JPS62212224A - Production of zirconia solid solution crystal fine powder - Google Patents

Production of zirconia solid solution crystal fine powder

Info

Publication number
JPS62212224A
JPS62212224A JP5461786A JP5461786A JPS62212224A JP S62212224 A JPS62212224 A JP S62212224A JP 5461786 A JP5461786 A JP 5461786A JP 5461786 A JP5461786 A JP 5461786A JP S62212224 A JPS62212224 A JP S62212224A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
solid solution
rare earth
fine powder
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5461786A
Other languages
Japanese (ja)
Inventor
Seishi Nagasawa
長沢 晴司
Hiroshi Kishi
弘志 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP5461786A priority Critical patent/JPS62212224A/en
Publication of JPS62212224A publication Critical patent/JPS62212224A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain the titled fine powder which is uniform ultrafine crystal and has improved dispersibility and compatibility, by heat-treating a hydrogen peroxide complex of a specific water-soluble zirconia and a hydrogen peroxide complex of an alkaline earth metal and/or a rare earth element. CONSTITUTION:Zr(OH)4 in a hydrous state and at least one hydroxide selected from an alkaline earth metallic element such as Ca, Mg, etc., and a rare earth element such as Y, Ce, etc., are dissolved in an aqueous solution of strong alkali and the solution is reacted with an aqueous solution of H2O2 to give (A) a hydrogen peroxide complex of water-soluble zirconium. Then, the component A and (B) a hydrogen peroxide complex of the alkaline earth metallic element and/or the rare earth element are heat-treated at 80-200 deg.C for 30min-4 hr and crystalline zirconia solid solution fine particles are precipitated.

Description

【発明の詳細な説明】 (所業上の利用分野) 本発明は、カルシウム、マグネシウム等のアルカリ土類
金属元素やイツトリウム、セリウム等の稀土類元素の添
加によって安定化された、ジルコニア系固溶体結晶質微
粉末の製造方法に関し、更に詳しくは、均一な超微結晶
で、2次凝集を形成していない上記ジルコニア系固溶体
結晶質微粉末の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a zirconia solid solution crystal stabilized by the addition of alkaline earth metal elements such as calcium and magnesium, and rare earth elements such as yttrium and cerium. The present invention relates to a method for producing a fine powder, and more specifically, to a method for producing the above-mentioned zirconia solid solution crystalline fine powder that has uniform ultrafine crystals and does not form secondary agglomerations.

(従来の技術) ジルコニア系固溶体微粉末の一般的夷法としては、例え
ば水溶性ジルコニウム塩と、マグネシウム等のアルカリ
土類金属元素やイツトリウム等の稀土類元素を含む水溶
液にアンモニア水を加えて共沈水酸化物を形成させ、こ
れを母液から分離して洗浄後、有機溶媒中で加熱源質さ
せることにより非晶質沈殿物の乾燥を行ない、さらに仮
焼熱分解させる方法や、前記共沈水酸化物をpH10の
アルカリ性領域で200℃前後に水熱処理する方法、或
いは含水状態の水酸化ジルコニウム及びイツトリウム、
スカンジウム等の稀土類元素を含む共沈水酸化物をpH
6〜9の範囲にある混合懸濁液にし、100℃位で10
日間の加熱処理を施した後、強酸にて可溶性非晶質部分
を溶解分離除去する方法が知られている。
(Prior art) As a general method for preparing zirconia-based solid solution fine powder, for example, ammonia water is added to an aqueous solution containing a water-soluble zirconium salt and an alkaline earth metal element such as magnesium or a rare earth element such as yttrium. A method of forming a precipitated hydroxide, separating it from the mother liquor, washing it, drying the amorphous precipitate by heating it in an organic solvent, and further calcining and thermally decomposing it; A method of hydrothermally treating materials at around 200°C in an alkaline region of pH 10, or zirconium and yttrium hydroxide in a hydrous state,
pH of coprecipitated hydroxide containing rare earth elements such as scandium
Make a mixed suspension in the range of 6 to 9, and heat it at about 100℃ for 10
A method is known in which the soluble amorphous portion is dissolved and separated using a strong acid after heat treatment for several days.

(発明が解決しようとする問題点) しかしながら、前記従来の第1番目の方法は、共沈法か
ら得られる沈殿物は本質的に非晶質であるため、乾燥工
程及び仮焼熱処理工程で著しい2次凝集が生じる不都合
を有し、第2番目の方法は圧力容器の使用が不可欠であ
り、装置の設備コストが高く、連続繰業も不可能で、し
かも高圧力の危険を伴うという不都合を有し、第3番目
の方法は、製造時間が長時間であり、しかも歩留りも悪
いという不都合を有する。
(Problems to be Solved by the Invention) However, in the first conventional method, since the precipitate obtained from the coprecipitation method is essentially amorphous, there is a significant The second method has the disadvantage of causing secondary agglomeration, and the second method requires the use of a pressure vessel, resulting in high equipment costs, impossibility of continuous operation, and the risk of high pressure. The third method has disadvantages of long manufacturing time and poor yield.

(問題点を解決するための手段〕 本発明は前記不都合を解消したジルコニア系固溶体結晶
質微粉末の製造方法を提供することを目的とするもので
、その発明は、含水状態の水酸化ジルコニウムと、カル
シウム、マグネシウム等のアルカリ土類金属元素及びイ
ツトリウム、セリウム等の稀土類元素の水酸化物のうち
すくなくとも1棟以上とを強アルカリ中で過酸化水素に
作用させて形成した水溶性ジルコニウムの過酸化水素錯
体と、アルカリ土類金属元素及び/又、は稀土類元素の
過酸化水素錯体とを80〜200℃で加熱処理して結晶
質のジルコニア系固溶体微粒子を析出させることを特徴
とする。
(Means for Solving the Problems) An object of the present invention is to provide a method for producing a zirconia-based solid solution crystalline fine powder that eliminates the above-mentioned disadvantages. Water-soluble zirconium hydroxide formed by reacting hydrogen peroxide with at least one of the hydroxides of alkaline earth metal elements such as calcium and magnesium, and rare earth elements such as yttrium and cerium in a strong alkali. It is characterized in that a hydrogen oxide complex and a hydrogen peroxide complex of an alkaline earth metal element and/or a rare earth element are heat-treated at 80 to 200°C to precipitate crystalline zirconia solid solution fine particles.

含水状態の水酸化ジルコニウムは、例えばジルコニウム
の硝酸塩、塩酸塩、酢酸塩等の水溶性ジルコニウム塩の
水溶液を調整したのち、これにアンモニア水、水酸化ナ
トリウム等のアルカリを添加して沈殿させて得てもよい
が、市販の水酸化ジルコニウムをスラリー状にして得る
等任意である。但し、前記塩類を使用する場合、ジルコ
ニア系固溶体結晶質微粉末の高純度性を保持するために
、上記の沈殿水酸化物を十分に洗浄し、できる限り陰イ
オンを除去しておくのが望ましい。
Zirconium hydroxide in a water-containing state can be obtained by preparing an aqueous solution of a water-soluble zirconium salt such as nitrate, hydrochloride, or acetate of zirconium, and then adding alkali such as aqueous ammonia or sodium hydroxide to the solution to precipitate it. However, it is optional, such as making a slurry of commercially available zirconium hydroxide. However, when using the above salts, in order to maintain the high purity of the zirconia solid solution crystalline fine powder, it is desirable to thoroughly wash the precipitated hydroxide and remove as much anions as possible. .

カルシウム、マグネシウム等のアルカリ土類金属の水酸
化物は、一般には、市販のアルカリ土類金属イオンの塩
類、水酸化物若しくは酸化物を水溶液に溶解させたもの
を使用する。
As the hydroxide of an alkaline earth metal such as calcium or magnesium, generally used is a commercially available salt, hydroxide, or oxide of an alkaline earth metal ion dissolved in an aqueous solution.

イツトリウム、セリウム等の稀土類元素の水酸化物は、
稀土類元素の塩酸塩、硝酸塩等の水溶液、或いは稀土類
元素の酸化物を酸類に直接溶解させた水溶液にアンモニ
ア水、水酸化ナトリウム等のアルカリを添加して沈殿さ
せたものを使用する。
Hydroxides of rare earth elements such as yttrium and cerium are
An aqueous solution of a hydrochloride or nitrate of a rare earth element, or an aqueous solution in which an oxide of a rare earth element is directly dissolved in an acid, is precipitated by adding alkali such as aqueous ammonia or sodium hydroxide.

前記水酸化物は水洗にて十分に洗浄したものを用いる。The hydroxide is used after being sufficiently washed with water.

ジルコニウムイオン並びにアルカリ土類金属元素及び/
又は稀土類元素の混合過酸化水素錯体の濃度は0.1〜
1.0 mol / L程とするのが好ましい。0.1
 mol / 1未満では生産効率の面から望ましくな
く、1.0mol/Aを越える場合には析出するジルコ
ニア系固溶体微粒子が凝集しやすくなるからである。
Zirconium ions and alkaline earth metal elements and/or
Or the concentration of rare earth element mixed hydrogen peroxide complex is 0.1~
It is preferably about 1.0 mol/L. 0.1
If it is less than mol/1, it is undesirable from the viewpoint of production efficiency, and if it exceeds 1.0 mol/A, the precipitated zirconia solid solution fine particles tend to aggregate.

過酸化水素水の添加量はジルコニウム並びにアルカリ土
類金属元素及び/又は稀土類元素の水酸化物を短時間で
完全に溶解させるため、上記水酸化物のモル比で当量以
下の添加が好ましい。
In order to completely dissolve zirconium and the hydroxide of an alkaline earth metal element and/or rare earth element in a short time, it is preferable that the amount of hydrogen peroxide added is equal to or less than the equivalent molar ratio of the hydroxide.

強アルカリ剤としては、アンモニア水、強塩基性有機化
合物、水酸化す) IJウム、水酸化カリウム等が使用
されるが、可溶性のジルコニウム並びに稀土類元素の過
酸化水素錯体が形成し始めるpH値13未満が容易に到
達できる塩基が望ましく、またジルコニア系固溶体微粒
子の析出には加熱処理を施すため、反応液の温度上昇に
よるpHの低下をもたらす塩基ではないほうが望ましい
。強アルカリの濃度は高い方がより結晶性の良質な固溶
体微粒子が生成する。またアルカリ濃度が高くなるとモ
ル沸点上昇によって常圧で100℃以上の加熱が可能と
なることも利点で、処理温度が高くなる程析出粒子の結
晶性は向上する。
As strong alkaline agents, aqueous ammonia, strong basic organic compounds, potassium hydroxide, etc. are used, but the pH value at which hydrogen peroxide complexes of soluble zirconium and rare earth elements begin to form is A base that can easily reach a pH of less than 13 is desirable, and since heat treatment is performed to precipitate the zirconia-based solid solution fine particles, it is desirable that the base is not a base that causes a decrease in pH due to an increase in the temperature of the reaction solution. The higher the concentration of strong alkali, the more crystalline and high-quality solid solution particles will be produced. Another advantage is that when the alkali concentration increases, the molar boiling point increases and heating to 100° C. or higher becomes possible at normal pressure, and the higher the treatment temperature, the better the crystallinity of the precipitated particles.

過酸化水素錯体の加熱処理温度を80〜200℃とした
のは、80℃未満の場合は粒度分布の狭い単分散微粒子
が得られる析出速度が遅すぎ、製造時間が長くなり過ぎ
、また、200℃を越える場合にはアルカリ剤の大量添
加若しくは圧力容器の使用が必要となり経済的でないか
らである。従って、製造時間並びに経済性の観点から、
加熱処理温度は80〜150℃位が特に好ましく、30
分〜4時間の製造時間でほぼ100チの歩留りで析出す
る。
The reason why the heat treatment temperature of the hydrogen peroxide complex was set to 80 to 200°C is that if the temperature is less than 80°C, the precipitation rate is too slow to obtain monodisperse fine particles with a narrow particle size distribution, and the production time is too long. This is because if the temperature exceeds .degree. C., it is necessary to add a large amount of alkaline agent or use a pressure vessel, which is not economical. Therefore, from the viewpoint of manufacturing time and economy,
The heat treatment temperature is particularly preferably about 80 to 150°C, and about 30°C
A yield of approximately 100 tsp is deposited in a production time of minutes to 4 hours.

(実施例) 次に、本発明ジルコニア系固溶体結晶質微粉末の製造方
法の実施例をその比較例と共に説明する。尚、実施例並
びに比較例は、共にY2O6含* 3. Owt%のジ
ルコニア系固溶体微粉末を製造するものとした。
(Example) Next, examples of the method for producing the zirconia-based solid solution crystalline fine powder of the present invention will be described together with comparative examples thereof. Note that both the Examples and Comparative Examples contain Y2O6*3. It was assumed that zirconia-based solid solution fine powder of Owt% was produced.

実施例1 まず、オキシ塩化ジルコニウム(第1稀元素#) 0.
1 molとZrO21,0molに対してY2O3換
算で3.0 mol %の塩化イツトリウム(信越化学
’A ) 0.003molを200−の純水に溶解さ
せた。
Example 1 First, zirconium oxychloride (first rare element #) 0.
1 mol of ZrO2 and 0.003 mol of 3.0 mol % yttrium chloride (Shin-Etsu Chemical 'A) in terms of Y2O3 was dissolved in 200-mL pure water.

次に、得られた水溶液にアンモニア水(特級試薬3 Q
 wt%)を加えて共沈水酸化物沈殿を作り、純水にて
P液が硝酸銀の滴下により白濁しなくなるまで十分に洗
浄した。次で洗浄した沈殿物を2.0 mol / t
の水酸化ナトリウム水溶液20〇−中に分散させた後、
約20 mol / Lの過酸化水素水(特級試薬28
 wtチ)100−を力nえてよく攪拌した。この溶液
のpHは13.6であった。次に、得られたスラリー調
整液を90℃で2時間保持し、白濁状の析出生成物を得
た。この生成物を純水にて十分に洗浄濾過した後、アン
モニア水でpH10に調整された水中に分散させ、0.
3 moly’tのオレイン酸ナトリウム50〇−を加
えてさらに分散させた。本分散液はpH4未満にすると
凝集する性質を有するので、有機酸にてpHを4未満に
し、上澄gをデカンテーションした後、再度、前記pH
IQKy4整された水を加えて再分散させた。この工8
を4〜5回繰り返し残留ナトリウムイオンを十分に取り
除いた。
Next, add ammonia water (special grade reagent 3 Q) to the obtained aqueous solution.
wt%) to form a coprecipitated hydroxide precipitate, and the P solution was sufficiently washed with pure water until it no longer became cloudy due to the dropping of silver nitrate. 2.0 mol/t of the precipitate washed with
After dispersing it in a 200-ml aqueous solution of sodium hydroxide,
Approximately 20 mol/L hydrogen peroxide solution (special grade reagent 28
wt) 100- and stirred well. The pH of this solution was 13.6. Next, the obtained slurry preparation liquid was held at 90° C. for 2 hours to obtain a cloudy white precipitated product. After thoroughly washing and filtering this product with pure water, it was dispersed in water whose pH was adjusted to 10 with aqueous ammonia.
3 moly't of sodium oleate (500) was added and further dispersed. Since this dispersion has the property of agglomerating when the pH is lower than 4, the pH is lowered to lower than 4 with an organic acid, and after decanting the supernatant g, the above pH value is adjusted again.
IQKy4 conditioned water was added and redispersed. This work 8
This was repeated 4 to 5 times to sufficiently remove residual sodium ions.

次に、得られた洗浄物をアルコールにてオレイン酸を溶
解除去して得たケーキをオーブン中100℃で5時間乾
燥させたのち、700℃で2時間仮焼した。この仮焼さ
れた粉体12をリン酸エステル系の分散剤(商品名r 
Bnphos P8−1211Jを適量添加したアルコ
ール50−に加え、超音波洗浄器にて30分間分散処理
を施した。この分散状態を透過型電子顕微債にて観察し
た結果、1次粒子は300A前後の超微粒子結晶であっ
た。
Next, the resulting washed product was dissolved and removed with alcohol to remove the oleic acid, and the resulting cake was dried in an oven at 100°C for 5 hours, and then calcined at 700°C for 2 hours. This calcined powder 12 is mixed with a phosphate ester dispersant (product name: r).
Bnphos P8-1211J was added to alcohol 50- to which an appropriate amount was added, and a dispersion treatment was performed for 30 minutes using an ultrasonic cleaner. As a result of observing this dispersion state using a transmission electron microscope, it was found that the primary particles were ultrafine crystal particles of about 300A.

比較例1 実施例1と同一試薬を用いて、Q、 5 mol / 
Lのオキシ塩化ジルコニウム水溶g、200−と0、1
5 mol / Lの塩化イツトリウム水溶g、20−
を混合して混合溶液を得た。この混合溶液をアンモニア
水でp)IIQに常に保持できるように設計された反応
槽中に徐々に滴下し、ジルコニウムとイツトリウムの共
沈水酸化物を得た。得られた水酸化物を純水にて洗浄し
、F液が硝酸銀の滴下により白濁しなくなるまで洗浄し
た。
Comparative Example 1 Using the same reagent as in Example 1, Q, 5 mol/
Aqueous solution of zirconium oxychloride g, 200- and 0, 1
5 mol/L yttrium chloride in water g, 20-
were mixed to obtain a mixed solution. This mixed solution was gradually added dropwise with aqueous ammonia into a reaction tank designed to maintain the p)IIQ at all times to obtain a co-precipitated hydroxide of zirconium and yttrium. The obtained hydroxide was washed with pure water until the solution F was no longer cloudy due to dropwise addition of silver nitrate.

洗浄された水酸化物f2tのオクタツール中に分散させ
た後、油浴中で加熱を行ない分散液中の水分がほとんど
蒸発し、分散液の温度が急上昇しだした140℃で加熱
を中止し、分散液から濾過にて脱水沈殿物を取り出し、
オーブン中にて200℃で3時間乾燥させた後、850
℃で2時間仮焼した。
After dispersing the washed hydroxide f2t in the octatool, it was heated in an oil bath until most of the water in the dispersion evaporated and the heating was stopped at 140°C, when the temperature of the dispersion started to rise rapidly. , remove the dehydrated precipitate from the dispersion by filtration,
After drying in the oven at 200℃ for 3 hours, 850℃
It was calcined at ℃ for 2 hours.

図面は前記実施例1並びに比較例1で得られた乾燥物の
加熱減量特性線図であり、図中人は実施例1、Bは比較
例1の加熱減量曲線を示し、図中の減量曲線と、図示し
ない示差熱分析の結果から、実施例−1によるものが結
晶質であることが確認された。
The drawing is a heating loss characteristic diagram of the dried products obtained in Example 1 and Comparative Example 1, in which people indicate the heating loss curve of Example 1, B indicates the heating loss curve of Comparative Example 1, and the weight loss curve in the figure From the results of differential thermal analysis (not shown), it was confirmed that the material of Example-1 was crystalline.

次に、実施例1並びに比較例1で得られた各乾燥物を1
,100℃にて2時間焼成した粉末の正方晶率を粉末X
1@回折によって、また不純物含有量を発光分析によっ
て測足し1表に示した。
Next, 1 portion of each dried product obtained in Example 1 and Comparative Example 1 was added.
, the tetragonal crystal ratio of the powder fired at 100℃ for 2 hours is powder X
1@diffraction and the impurity content was measured by emission analysis and shown in Table 1.

更にこれらの仮焼物をホットプレスによって成形し、1
400℃で1時間焼結して抗折強度用試料を得た。この
試料をJ l8−I’L−1603の方法に従い曲げ強
度を測定し、表に示した。又試料を加熱して室温の水中
に投入し耐熱衝撃強度を測定し、破損した時の温度を表
に示した。
Furthermore, these calcined products are molded by hot press, and 1
A sample for bending strength was obtained by sintering at 400°C for 1 hour. The bending strength of this sample was measured according to the method of J18-I'L-1603 and is shown in the table. The samples were heated and placed in water at room temperature to measure their thermal shock resistance, and the temperature at which they broke was shown in the table.

表から明らかなように、実施例1のものの方が比較例1
のものに比して、正方晶率、曲げ強度、耐熱衝撃値に優
れ、しかも不純分含有量も少ないことが確認された。
As is clear from the table, Example 1 is better than Comparative Example 1.
It was confirmed that the tetragonal crystal ratio, bending strength, and thermal shock resistance were excellent, and the content of impurities was also low.

(発明の効果) このように、本発明ジルコニア系固溶体結晶質微粉末の
製造方法によれば、ジルコニウムイオン並びにアルカリ
土類金属元素イオン及び/又は稀土類元素イオンの水溶
性過酸化水素錯体を形成させ、再び脱離させることによ
り、非晶質水酸化物を経ずに直接結晶性固溶体微粒千金
析出させるという、結晶質粒子の均一核生成反応による
ため、均一で琳分散に近い、実質的に1次粒子から成る
結晶性微粉末を短時間で、しかも高歩留りで製造するこ
とができる等の効果を有する。
(Effects of the Invention) As described above, according to the method for producing a zirconia-based solid solution crystalline fine powder of the present invention, a water-soluble hydrogen peroxide complex of zirconium ions and alkaline earth metal element ions and/or rare earth element ions is formed. This is due to the homogeneous nucleation reaction of crystalline particles, in which fine grains of crystalline solid solution are precipitated directly without passing through amorphous hydroxide by desorption again. It has the advantage that crystalline fine powder consisting of primary particles can be produced in a short time and with a high yield.

また、本発明によって得られるジルコニア系固溶体結晶
質微粉末は、単分散に近い実質的に1次粒子から成り、
優れた分散性、混合性を有するので、分散強化セラミッ
クスや、分散強化合金用原料粉末として特に有用である
。更に、本発明によって得られるジルコニア系固溶体結
晶質微粉末は組成の均一性に優れるために、焼結体の曲
げ強度や熱衝撃強度が従来法によって得られた原料粉末
による焼結体よりも大きく、従って自動車用若しくは製
鋼用酸素センサーの如く振動等の使用条件が過酷な用途
に使用される強化ジルコニア固体電解質、刃物等の切削
工具類の原料粉末等としても有用である。
In addition, the zirconia-based solid solution crystalline fine powder obtained by the present invention consists essentially of primary particles that are close to monodisperse,
Since it has excellent dispersibility and mixability, it is particularly useful as a raw material powder for dispersion-strengthened ceramics and dispersion-strengthened alloys. Furthermore, since the zirconia-based solid solution crystalline fine powder obtained by the present invention has excellent compositional uniformity, the bending strength and thermal shock strength of the sintered body are higher than those of the sintered body made of raw material powder obtained by the conventional method. Therefore, it is also useful as a reinforced zirconia solid electrolyte used in applications where usage conditions such as vibration are severe, such as oxygen sensors for automobiles or steel manufacturing, and as a raw material powder for cutting tools such as knives.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例並びに比較例によって得られた乾
燥物の加熱減量特性線図である。 外2名
The drawing is a heating loss characteristic diagram of dried products obtained in Examples and Comparative Examples of the present invention. 2 people outside

Claims (1)

【特許請求の範囲】[Claims] 含水状態の水酸化ジルコニウムと、カルシウム、マグネ
シウム等のアルカリ土類金属元素及びイットリウム、セ
リウム等の稀土類元素の水酸化物のうちすくなくとも1
種以上とを強アルカリ中で過酸化水素に作用させて形成
した水溶性ジルコニウムの過酸化水素錯体と、アルカリ
土類金属元素及び/又は稀土類元素の過酸化水素錯体と
を80〜200℃で加熱処理して結晶質のジルコニア系
固溶体微粒子を析出させることを特徴とするジルコニア
系固溶体結晶質微粉末の製造方法。
Zirconium hydroxide in a hydrated state and at least one of the hydroxides of alkaline earth metal elements such as calcium and magnesium and rare earth elements such as yttrium and cerium.
A water-soluble zirconium hydrogen peroxide complex formed by reacting hydrogen peroxide with hydrogen peroxide in a strong alkali, and an alkaline earth metal element and/or rare earth element hydrogen peroxide complex at 80 to 200°C. A method for producing a zirconia-based solid solution crystalline fine powder, which comprises precipitating crystalline zirconia-based solid solution fine particles through heat treatment.
JP5461786A 1986-03-14 1986-03-14 Production of zirconia solid solution crystal fine powder Pending JPS62212224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5461786A JPS62212224A (en) 1986-03-14 1986-03-14 Production of zirconia solid solution crystal fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5461786A JPS62212224A (en) 1986-03-14 1986-03-14 Production of zirconia solid solution crystal fine powder

Publications (1)

Publication Number Publication Date
JPS62212224A true JPS62212224A (en) 1987-09-18

Family

ID=12975698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5461786A Pending JPS62212224A (en) 1986-03-14 1986-03-14 Production of zirconia solid solution crystal fine powder

Country Status (1)

Country Link
JP (1) JPS62212224A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2190300A1 (en) * 2000-02-04 2003-07-16 Consejo Superior Investigacion Production of stable tetragonal structure zirconium oxide powders comprises polycondensation of sol to form gel based on zirconyl chloride and ammonia
JP2009162848A (en) * 2007-12-28 2009-07-23 Jgc Catalysts & Chemicals Ltd Coating liquid for forming transparent film for synthetic resin lens, and synthetic resin lens
JP2009167085A (en) * 2007-12-20 2009-07-30 Jgc Catalysts & Chemicals Ltd Method for producing zirconia sol

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426997A (en) * 1977-08-03 1979-02-28 Murata Manufacturing Co Method of making high purity oxide
JPS5935029A (en) * 1982-08-20 1984-02-25 Etsuro Kato Preparation of zirconia type fine powder
JPS6144717A (en) * 1984-08-07 1986-03-04 Nippon Shokubai Kagaku Kogyo Co Ltd Production of fine zirconia powder
JPS61270217A (en) * 1985-05-23 1986-11-29 Denki Kagaku Kogyo Kk Production of crystalline zirconium oxide fine powder
JPS62128924A (en) * 1985-11-29 1987-06-11 Denki Kagaku Kogyo Kk Production of zirconium oxide series fine powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426997A (en) * 1977-08-03 1979-02-28 Murata Manufacturing Co Method of making high purity oxide
JPS5935029A (en) * 1982-08-20 1984-02-25 Etsuro Kato Preparation of zirconia type fine powder
JPS6144717A (en) * 1984-08-07 1986-03-04 Nippon Shokubai Kagaku Kogyo Co Ltd Production of fine zirconia powder
JPS61270217A (en) * 1985-05-23 1986-11-29 Denki Kagaku Kogyo Kk Production of crystalline zirconium oxide fine powder
JPS62128924A (en) * 1985-11-29 1987-06-11 Denki Kagaku Kogyo Kk Production of zirconium oxide series fine powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2190300A1 (en) * 2000-02-04 2003-07-16 Consejo Superior Investigacion Production of stable tetragonal structure zirconium oxide powders comprises polycondensation of sol to form gel based on zirconyl chloride and ammonia
JP2009167085A (en) * 2007-12-20 2009-07-30 Jgc Catalysts & Chemicals Ltd Method for producing zirconia sol
JP2009162848A (en) * 2007-12-28 2009-07-23 Jgc Catalysts & Chemicals Ltd Coating liquid for forming transparent film for synthetic resin lens, and synthetic resin lens

Similar Documents

Publication Publication Date Title
US4619817A (en) Hydrothermal method for producing stabilized zirconia
GB2163142A (en) A process for producing a composition which includes perovskite compound
JP2003137550A (en) Manufacturing method for zirconia/ceria-based composite oxide
CN112745105B (en) High-sintering-activity alumina ceramic powder and preparation method thereof
KR101121876B1 (en) Process for preparing zirconium oxides and zirconium-based mixed oxides
JP2010105892A (en) Zirconia fine particle and method for producing the same
US5143711A (en) Process for manufacturing a precursor powder for use in making a varistor and a powder manufactured in this process
JP3646818B2 (en) Bismuth oxycarbonate powder and method for producing the same
JPH0346407B2 (en)
JPS62212224A (en) Production of zirconia solid solution crystal fine powder
JPH0472772B2 (en)
JPH03141115A (en) Production of fine yttrium oxide powder
US5252316A (en) Zirconium oxide powder, process for its preparation and its use
JPH04280815A (en) Fine particulate alkali titanate and its production
JP2547007B2 (en) Method for producing perovskite type oxide fine powder
JPS6227328A (en) Production of easily sinterable powdery starting material for perovskite and its solid solution
JPS63260822A (en) Polycrystalline barium titanate fiber having oriented crystallographic axis
JPH06171944A (en) Production of zirconium oxide powder
JPS62128924A (en) Production of zirconium oxide series fine powder
JP3254693B2 (en) Preparation of hydrated zirconia sol and zirconia powder
JPH04238814A (en) Preparation of titanate of bi- or tri-valent cation
KR100473399B1 (en) Process for the preparation of fine ceramic powders
WO2001010781A1 (en) METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS
JPS61270217A (en) Production of crystalline zirconium oxide fine powder
JPH06171943A (en) Production of zirconium oxide powder