a normal pressure method, hydrogen peroxide solution is added to a zirconium salt aqueous solution (a region where zirconium hydroxide precipitate does not form - < 2.0) and heat-treated at a temperature of 80 to 300°C (% zr(oH) in a wet state after heating a zirconium salt aqueous solution to generate ZrO2 fine particles by hydrolysis.

を添加し、水酸化カリウム中で前記加水分解時生成した
ZrO2微粒子を温度100℃位で加熱成長させる方法
(窯業協会誌93C5]159−161(1985))
がある。しかしこれらの方法も実用的なZrO□歇粒子
の量を得るためには数日間を要する。また、水熱加圧法
としてはzr(on)4をNaOH水溶液中で加熱処理
する方法(J、Am、Ceram。
A method in which the ZrO2 fine particles produced during the hydrolysis in potassium hydroxide are grown by heating at a temperature of about 100°C (Ceramics Association Journal 93C5] 159-161 (1985))
There is. However, these methods also require several days to obtain a practical amount of ZrO □ particles. Further, as a hydrothermal pressing method, a method of heating zr(on)4 in an NaOH aqueous solution (J, Am, Ceram).

sac、、 65 、343−46 (1982) )
、LlCj、。
sac, 65, 343-46 (1982))
,LlCj,.

KBr水溶液中から生成させる方法(J、Am、Cer
am。
Method of producing from KBr aqueous solution (J, Am, Cer
am.

SOQ、、 66 、11−14 (1985) )が
ある。
SOQ, 66, 11-14 (1985)).

しかしながら水熱条件下では不規則な形状の凝集粒子の
ものしか得られない。(POWdcsr Tech、。
However, under hydrothermal conditions, only irregularly shaped agglomerated particles can be obtained. (POWdcsr Tech,.

2723−28(1980))、また高純度の金△ 属ジルコニウム超微粒子を水熱加圧下で短時間で酸化さ
せZrO2微粒子を得る方法があるが、この方法は出発
原料の良質な金属ジルコニウム超微粒子を安価に得るの
が難しい。いずれにせよ水熱合或は圧力容器を用いるた
め設備コストが高く、実用的な方法ではない。
2723-28 (1980)), there is also a method of obtaining ZrO2 fine particles by oxidizing high-purity metal zirconium ultrafine particles under hydrothermal pressure in a short time, but this method uses high quality metal zirconium ultrafine particles as a starting material. is difficult to obtain at a low price. In any case, it is not a practical method because the equipment cost is high because it uses hydrothermal synthesis or a pressure vessel.

〈問題点を解決するための手段〉 本発明者は、前記公矧の酸化ジルコニウム微粒子の製造
法の欠点を解消すべく、種々研究を重ねた結果、水酸化
ジルコニウムZr (OH)4は強アルカリ中でジルコ
ニウムイオンと過酸化水素は錯体を形成し溶解すること
、またこの強アルカリ水溶液を加熱処理すると配位子の
過酸化水素が徐々に分解・脱離し、種結晶のZrO2超
微結晶粒子が存在しなくとも従来法の結晶性酸化ジルコ
ニウムの常圧析出法に比較し【短時間で結晶質ZrO2
超微粒子が生成するという知見により本発明全完成する
に到ったものである。
<Means for Solving the Problems> In order to eliminate the drawbacks of the above-mentioned method for producing zirconium oxide fine particles, the present inventor has conducted various studies and found that zirconium hydroxide Zr(OH)4 is a strong alkali. Zirconium ions and hydrogen peroxide form a complex and dissolve in it, and when this strong alkaline aqueous solution is heated, hydrogen peroxide, a ligand, gradually decomposes and leaves, and the ZrO2 ultrafine crystal particles of the seed crystals are dissolved. Compared to the conventional atmospheric pressure precipitation method of crystalline zirconium oxide, crystalline ZrO2 can be produced in a short period of time.
The present invention was completed based on the knowledge that ultrafine particles are produced.

すなわち本発明は水酸化ジルコニウムを強アルカリ中で
過酸化水素と反応させて、水溶性のジルコニウムイオン
の過酸化水素錯体と形成させ、これを温度80〜200
 ’Oで加熱処理することを特徴とする結晶質酸化ジル
コニウム微粉末の製法である。
That is, in the present invention, zirconium hydroxide is reacted with hydrogen peroxide in a strong alkali to form a water-soluble zirconium ion hydrogen peroxide complex, and this is heated at a temperature of 80 to 200 ml.
This is a method for producing crystalline zirconium oxide fine powder, which is characterized by heat treatment with 'O.

以下さらに本発明の詳細な説明する。The present invention will be further explained in detail below.

本発明において原料として使用する水酸化ジルコニウム
は、出発原料として水溶性ジルコニウム塩、例えば硝酸
塩、硫酸塩、塩酸塩、酢酸塩等の水溶液を調製し、これ
にアンそニア水やNaOH等のアルカリを添加して沈澱
をさせるか、また市販の水酸化ジルコニウムをスラリー
としたものである。水酸化ジルコニウムのスラリー濃度
は特に制限はないが、実用上の見地から0.1〜1.0
モル/ノ程度のものを用いるのが好ましい。過酸化水素
水の添加量は難溶性のZr(OH)、を完全溶解するた
め溶液中のジルコニウム量のモル比で当量以上添加する
のが望ましい。強アルカリ剤としてはアンモニア水、N
aOH、KOH等のいずれでもよいが、ジルコニウムイ
オンの過酸化水素水体が溶解し始める水素イオン濃度−
〉12以上を容易に達成できるもので、しかもZrO2
微粒子を生成するに際し加熱処理を施すため揮発性でな
いものが望ましい。また、強アルカリ濃度を高濃度にし
てゆくと、ジルコニウムイオンの過ば化水素錯体の分解
、脱離速度が著しく遅(なり結晶性のよいZrO2超微
粒子が得られ、しかも溶質によるモル沸点上昇温度を大
きくとれるためn沸することなく、温度100℃以上の
熱処理が可能になり、しかもこの高温処理もZrCl2
微粒子の結晶性を向上させることができる。この場合−
≧16.5にすることが好ましい。
Zirconium hydroxide used as a raw material in the present invention is obtained by preparing an aqueous solution of a water-soluble zirconium salt, such as nitrate, sulfate, hydrochloride, acetate, etc., as a starting material, and adding an alkali such as anthonia water or NaOH to this solution. It can be added to precipitate, or commercially available zirconium hydroxide can be made into a slurry. There is no particular limit to the slurry concentration of zirconium hydroxide, but from a practical standpoint it is 0.1 to 1.0.
It is preferable to use something on the order of mol/no. The amount of hydrogen peroxide added is desirably equal to or more than the molar ratio of the amount of zirconium in the solution in order to completely dissolve poorly soluble Zr(OH). Strong alkaline agents include ammonia water, N
Either aOH, KOH, etc. may be used, but the hydrogen ion concentration at which the hydrogen peroxide solution of zirconium ions begins to dissolve -
〉12 or more can be easily achieved, and ZrO2
It is desirable that the material is non-volatile since heat treatment is performed when producing fine particles. In addition, when the strong alkali concentration is increased, the rate of decomposition and desorption of the hydrogen perbide complex of zirconium ions is extremely slow (so that ultrafine ZrO2 particles with good crystallinity can be obtained, and the temperature at which the molar boiling point rises due to the solute is Since it is possible to obtain a large amount of
The crystallinity of fine particles can be improved. In this case −
It is preferable to set it to ≧16.5.

加熱処理温度としては80〜200℃が好ましいが、さ
らに好ましくは90〜140℃である。
The heat treatment temperature is preferably 80 to 200°C, more preferably 90 to 140°C.

加熱処理温度が80℃未満では結晶析出に長大な時間を
要し経済的にも実際的でなく、一方200℃をこえると
反応時間は短縮されるが、装置等固定設備費用が高くな
るだけでなく生成結晶が粗大で粒度が不均一となる。
If the heat treatment temperature is less than 80°C, it will take a long time for crystal precipitation to occur, making it economically impractical. On the other hand, if the heat treatment temperature exceeds 200°C, the reaction time will be shortened, but the cost of fixed equipment such as equipment will only increase. The resulting crystals are coarse and non-uniform in grain size.

なお本発明において、水酸化ジルコニウム、ジルコニウ
ムイオン等は通常含有される10チ以下のハフニウム原
子Hf及びその他の微量不純物を含有する一般的に意味
するものを含むことは勿論である。従来法の結晶質酸化
ジルコニウム微粉末の製法は、強アルカリ中で結晶質Z
rO2超微粒子を生成させるのには水熱加圧条件て加熱
処理するか、若しくは常圧下ではZrO2微粒子の1結
晶を添加し長時間の加熱処理するかのいずれの方法しか
なかったが、本発明によれば過酸化水素水を作用させる
ことにより配位水を多量に含有したZr (OH) 4
を経ずに、直接溶液中のジルコニウムイオンから結晶質
酸化ジルコニウムを生成させることができ、しかも従来
法より比較的短時間(3時間以下)で溶液中の全てのジ
ルコニウムイオンを析出させることができる。また析出
した結晶質ZrO2超微粒子は粒度が均一で、洗浄・脱
水後加熱により乾燥しても、かさ密度が高く実質的に凝
集のないZrO2微粉体が得られるという効果がある。
In the present invention, zirconium hydroxide, zirconium ions, etc., of course, include what is generally meant as containing 10 or less hafnium atoms Hf and other trace impurities. The conventional method for producing crystalline zirconium oxide fine powder is to produce crystalline Zirconium oxide powder in a strong alkali.
The only methods to generate rO2 ultrafine particles were to heat them under hydrothermal pressure conditions or to add one crystal of ZrO2 fine particles under normal pressure and heat them for a long time, but the present invention According to Zr (OH) 4 containing a large amount of coordinated water by the action of hydrogen peroxide solution.
It is possible to directly generate crystalline zirconium oxide from zirconium ions in a solution without going through any process, and it is also possible to precipitate all the zirconium ions in the solution in a relatively short time (less than 3 hours) than conventional methods. . Further, the precipitated crystalline ZrO2 ultrafine particles have a uniform particle size, and even if dried by heating after washing and dehydration, ZrO2 fine powder with high bulk density and substantially no agglomeration can be obtained.

以下実施例、比較例をあげてさらに説明する。Further explanation will be given below with reference to Examples and Comparative Examples.

〈実施例〉 再結晶法により楕製した高純度オキソ塩化ジルコニウム
(ZrOCl2・8H20) 80 、Fを純水300
dに溶解し、これに水酸化す)IJウム水溶液(濃度0
.5モル/リットル)を加えて水酸化ジルコニウムを沈
殿させた。これに市販の過酸化水素濃度31重量%の過
酸化水素水70yを加え、さらに8モル/リットルの水
酸化ナトリウム水溶液200dを加えて攪拌し、淡黄色
の透明液体を得た。この水溶液を還流下、温度95℃℃
6時間加熱処理し、乳濁状の液を得た。これを純水にて
洗浄濾過した後、温度100℃で5時間乾燥させた。得
られた乾燥物をX線回折した結果、立方晶型の結晶格子
を有する結晶質酸化ジルコニウムであった。
<Example> High-purity oxo zirconium chloride (ZrOCl2.8H20) made into an oval by a recrystallization method 80%, F 300% pure water
IJum aqueous solution (concentration 0)
.. 5 mol/liter) to precipitate zirconium hydroxide. To this was added 70 y of a commercially available hydrogen peroxide solution with a hydrogen peroxide concentration of 31% by weight, and further added 200 d of an 8 mol/liter aqueous sodium hydroxide solution and stirred to obtain a pale yellow transparent liquid. This aqueous solution was refluxed at a temperature of 95°C.
The mixture was heated for 6 hours to obtain an emulsified liquid. This was washed and filtered with pure water, and then dried at a temperature of 100° C. for 5 hours. As a result of X-ray diffraction of the obtained dried product, it was found to be crystalline zirconium oxide having a cubic crystal lattice.

また得られた乾燥物1gt−リン酸エステル系の分散剤
(商品名[1[imphos P8−21AJ ) t
−適量添加したエチルアルコール50dに加え市販の超
音波洗浄器にて30分間分散処理を施した。この分散状
態を透過盤電子顕微鏡で観察した結果、−次粒子は20
OA前後の超微粒子で、大部分の粒子は0.1μm前後
の集合体を形成していた。
In addition, 1 gt of the obtained dry product - phosphoric acid ester dispersant (trade name [1 [imphos P8-21AJ)]t
- In addition to 50 d of ethyl alcohol added in an appropriate amount, dispersion treatment was performed for 30 minutes using a commercially available ultrasonic cleaner. As a result of observing this dispersion state with a transmission disk electron microscope, it was found that -order particles were 20
Most of the ultrafine particles before and after OA formed aggregates of about 0.1 μm.

く比較例〉 実施例で使用したオキソ塩化ジルコニウム80gを純水
300 dIICffj解し、これに水酸化ナトリウム
水溶液(濃度0.5モル/リットル)を加えて水酸化ジ
ルコニウムZr (OH)、を沈殿させた。さらにこれ
に高濃度(NaOH8mol/J )の水酸化ナトリウ
ム水溶液200dを加え十分に攪拌して粘稠性スラリー
を得た。そのスラリーを還流下、温度95℃で約10時
間加熱処理した。その処理物を純水にて浄洗濾過した後
、温度100℃の熱風下5時間乾燥させた。得られた乾
燥物を粉末x7法により結晶性を調べた結果、回折ピー
クらしきものは全く見あたらず、非品性であった。
Comparative Example> 80 g of zirconium oxochloride used in the example was dissolved in 300 dIICffj of pure water, and an aqueous sodium hydroxide solution (concentration 0.5 mol/liter) was added to precipitate zirconium hydroxide Zr (OH). Ta. Further, 200 d of a highly concentrated (NaOH 8 mol/J) aqueous sodium hydroxide solution was added to this and sufficiently stirred to obtain a viscous slurry. The slurry was heated under reflux at a temperature of 95° C. for about 10 hours. The treated product was washed and filtered with pure water, and then dried under hot air at a temperature of 100° C. for 5 hours. As a result of examining the crystallinity of the obtained dried product using the powder x7 method, no diffraction peaks were found, and the product was found to be of poor quality.

〈発明の効果〉 (1)  本発明によって得られる酸化ジルコニウム微
粉末は実質的に一次粒子から成り、優れた分散性、混合
性を有する。従って分散強化セラミックス及び分散強化
合金用原料粉末として特に有用である。
<Effects of the Invention> (1) The zirconium oxide fine powder obtained by the present invention consists essentially of primary particles and has excellent dispersibility and mixability. Therefore, it is particularly useful as a raw material powder for dispersion-strengthened ceramics and dispersion-strengthened alloys.

又電子セラミックス分野で大量に使用されているPb(
Zr、T1)o3等の多成分系焼結体の原料、或いは触
媒担体の原料としても有用である。
Furthermore, Pb (
It is also useful as a raw material for multi-component sintered bodies such as Zr, T1) o3, etc., or as a raw material for catalyst carriers.

(2)  本発明の製造方法は極めて単純な単位操作か
ら構成され、しかも短時間で高収率が得られるため工業
的大量生産が可能であり、その経済的価値は著しく高い
。すなわち水溶性ジルコニウム化合物、過酸化水累水、
強アルカリを混合・溶解させ水溶液とし、加熱処理を施
せばよい。また1m01/ノ以上の濃厚溶液の処理も可
能である。さらに同一容器内ですべての操作を行なえば
よく大量の処理が可能である。
(2) The production method of the present invention is composed of extremely simple unit operations, and high yields can be obtained in a short time, so that industrial mass production is possible, and its economic value is extremely high. Namely, water-soluble zirconium compounds, accumulated water peroxide,
All you have to do is mix and dissolve a strong alkali to form an aqueous solution, and then heat-treat the solution. It is also possible to process concentrated solutions of 1 m01/no or more. Furthermore, it is possible to process a large amount by performing all operations in the same container.

Claims (1)

【特許請求の範囲】[Claims] 1、水酸化ジルコニウムを強アルカリ中で過酸化水素と
反応させて、水溶性のジルコニウムイオンの過酸化水素
錯体を形成させ、これを温度80〜200℃で加熱処理
することを特徴とする結晶質酸化ジルコニウム微粉末の
製法。
1. A crystalline product characterized by reacting zirconium hydroxide with hydrogen peroxide in a strong alkali to form a water-soluble zirconium ion hydrogen peroxide complex, which is then heat-treated at a temperature of 80 to 200°C. Manufacturing method of zirconium oxide fine powder.
JP11117985A 1985-05-23 1985-05-23 Production of crystalline zirconium oxide fine powder Pending JPS61270217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11117985A JPS61270217A (en) 1985-05-23 1985-05-23 Production of crystalline zirconium oxide fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11117985A JPS61270217A (en) 1985-05-23 1985-05-23 Production of crystalline zirconium oxide fine powder

Publications (1)

Publication Number Publication Date
JPS61270217A true JPS61270217A (en) 1986-11-29

Family

ID=14554493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11117985A Pending JPS61270217A (en) 1985-05-23 1985-05-23 Production of crystalline zirconium oxide fine powder

Country Status (1)

Country Link
JP (1) JPS61270217A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212224A (en) * 1986-03-14 1987-09-18 Taiyo Yuden Co Ltd Production of zirconia solid solution crystal fine powder
ES2190300A1 (en) * 2000-02-04 2003-07-16 Consejo Superior Investigacion Production of stable tetragonal structure zirconium oxide powders comprises polycondensation of sol to form gel based on zirconyl chloride and ammonia
JP2009162848A (en) * 2007-12-28 2009-07-23 Jgc Catalysts & Chemicals Ltd Coating liquid for forming transparent film for synthetic resin lens, and synthetic resin lens
JP2009167085A (en) * 2007-12-20 2009-07-30 Jgc Catalysts & Chemicals Ltd Method for producing zirconia sol

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212224A (en) * 1986-03-14 1987-09-18 Taiyo Yuden Co Ltd Production of zirconia solid solution crystal fine powder
ES2190300A1 (en) * 2000-02-04 2003-07-16 Consejo Superior Investigacion Production of stable tetragonal structure zirconium oxide powders comprises polycondensation of sol to form gel based on zirconyl chloride and ammonia
JP2009167085A (en) * 2007-12-20 2009-07-30 Jgc Catalysts & Chemicals Ltd Method for producing zirconia sol
JP2009162848A (en) * 2007-12-28 2009-07-23 Jgc Catalysts & Chemicals Ltd Coating liquid for forming transparent film for synthetic resin lens, and synthetic resin lens

Similar Documents

Publication Publication Date Title
JP5361190B2 (en) Fine powder lead zirconate titanate, titanium zirconate hydrate, zirconium titanate and process for producing the same
Nikishina et al. Niobium-and tantalum-containing oxide materials: synthesis, properties, and application
US6136229A (en) Method for the mechanochemical preparation of high performance ceramics
JP2007070212A (en) SOL CONTAINING Zr-O-BASED PARTICLE AS DISPERSOID AND METHOD FOR PRODUCING THE SAME
EP0186199A2 (en) Method for manufacturing fine lead titanate powders
JPS61270217A (en) Production of crystalline zirconium oxide fine powder
Kolen'ko et al. Phase composition of nanocrystalline titania synthesized under hydrothermal conditions from different titanyl compounds
JPH03141115A (en) Production of fine yttrium oxide powder
US3352632A (en) Production of lead titanate and lead zirconate for ceramic bodies
JP3190060B2 (en) Method for producing fine ceria solid solution tetragonal zirconia powder
JPH04280815A (en) Fine particulate alkali titanate and its production
JPS62128924A (en) Production of zirconium oxide series fine powder
Niederberger et al. Nonaqueous synthesis of barium titanate nanocrystals in acetophenone as oxygen supplying agent
JP2547007B2 (en) Method for producing perovskite type oxide fine powder
US20060275201A1 (en) Production of perovskite particles
JP3265597B2 (en) Method for producing zirconia fine powder
JP4185197B2 (en) Method for producing bismuth (III) oxide
JPS63144116A (en) Production of oxide particle
JPS61251516A (en) Production of perovskite type oxide
JPH0524089B2 (en)
JPH10236824A (en) Titania-zirconia multiple oxide fine powder and its production
JPS62212224A (en) Production of zirconia solid solution crystal fine powder
JP3254693B2 (en) Preparation of hydrated zirconia sol and zirconia powder
JPH0361609B2 (en)
JP3041411B2 (en) Method for producing raw material powder for piezoelectric ceramics