JP3646818B2 - Bismuth oxycarbonate powder and method for producing the same - Google Patents

Bismuth oxycarbonate powder and method for producing the same Download PDF

Info

Publication number
JP3646818B2
JP3646818B2 JP35264795A JP35264795A JP3646818B2 JP 3646818 B2 JP3646818 B2 JP 3646818B2 JP 35264795 A JP35264795 A JP 35264795A JP 35264795 A JP35264795 A JP 35264795A JP 3646818 B2 JP3646818 B2 JP 3646818B2
Authority
JP
Japan
Prior art keywords
bismuth
particle size
powder
oxycarbonate
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35264795A
Other languages
Japanese (ja)
Other versions
JPH09183620A (en
Inventor
徳昭 野上
昭彦 菅原
一成 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP35264795A priority Critical patent/JP3646818B2/en
Publication of JPH09183620A publication Critical patent/JPH09183620A/en
Application granted granted Critical
Publication of JP3646818B2 publication Critical patent/JP3646818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、オキシ炭酸ビスマス粉末の製造方法に関する。さらに詳しくは、エレクトロ・セラミックス材料、光学材料等に用いられ、分散性の優れた微細なオキシ炭酸ビスマス粉末の製造方法に関する。
【0002】
【従来の技術】
オキシ炭酸ビスマスの製法としては、硝酸ビスマス(III )溶液を炭酸ナトリウム溶液または炭酸水素ナトリウム溶液に加え、得られた沈殿を乾燥する方法が知られている。しかしこのような従来の技術には、得られるオキシ炭酸ビスマスが凝集の激しいものとなっていたため、次のような欠点があった。
【0003】
すなわち、エレクトロ・セラミックス材料、光学材料等の製造に用いる場合、製品中のBi分布のばらつきが大きくなるため、特性の再現性が乏しい、製品の収率が低いなどの問題があった。
【0004】
また、一般的には酸化ビスマスをこれら用途に用いるが、同様の問題があった。
【0005】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決し、分散性に優れた微細なオキシ炭酸ビスマス粉末およびその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者等は斯かる課題を解決するため鋭意研究したところ、分散性の良いオキシ炭酸ビスマスの製造方法を見出し、本発明を提出することができた。
【0007】
すなわち本発明は、第1に粒度分布の50%累積粒径が0.1〜3.0μmの範囲内にあり、90%累積粒径が10.0μm以下であることを特徴とするオキシ炭酸ビスマス粉末、第2に比表面積が10m2/g以上であることを特徴とする第1記載のオキシ炭酸ビスマス粉末、第3にビスマス塩の水溶液をアルカリにて中和し、pH9以上、液温25〜40℃の条件下で水酸化ビスマスを含む沈殿物を生成したのち、この沈殿物を含む溶液に炭酸塩を加えて撹拌し、得られた沈殿物を濾過、乾燥することからなるオキシ炭酸ビスマス粉末の製造方法である。
【0008】
【作用】
まず、ビスマス塩の水溶液をアンモニア水に添加して、水酸化ビスマスの沈殿を生成させる。この際の水溶液の温度は25℃〜40℃、好ましくは25℃〜30℃に制御される。液温40℃以上では、このあと添加する炭酸塩が分解し、反応寄与分が減少してしまい、25℃以下では冷却の必要が生じ操作上好ましくない。
【0009】
アンモニア水とビスマス塩水溶液の濃度には特に制限はなく、例えばアンモニア濃度20〜25%のアンモニア水およびビスマス濃度(Biとして)100〜200g/l のビスマス塩水溶液が用いられる。
【0010】
アンモニア水の量はビスマス塩添加後のpHが9以上になるように添加することが好ましい。
【0011】
ビスマス塩としては水に可溶なビスマス塩であればよく、特に制限はない。具体的には硝酸ビスマス、硫酸ビスマス、塩化ビスマス等を用いることができる。
【0012】
反応系は反応前後を通じて攪拌される。
【0013】
次に生成した水酸化ビスマスの沈殿を含む反応液に炭酸塩を添加する。炭酸塩としては、炭酸アンモニウム、炭酸水素アンモニウムが好適に用いられる。炭酸塩の添加量はビスマスに対して当量である。炭酸塩添加後のpHは9以上となる。
【0014】
次いで濾過、脱水、水洗、乾燥、解砕を行う。これらの工程には従来の方法を適用できる。乾燥温度は100〜150℃であり、好ましくはオキシ炭酸ビスマスの分解温度を考慮すると120℃前後が好ましい。
【0015】
【実施例1】
アンモニア濃度25%のアンモニア水80mlにビスマス濃度(Biとして)140g/l の硝酸ビスマス160mlを攪拌しながら添加し、沈殿を生成させた。反応後の溶液のpHは9.5程度となる。次いで炭酸水素アンモニウム5gを50mlの水に溶解した水溶液を加えて約15分間攪拌したのち濾過、水洗した。沈殿物を120℃で20時間乾燥したのち解砕し、オキシ炭酸ビスマス粉を得た。
【0016】
得られたオキシ炭酸ビスマス粉の粒度分布をレーザー回折・散乱法で測定した。測定には島津製作所製SALD−1000を使用し、試料を0.2%ヘキサメタリン酸ソーダ水溶液中に超音波分散(30秒間)させて測定を行い、その結果を図1に示した。50%累積粒径(D50)は1.04μmであり、90%累積粒径(D90)は2.49μmであった。比表面積(BET 1点法)は13.7m2/gであった。粒子構造を示すSEM写真は図5に示す通りであった。
【0017】
【実施例2】
アンモニア濃度25%のアンモニア水200mlにビスマス濃度(Biとして)140g/l の硝酸ビスマス水溶液200mlを攪拌しながら添加し、沈殿を生成させた。反応後の溶液のpHは10程度となる。次いで炭酸水素アンモニウム5gを50mlの水に溶解した水溶液を加えて約15分間攪拌したのち濾過、水洗した。沈殿物を120℃で20時間乾燥したのち解砕し、オキシ炭酸ビスマス粉を得た。
【0018】
得られたオキシ炭酸ビスマス粉の粒度分布を実施例1と同じ方法で測定したところ、その結果は図1とほぼ同じであって、50%累積粒径(D50)は1.35μmであり、90%累積粒径(D90)は3.15μmであった。SEM写真も実施例1に示したものと実質的に同じであった。比表面積(BET 1点法)は12.9m2/gであった。
【0019】
【実施例3】
実施例1で得られたオキシ炭酸ビスマス粉を電気炉にて400℃、空気中で5時間焼成し、酸化ビスマスを得た。得られた酸化ビスマスの粒度分布を実施例1と同じ方法で測定し、得られた粒度分布図を図2に、粉末の粒子構造を示すSEM写真を図6に示した。50%累積粒径(D50)は1.59μmであり、90%累積粒径(D90)は7.04μmであった。比表面積(BET 1点法)は4.10m2/gであった。
【0020】
【比較例1】
オキシ炭酸ビスマスの市販品として、和光純薬工業製炭酸酸化ビスマス(ロット番号 TWF3428)について、実施例1と同じ方法で粒度分布を測定しその結果を図3に示した。50%累積粒径(D50)は7.86μmであり、90%累積粒径(D90)は19.28μmであった。比表面積(BET 1点法)は5.37m2/gであった。粉末の粒子構造を示すSEM写真を図7に示す。
【0021】
【比較例2】
硝酸ビスマス溶液を炭酸ナトリウム溶液に加える従来法により得たオキシ炭酸ビスマスを乾燥、解砕した場合の粒度分布およびSEM写真は比較例1の場合と同様であった。平均粒径(D50)は12.95μm、(D90)は31.15μmであった。この粒径は、SEM粒径に比べて極端に大きな粒径であり、これは、得られたオキシ炭酸ビスマスが著しく凝集していることを示している。比表面積は10.2m2/gであった。
【0022】
【比較例3】
比較例1のオキシ炭酸ビスマスを電気炉にて400℃、空気中で5時間焼成し、酸化ビスマスを得た。実施例と同じ方法で粒度分布を測定した結果は図4に示す通りであって、50%累積粒径(D50)は7.01μmであり、90%累積粒径(D90)は18.18μmであった。比表面積(BET 1点法)は4.34m2/gであった。粉末の粒子構造を示すSEM写真を図8に示す。
【0023】
上記実施例1〜3および比較例1〜3の結果をまとめて対比すると表1の通りである。
【0024】
【表1】

Figure 0003646818
【0025】
【発明の効果】
従来法では得られたオキシ炭酸ビスマスは凝集の激しいものであったが、本発明により、市販品粉末に比べてはるかに微細な、分散性に優れたオキシ炭酸ビスマスの粉末を得ることができた。
【0026】
また、焼成によって酸化ビスマスを製造する際、通常焼結防止剤の添加が必要であるが、本発明のオキシ炭酸ビスマスを原料として用いることによって、焼結防止剤を使用せずに分散性に優れた微細な酸化ビスマス粉をつくることができる。
【図面の簡単な説明】
【図1】実施例1で得られたオキシ炭酸ビスマスの粒度分布図である。
【図2】実施例3で得られた酸化ビスマスの粒度分布図である。
【図3】比較例1で得られたオキシ炭酸ビスマスの粒度分布図である。
【図4】比較例3で得られた酸化ビスマスの粒度分布図である。
【図5】実施例1で得られたオキシ炭酸ビスマスの粒子構造を示すSEM写真である。
【図6】実施例3で得られた酸化ビスマスの粒子構造を示すSEM写真である。
【図7】市販品オキシ炭酸ビスマス(和光純薬工業製炭酸酸化ビスマス)の粒子構造を示すSEM写真である。
【図8】市販品オキシ炭酸ビスマス(和光純薬工業製炭酸酸化ビスマス)を焼成して得られた酸化ビスマスの粒子構造を示すSEM写真である。[0001]
[Industrial application fields]
The present invention relates to a method for producing bismuth oxycarbonate powder. More specifically, the present invention relates to a method for producing a fine bismuth oxycarbonate powder that is used in electro-ceramic materials, optical materials, etc. and has excellent dispersibility.
[0002]
[Prior art]
As a method for producing bismuth oxycarbonate, a method is known in which a bismuth (III) nitrate solution is added to a sodium carbonate solution or a sodium hydrogen carbonate solution, and the resulting precipitate is dried. However, such a conventional technique has the following drawbacks because the obtained bismuth oxycarbonate is agglomerated.
[0003]
That is, when used for the production of electro-ceramic materials, optical materials, etc., there are problems such as poor product reproducibility and low product yield because of the large variation in Bi distribution in the product.
[0004]
In general, bismuth oxide is used for these applications, but there are similar problems.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to solve the above problems and to provide a fine bismuth oxycarbonate powder excellent in dispersibility and a method for producing the same.
[0006]
[Means for Solving the Problems]
The inventors of the present invention have intensively studied to solve such a problem. As a result, they have found a method for producing bismuth oxycarbonate having good dispersibility, and have been able to submit the present invention.
[0007]
That is, the present invention provides a bismuth oxycarbonate characterized by firstly having a 50% cumulative particle size distribution in the range of 0.1 to 3.0 μm and a 90% cumulative particle size of 10.0 μm or less. Powder, second specific surface area of 10 m 2 / g or more, neutralized bismuth oxycarbonate powder according to the first, third bismuth salt aqueous solution with alkali, pH 9 or more, liquid temperature 25 Bismuth oxycarbonate comprising forming a precipitate containing bismuth hydroxide under a condition of ˜40 ° C., adding carbonate to the solution containing the precipitate and stirring, and filtering and drying the resulting precipitate. It is a manufacturing method of powder.
[0008]
[Action]
First, an aqueous solution of bismuth salt is added to aqueous ammonia to form a precipitate of bismuth hydroxide. The temperature of the aqueous solution at this time is controlled to 25 ° C to 40 ° C, preferably 25 ° C to 30 ° C. When the liquid temperature is 40 ° C. or higher, the carbonate to be added thereafter is decomposed and the contribution of the reaction is reduced.
[0009]
The concentration of the aqueous ammonia and the aqueous bismuth salt solution is not particularly limited. For example, aqueous ammonia having an ammonia concentration of 20 to 25% and an aqueous bismuth salt solution having a bismuth concentration (as Bi) of 100 to 200 g / l are used.
[0010]
The amount of aqueous ammonia is preferably added so that the pH after addition of the bismuth salt is 9 or more.
[0011]
The bismuth salt is not particularly limited as long as it is soluble in water. Specifically, bismuth nitrate, bismuth sulfate, bismuth chloride, or the like can be used.
[0012]
The reaction system is stirred throughout the reaction.
[0013]
Next, carbonate is added to the reaction solution containing the precipitate of bismuth hydroxide formed. As the carbonate, ammonium carbonate and ammonium hydrogen carbonate are preferably used. The amount of carbonate added is equivalent to bismuth. The pH after the carbonate addition is 9 or more.
[0014]
Next, filtration, dehydration, washing with water, drying and crushing are performed. Conventional methods can be applied to these steps. The drying temperature is 100 to 150 ° C., and preferably around 120 ° C. in consideration of the decomposition temperature of bismuth oxycarbonate.
[0015]
[Example 1]
160 ml of bismuth nitrate having a bismuth concentration (as Bi) of 140 g / l was added to 80 ml of ammonia water having an ammonia concentration of 25% with stirring to form a precipitate. The pH of the solution after the reaction is about 9.5. Next, an aqueous solution in which 5 g of ammonium hydrogen carbonate was dissolved in 50 ml of water was added and stirred for about 15 minutes, followed by filtration and washing with water. The precipitate was dried at 120 ° C. for 20 hours and then crushed to obtain bismuth oxycarbonate powder.
[0016]
The particle size distribution of the obtained bismuth oxycarbonate powder was measured by a laser diffraction / scattering method. For the measurement, SALD-1000 manufactured by Shimadzu Corporation was used, and the sample was subjected to ultrasonic dispersion (30 seconds) in a 0.2% sodium hexametaphosphate aqueous solution, and the result is shown in FIG. The 50% cumulative particle size (D50) was 1.04 μm and the 90% cumulative particle size (D90) was 2.49 μm. The specific surface area (BET 1-point method) was 13.7 m 2 / g. The SEM photograph showing the particle structure is as shown in FIG.
[0017]
[Example 2]
A 200 g aqueous solution of bismuth nitrate having a bismuth concentration (as Bi) of 140 g / l was added to 200 ml of ammonia water having an ammonia concentration of 25% with stirring to form a precipitate. The pH of the solution after the reaction is about 10. Next, an aqueous solution in which 5 g of ammonium hydrogen carbonate was dissolved in 50 ml of water was added and stirred for about 15 minutes, followed by filtration and washing with water. The precipitate was dried at 120 ° C. for 20 hours and then crushed to obtain bismuth oxycarbonate powder.
[0018]
When the particle size distribution of the obtained bismuth oxycarbonate powder was measured by the same method as in Example 1, the result was almost the same as in FIG. 1, and the 50% cumulative particle size (D50) was 1.35 μm. % Cumulative particle size (D90) was 3.15 μm. The SEM photograph was substantially the same as that shown in Example 1. The specific surface area (BET 1-point method) was 12.9 m 2 / g.
[0019]
[Example 3]
The bismuth oxycarbonate powder obtained in Example 1 was baked in an electric furnace at 400 ° C. in air for 5 hours to obtain bismuth oxide. The particle size distribution of the obtained bismuth oxide was measured by the same method as in Example 1. The obtained particle size distribution diagram is shown in FIG. 2, and the SEM photograph showing the particle structure of the powder is shown in FIG. The 50% cumulative particle size (D50) was 1.59 μm, and the 90% cumulative particle size (D90) was 7.04 μm. The specific surface area (BET 1-point method) was 4.10 m 2 / g.
[0020]
[Comparative Example 1]
As a commercial product of bismuth oxycarbonate, particle size distribution was measured for bismuth carbonate carbonate (lot number TWF3428) manufactured by Wako Pure Chemical Industries, Ltd. in the same manner as in Example 1, and the results are shown in FIG. The 50% cumulative particle size (D50) was 7.86 μm and the 90% cumulative particle size (D90) was 19.28 μm. The specific surface area (BET 1-point method) was 5.37 m 2 / g. An SEM photograph showing the particle structure of the powder is shown in FIG.
[0021]
[Comparative Example 2]
When bismuth oxycarbonate obtained by the conventional method of adding a bismuth nitrate solution to a sodium carbonate solution was dried and crushed, the particle size distribution and SEM photograph were the same as in Comparative Example 1. The average particle diameter (D50) was 12.95 μm, and (D90) was 31.15 μm. This particle size is extremely large compared to the SEM particle size, which indicates that the obtained bismuth oxycarbonate is significantly aggregated. The specific surface area was 10.2 m 2 / g.
[0022]
[Comparative Example 3]
The bismuth oxycarbonate of Comparative Example 1 was baked in an electric furnace at 400 ° C. in air for 5 hours to obtain bismuth oxide. The result of measuring the particle size distribution by the same method as in the example is as shown in FIG. 4. The 50% cumulative particle size (D50) is 7.01 μm and the 90% cumulative particle size (D90) is 18.18 μm. there were. The specific surface area (BET 1-point method) was 4.34 m 2 / g. An SEM photograph showing the particle structure of the powder is shown in FIG.
[0023]
Table 1 summarizes the results of Examples 1 to 3 and Comparative Examples 1 to 3 collectively.
[0024]
[Table 1]
Figure 0003646818
[0025]
【The invention's effect】
Although the bismuth oxycarbonate obtained by the conventional method was intensively aggregated, according to the present invention, it was possible to obtain a powder of bismuth oxycarbonate excellent in dispersibility and much finer than the commercially available powder. .
[0026]
In addition, when producing bismuth oxide by firing, it is usually necessary to add a sintering inhibitor, but by using the bismuth oxycarbonate of the present invention as a raw material, it is excellent in dispersibility without using a sintering inhibitor. Can make fine bismuth oxide powder.
[Brief description of the drawings]
1 is a particle size distribution diagram of bismuth oxycarbonate obtained in Example 1. FIG.
2 is a particle size distribution diagram of bismuth oxide obtained in Example 3. FIG.
3 is a particle size distribution diagram of bismuth oxycarbonate obtained in Comparative Example 1. FIG.
4 is a particle size distribution diagram of bismuth oxide obtained in Comparative Example 3. FIG.
5 is a SEM photograph showing the particle structure of bismuth oxycarbonate obtained in Example 1. FIG.
6 is a SEM photograph showing the particle structure of bismuth oxide obtained in Example 3. FIG.
FIG. 7 is an SEM photograph showing the particle structure of a commercially available bismuth oxycarbonate (bismuth carbonate carbonate manufactured by Wako Pure Chemical Industries, Ltd.).
FIG. 8 is an SEM photograph showing the particle structure of bismuth oxide obtained by firing commercially available bismuth oxycarbonate (bismuth carbonate carbonate manufactured by Wako Pure Chemical Industries, Ltd.).

Claims (3)

粒度分布の50%累積粒径が0.1〜3.0μmの範囲内にあり、90%累積粒径が10.0μm以下であることを特徴とするオキシ炭酸ビスマス粉末。  A bismuth oxycarbonate powder having a 50% cumulative particle size distribution in the range of 0.1 to 3.0 µm and a 90% cumulative particle size of 10.0 µm or less. 比表面積が10m2/g以上であることを特徴とする請求項1記載のオキシ炭酸ビスマス粉末。 2. The bismuth oxycarbonate powder according to claim 1, having a specific surface area of 10 m < 2 > / g or more. ビスマス塩の水溶液をアルカリにて中和し、pH9以上、液温25〜40℃の条件下で水酸化ビスマスを含む沈殿物を生成したのち、この沈殿物を含む溶液に炭酸塩を加えて撹拌し、得られた沈殿物を濾過、乾燥することからなるオキシ炭酸ビスマス粉末の製造方法。An aqueous solution of bismuth salt is neutralized with an alkali to form a precipitate containing bismuth hydroxide under conditions of pH 9 or higher and a liquid temperature of 25 to 40 ° C. Then, carbonate is added to the solution containing the precipitate and stirred. And producing a bismuth oxycarbonate powder comprising filtering and drying the resulting precipitate.
JP35264795A 1995-12-27 1995-12-27 Bismuth oxycarbonate powder and method for producing the same Expired - Lifetime JP3646818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35264795A JP3646818B2 (en) 1995-12-27 1995-12-27 Bismuth oxycarbonate powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35264795A JP3646818B2 (en) 1995-12-27 1995-12-27 Bismuth oxycarbonate powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09183620A JPH09183620A (en) 1997-07-15
JP3646818B2 true JP3646818B2 (en) 2005-05-11

Family

ID=18425481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35264795A Expired - Lifetime JP3646818B2 (en) 1995-12-27 1995-12-27 Bismuth oxycarbonate powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP3646818B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106268895A (en) * 2016-08-23 2017-01-04 扬州天辰精细化工有限公司 A kind of preparation method of iron sesquioxide bismuthyl carbonate composite photo-catalyst
CN107754834B (en) * 2017-10-26 2023-02-28 苏州大学 Iodine-doped bismuthyl carbonate nanosheet and molybdenum disulfide-modified carbon nanofiber composite material and preparation method and application thereof
CN110227439B (en) * 2019-06-21 2020-07-03 河南大学 Preparation method of bismuth compound heterojunction composite nano material rich in oxygen vacancies
CN111790419A (en) * 2020-08-10 2020-10-20 牡丹江师范学院 Silver phosphate-bismuth oxycarbonate photocatalyst with sunlight catalytic activity and preparation method thereof
CN112774706B (en) * 2021-01-31 2023-10-24 湖南科技大学 Bismuth oxide carbonate/sepiolite composite photocatalyst and preparation method thereof
CN113461054B (en) * 2021-07-28 2023-08-08 中国科学院上海硅酸盐研究所 BiOCl powder and preparation method and application thereof
CN113600174B (en) * 2021-09-09 2024-01-23 陕西科技大学 Bismuth-bismuth oxide carbonate composite photocatalyst and preparation method and application thereof
CN113860366B (en) * 2021-10-18 2023-02-07 安徽工业大学 Bismuth oxycarbonate/dysprosium oxycarbonate/bismuth oxide composite nanowire electrode material and preparation method thereof
CN115028200B (en) * 2022-05-16 2023-02-21 大连理工大学 Preparation method of bismuth oxide/bismuth oxycarbonate composite electrode material
CN115228492A (en) * 2022-07-03 2022-10-25 桂林理工大学 Preparation method and application of silver iodide/carbonate self-doped bismuthyl carbonate photocatalytic material
CN117380245A (en) * 2023-10-25 2024-01-12 海南师范大学 N-bismuth subcarbonate composite graphite-phase carbon nitride material and preparation method and application thereof

Also Published As

Publication number Publication date
JPH09183620A (en) 1997-07-15

Similar Documents

Publication Publication Date Title
EP0828690B1 (en) Spheroidally agglomerated basic cobalt (ii) carbonate and spheroidally agglomerated cobalt (ii) hydroxide, process for their production and their use
DE3633309C2 (en) Composition based on zirconia and process for its manufacture
JP3646818B2 (en) Bismuth oxycarbonate powder and method for producing the same
JP3961826B2 (en) Method for producing high density and large particle size cobalt hydroxide or cobalt mixed hydroxide and product produced by this method
EP0842898B1 (en) Method for the preparation of fine globular particles of yttrium oxide
JPH0524844A (en) Production of hydrated zirconia sol and zirconia powder
CN108946796B (en) Doped titanate and preparation method thereof
JP3928023B2 (en) Method for producing bismuth oxide powder
JPH04280815A (en) Fine particulate alkali titanate and its production
JPS6235970B2 (en)
JPS58213633A (en) Production of aluminum oxide
JP3505133B2 (en) Surface conductive nickel oxyhydroxide and method for producing the same
JP3415733B2 (en) Method for producing fine particles of calcium titanate
JP3254693B2 (en) Preparation of hydrated zirconia sol and zirconia powder
JPH04164813A (en) Production of zinc oxide powder
JPH0635329B2 (en) Method for producing zirconium oxide powder
JPS62212224A (en) Production of zirconia solid solution crystal fine powder
JP2004083350A (en) Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder
JP2000119023A (en) Production of bismuth(iii) oxide
JPH0931238A (en) Electroconductive dispersion, electroconductive coating material and their production
KR100475551B1 (en) Preparation of Nanosized brookite-phase Titanium Dioxide Powder from Titanium Tetrachloride and Aqueous Hydrochloric Acid
JP5572669B2 (en) Method for producing silver oxide powder
JP2685687B2 (en) Method for producing rare earth element oxide particles
JPS61205622A (en) Production of electrically conductive fine powder of tin oxide
JP2004091229A (en) Sheet-like titanate multiple oxide particle and its preparation process

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term