JPH04130050A - Refractory material and its production - Google Patents

Refractory material and its production

Info

Publication number
JPH04130050A
JPH04130050A JP2246295A JP24629590A JPH04130050A JP H04130050 A JPH04130050 A JP H04130050A JP 2246295 A JP2246295 A JP 2246295A JP 24629590 A JP24629590 A JP 24629590A JP H04130050 A JPH04130050 A JP H04130050A
Authority
JP
Japan
Prior art keywords
particle size
alumina
firing
sieve
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2246295A
Other languages
Japanese (ja)
Inventor
Yasushi Tanaka
康司 田中
Yasutaka Suzuki
泰隆 鈴木
Tatsuo Hayashi
辰雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkei Techno Research Co Ltd
Nippon Light Metal Co Ltd
Original Assignee
Nikkei Techno Research Co Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkei Techno Research Co Ltd, Nippon Light Metal Co Ltd filed Critical Nikkei Techno Research Co Ltd
Priority to JP2246295A priority Critical patent/JPH04130050A/en
Publication of JPH04130050A publication Critical patent/JPH04130050A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a refractory material hardly containing molten Al by kneading fused alumina having a specified particle size distribution with fine alumina particles obtd. by firing Al(OH)3, a shape retaining material and water, molding and firing the kneaded material. CONSTITUTION:Fused alumina having a particle size distribution along a straight or curved line connecting a point on a straight line AB and a point on a straight line DE within region defined by points A-E in the diagram with the particle size (mm) of fused alumina as the x-axis having the scale in logarithms and plus mesh (%) as the y-axis having the scale of regular intervals is used by 100 pts.wt. and kneaded with 10-75 pts.wt. fine alumina particles of 0.1-10mum average particle size obtd. by firing Al(OH)3, 0.1-5 pts.wt. shape retaining material such as starch and water. The kneaded material is press-molded under 100-1,000kg/cm<2> pressure and fired at >=1,300 deg.C to obtain a refractory material having >=3.0 bulk specific gravity.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はアルミニウム及びアルミニウム合金(以下「ア
ルミニウム」と称す)等の溶湯用の炉。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a furnace for molten metal such as aluminum and aluminum alloys (hereinafter referred to as "aluminum").

樋及び湯溜まり等の装置の内張りに用いる耐火材及びそ
の製造法に関する。
This invention relates to fireproof materials used for lining equipment such as gutters and hot water pools, and methods for producing the same.

[従来の技術] 例えばアルミニウム溶湯を対象とした炉、樋及び湯溜ま
り等の装置の内張り用の材料としては、アルミナの含ま
れた定形または不定形耐火材が使用されているが、溶解
炉のような場合には、溶解に先立ってアルミニウム塊が
高所から炉内に投入され、溶解後各種溶製作業を施す間
、長時間溶湯と接触する。従って、このような溶湯と接
触する装置の内張り用の材料に要求される特性としては
、10機械的強度が大きく、アルミニウム塊の落下衝撃
で割れないこと。
[Prior Art] For example, fixed or unshaped refractory materials containing alumina are used as lining materials for equipment such as furnaces, gutters, and pools for processing molten aluminum. In such cases, the aluminum ingot is introduced into the furnace from a high place prior to melting, and comes into contact with the molten metal for a long period of time during various melting operations after melting. Therefore, the characteristics required for the lining material of equipment that comes into contact with molten metal are as follows: 10. It must have high mechanical strength and not crack under the impact of falling aluminum blocks.

2、耐熱性及び耐スポーリング性を有すること。2. Must have heat resistance and spalling resistance.

3、気孔が小さく、溶湯の浸透がないこと。3. Pores are small and there is no penetration of molten metal.

4、溶融アルミニウムに対して耐食性があり、溶湯への
不純物の溶出がないこと などが挙げられる。
4. It has corrosion resistance against molten aluminum and does not elute impurities into the molten metal.

このような特性を有するものとしてアルミナ分を98〜
99%含有する耐火材が市販されている。
As a material with such characteristics, the alumina content is 98 to 98%.
Refractory materials containing 99% are commercially available.

耐火材の緻密性(即ちかさ比重)と強度は、原料の特性
の他に、骨材の配合粒度、結合材の混合量、保形材添加
量並びに成形・焼成条件による。
The density (i.e., bulk specific gravity) and strength of a refractory material depend on the characteristics of the raw material, as well as the blended particle size of the aggregate, the amount of binder mixed, the amount of shape retainer added, and the forming and firing conditions.

従って、これらの製造条件を適切に選ぶ必要がある。即
ち、高アルミナ質の市販耐火材のかさ比重は3.00〜
3.25g/cm3の範囲に、また圧縮強度と曲げ強度
は、それぞれ750〜1900kg/cm2と200〜
380kg/cm2の範囲にあり、−射的にはかさ比重
3.10 g 7cm3.圧縮強度1200 kg/ 
cm2及び曲げ強度300 kg/ cm2の耐火材が
使用されている。
Therefore, it is necessary to appropriately select these manufacturing conditions. In other words, the bulk specific gravity of commercially available high alumina refractory materials is 3.00~
3.25g/cm3, and the compressive strength and bending strength are 750-1900kg/cm2 and 200-200kg/cm2, respectively.
It is in the range of 380 kg/cm2, and the bulk specific gravity is 3.10 g 7cm3. Compressive strength 1200 kg/
cm2 and a bending strength of 300 kg/cm2.

しかしながら、市販されている耐火材を構成する骨材等
にはPをP2O5として0.8〜1.2%。
However, aggregates constituting commercially available refractory materials contain P in an amount of 0.8 to 1.2% as P2O5.

NaをNa2Oとして0.2〜0.3%を含有する。Contains 0.2 to 0.3% Na as Na2O.

特にPが多いのは結合材としてリン酸系の無機バインダ
ーを使用しているためと推定される。結合材として、ケ
イ酸系およびホウ酸系の無機バインダーを使用すること
もあるが、この場合には、焼成後、耐火材内にS i 
02. B20Bが残留する。このようなP、Siおよ
びB等の化合物はアルミニウム溶湯と反応してP、  
Si、  Bが溶湯中に溶出するので、溶湯が汚染され
るばかりでなく、耐火材の骨材間の結合力が弱まり強度
が低下する。
It is presumed that the reason why P is particularly high is because a phosphoric acid-based inorganic binder is used as a binding material. Silicic acid-based and boric acid-based inorganic binders are sometimes used as binding materials, but in this case, Si is added to the refractory material after firing.
02. B20B remains. These compounds such as P, Si and B react with molten aluminum to form P,
Since Si and B are eluted into the molten metal, the molten metal is not only contaminated, but also the bonding force between the aggregates of the refractory material is weakened, resulting in a decrease in strength.

[発明が解決しようとする課題] 発明者らは、リン酸系、ホウ酸系及びケイ酸系無機バイ
ンダーなどアルミニウム溶湯に侵食され易い結合材を使
用しないで、高いかさ比重と強度を持ち、しかもアルミ
ニウム溶湯に対して耐食性のある耐火材の研究を進め、
微粒アルミナ特にその中でも水酸化アルミニウムを焼成
した微粒アルミナは易焼結性に優れていることに着目し
、これを結合材として用いることによって実質的にアル
ミナ質のみからなる耐火材が得られ上述の問題点を解決
できることを見出し、その製造法について研究を進め、
本発明を完成した。
[Problems to be Solved by the Invention] The inventors have developed a material that has high bulk specific gravity and strength without using binders that are easily corroded by molten aluminum, such as phosphoric acid-based, boric acid-based and silicic acid-based inorganic binders. We are conducting research into fireproof materials that are resistant to corrosion against molten aluminum.
We focused on the fact that fine alumina, especially fine alumina made by calcining aluminum hydroxide, has excellent sintering properties, and by using it as a binder, we can obtain a refractory material consisting essentially of alumina. We discovered that the problem could be solved, and conducted research on the manufacturing method.
The invention has been completed.

[課題を解決するための手段] 本発明によれば、溶融アルミナと水酸化アルミニウムを
焼成した微粒アルミナの焼成体であって、該焼成体のか
さ比重が3.0以上であることを特徴とする溶湯汚染の
少ない耐火材及びその製造法が提供される。
[Means for Solving the Problems] According to the present invention, there is provided a fired body of fine alumina obtained by firing molten alumina and aluminum hydroxide, characterized in that the bulk specific gravity of the fired body is 3.0 or more. Provided are a refractory material that causes less molten metal contamination, and a method for producing the same.

[作用] 主含有成分であるアルミナを表示する場合、通常全体量
を100%とし、不純物の分析値を合計したものを全体
量から差し引いた残量で表示されるが、本発明における
「アルミナ含有量」とは、アルミナ分として分析した量
である。
[Function] When displaying alumina, which is the main component, the total amount is usually 100%, and the total amount of impurity analysis values is subtracted from the total amount, and the remaining amount is displayed. "Amount" is the amount analyzed as alumina content.

本発明の耐火材は骨材として溶融アルミナ、結合材とし
て水酸化アルミニウムを焼成した微粒アルミナを使用す
る。溶融アルミナは、アルミナまたはボーキサイトを電
気などのエネルギーを用いて溶融し、冷却後粉砕し粒度
を調整して得られる。
The refractory material of the present invention uses fused alumina as an aggregate and fine alumina obtained by firing aluminum hydroxide as a binder. Fused alumina is obtained by melting alumina or bauxite using energy such as electricity, cooling it, and then crushing it to adjust the particle size.

このようにして得られた幾つかの粒度区分を持つ溶融ア
ルミナを用意し、第1図に示す範囲内においてこれらを
適切に配合することによって成形後のかさ比重及び強度
を最も高くすることができる。
By preparing the molten alumina obtained in this way with several particle size classifications and appropriately blending them within the range shown in Figure 1, it is possible to maximize the bulk specific gravity and strength after molding. .

アルミナを溶融して得られる溶融アルミナは通常、アル
ミナの純度で99%以上である。ボーキサイトを溶融し
て得られる溶融アルミナは、通常。
Fused alumina obtained by melting alumina usually has an alumina purity of 99% or more. Fused alumina is usually obtained by melting bauxite.

アルミナの純度で95%以上、不純物としてTiO□を
1〜3%含有する。従って、アルミナからの溶融アルミ
ナを使用した場合は純度が良いので、溶湯を汚染するこ
とが殆どない。一方、ボーキサイトからの溶融アルミナ
は前者と比べて不純物が多いが、以下に説明するように
結合材として微粒アルミナを使用するので溶湯を汚染す
ることが殆どない。
The purity of alumina is 95% or more, and it contains 1 to 3% TiO□ as an impurity. Therefore, when molten alumina made from alumina is used, the purity is high and there is almost no contamination of the molten metal. On the other hand, molten alumina made from bauxite has more impurities than the former, but as explained below, fine alumina particles are used as a binder, so the molten metal is hardly contaminated.

即ち、微粒アルミナの混合量を骨材100重量部に対し
て10重量部以上含有させた場合は、成形体の骨材粒子
表面は微粒アルミナによって被覆され、それによって焼
成後溶湯が骨材と直接に接触することがなくなり溶湯の
汚染が少ないものと思われる。
That is, when the mixed amount of fine alumina is 10 parts by weight or more based on 100 parts by weight of aggregate, the surface of the aggregate particles of the compact is coated with fine alumina, so that the molten metal after firing is directly connected to the aggregate. It is thought that there will be less contamination of the molten metal as there will be no contact with the molten metal.

ところで、結合材の微粒アルミナは水酸化アルミニウム
を焼成しアルミナ化したものである。このアルミナの純
度は99%以上である。
Incidentally, the fine alumina used as the binder is made by firing aluminum hydroxide to form alumina. The purity of this alumina is 99% or more.

溶融アルミナの粒度分布は、第1図に示すように、対数
目盛りの横軸を溶融アルミナ粒子径(mm)。
For the particle size distribution of molten alumina, as shown in Figure 1, the horizontal axis of the logarithmic scale is the molten alumina particle diameter (mm).

等間隔目盛りの縦軸を篩上(%)とした図面において、 点 A:粒子径10mm、篩上 0% B:粒子径 4mm、篩上 0% C:粒子径0 、1 mm、篩上 50%D二粒子径0
.001mm、篩上100%E二粒子径0 、1 mm
、篩上100%で囲まれた領域ABCDE内に含まれ、
がつ直線AB上の1点と直殿DE上の1点を両端とする
直線または曲線に沿う粒度分布を有するように配合する
。以下にその理由を説明する。
In the drawing where the vertical axis of the evenly spaced scale is the sieve top (%), Point A: Particle size 10 mm, 0% on the sieve B: Particle size 4 mm, 0% on the sieve C: Particle size 0, 1 mm, 50 on the sieve %D2 particle size 0
.. 001mm, 100%E2 particle size on sieve 0, 1mm
, contained within the area ABCDE surrounded by 100% on the sieve,
The particles are blended so as to have a particle size distribution along a straight line or curve whose ends are one point on straight line AB and one point on straight line DE. The reason is explained below.

上記図形の点Aは粒子径10mm、点Bは粒子径4mm
の点で、最大粒子径としては、4mmから10mmの範
囲の骨材が適当である。最大絞が4mmより小さいと成
形体の焼成時収縮してヒビ割れを発生し、また10mm
より大きいと、製品強度が低下する傾向にある。次に、
点Eは粒子径0 、1 mm、点りはO,OOlmm(
1μm)の点で、最小粒としては0 、1 mm以下に
する必要がある。これは粒子間隙を微粉で充填すること
により気孔を減らし耐火材の緻密性を高めるためであり
、最小粒が0 、1 mmより大きいと十分に高いかさ
比重が得られない。また0、001mmの点りはその量
が僅かで、殆ど影響を及ぼさないので粒子径の下限とし
たものである。
Point A in the above figure has a particle diameter of 10 mm, and point B has a particle diameter of 4 mm.
In this respect, aggregates with a maximum particle diameter in the range of 4 mm to 10 mm are appropriate. If the maximum drawing area is smaller than 4mm, the compact will shrink during firing and cracks will occur, and
If it is larger, the strength of the product tends to decrease. next,
At point E, the particle size is 0, 1 mm, and the point is O, OOlmm (
1 μm), the minimum grain size needs to be 0.1 mm or less. This is to reduce pores and improve the density of the refractory material by filling the gaps between particles with fine powder, and if the minimum particle size is larger than 0.1 mm, a sufficiently high bulk specific gravity cannot be obtained. In addition, since the amount of speckles of 0,001 mm is so small that it has almost no effect, it is set as the lower limit of the particle size.

また、点Cは粒子径0 、1 mm、篩上50%の点で
、この点を規定した理由は、0 、1 mm以上の骨材
が骨材全体の50%以上を占める必要があり、50%以
下であると製品のかさ比重及び強度が十分に得られない
からである。好ましくは60〜90%である。
In addition, point C is the point where the particle size is 0.1 mm and 50% on the sieve.The reason for specifying this point is that aggregates with a diameter of 0.1 mm or more must account for 50% or more of the total aggregate. This is because if it is less than 50%, the product will not have sufficient bulk specific gravity and strength. Preferably it is 60-90%.

以上の骨材は全体を幾つかの粒度範囲に分けて、それら
を全体の粒度分布が前記ABCDEの領域内に含まれ直
線AB及び直線DEを両端に持つ直線または曲線に沿う
ように配合することにより、最密充填が得られる。
The above aggregates should be divided into several particle size ranges and mixed so that the entire particle size distribution falls within the ABCDE area and follows a straight line or curved line with straight line AB and straight line DE at both ends. Close packing is obtained.

結合材には水酸化アルミニウムを焼成して得られた易焼
結性の微粒アルミナを用いる。これは骨材のアルミナと
異なり、加熱により容易に融着して骨材同士を結合させ
る機能を持つと共に、一部は粒間を埋めるのに役立つ。
As the binder, easily sinterable fine alumina obtained by firing aluminum hydroxide is used. Unlike alumina, which is an aggregate, it easily fuses when heated and has the function of bonding aggregates together, and some of it also helps fill in the gaps between grains.

微粒アルミナの平均粒径は0.1μm〜10μm1 好
ましくは0.5μm〜2μmであって、0.1μm未満
では凝集により分散し難く取扱上不都合であり、10μ
mを超えると焼成時に完全には融着せず、結合が不十分
となる場合があって、耐火材の強度を低下させる虞があ
る。成分はAl2O3として99%以上で、不純物が少
ないものが好ましい。
The average particle diameter of the fine alumina is 0.1 μm to 10 μm, preferably 0.5 μm to 2 μm, and if it is less than 0.1 μm, it will be difficult to disperse due to agglomeration and it will be difficult to handle.
If it exceeds m, complete fusion may not occur during firing, resulting in insufficient bonding, which may reduce the strength of the refractory material. The component is preferably 99% or more as Al2O3 and contains few impurities.

前記の溶融アルミナ100重量部に対し、微粒アルミナ
10〜75重量部及び保形材0.1〜5重量部と水を加
えて混練し、成形する。溶融アルミナに対し微粒アルミ
ナが10重量部未満では耐火材のかさ比重及び強度が低
く不十分であり、また75重量部を超えると全体的に微
粉量が多い組成となり焼成時に収縮してヒビ割れを発生
してかさ比重及び強度が低下する傾向にある。
To 100 parts by weight of the molten alumina, 10 to 75 parts by weight of fine alumina, 0.1 to 5 parts by weight of a shape retaining material, and water are added, kneaded, and molded. If the amount of fine alumina is less than 10 parts by weight relative to molten alumina, the bulk specific gravity and strength of the refractory material will be low and insufficient, and if it exceeds 75 parts by weight, the composition will have a large amount of fine powder overall, causing shrinkage and cracking during firing. This tends to cause the bulk specific gravity and strength to decrease.

さらに、焼成前の成形品形状を保持するために保形材を
用いる。保形材は焼成によって消失するものであり、例
えば澱粉、PVA(ポリビニルアルコール)、MC(メ
チルセルロース)などが用いられる。混合割合は溶融ア
ルミナ100重量部に対して0.1〜5重量部で、0.
1重量部未満では保形力が不足し、5重量部を超えると
焼成時に炭化物として気孔中に残存する虞れがある。使
用に当って保形材は濃度調整した水溶液として用いられ
る。
Furthermore, a shape retaining material is used to maintain the shape of the molded product before firing. The shape-retaining material disappears by firing, and examples of the shape-retaining material used include starch, PVA (polyvinyl alcohol), and MC (methyl cellulose). The mixing ratio is 0.1 to 5 parts by weight with respect to 100 parts by weight of molten alumina.
If it is less than 1 part by weight, the shape retention power is insufficient, and if it exceeds 5 parts by weight, it may remain in the pores as carbide during firing. In use, the shape retaining material is used as an aqueous solution with adjusted concentration.

成形は常法に従って100〜1000kg/cm2で加
圧成形し、骨材間の充填を密にする。加重100 kg
/ cm2以下では耐火材は充分ながさ比重が得られず
、また1 000 kg/ cm2以上では骨材粒が破
壊される危険がある。このようにして得られた成形体を
十分に乾燥した後、1300℃以上、好ましくは135
0℃〜1800℃の温度で焼成する。
The molding is carried out under pressure of 100 to 1000 kg/cm2 according to a conventional method, and the filling between the aggregates is made dense. Weight 100 kg
/cm2 or less, the refractory material will not have a sufficient bulk specific gravity, and if it is more than 1,000 kg/cm2, there is a risk that the aggregate particles will be destroyed. After sufficiently drying the molded product thus obtained, the temperature is 1300°C or higher, preferably 135°C.
Calcinate at a temperature of 0°C to 1800°C.

焼成温度が1300℃未満では微粒アルミナの融着が不
十分な場合がある。また1800℃以上では汎用の工業
炉は使用できず、黒鉛発熱体を用いた高価な特殊炉を用
いる必要がある。
If the firing temperature is less than 1300°C, the fusion of the fine alumina particles may be insufficient. Further, at temperatures above 1800° C., a general-purpose industrial furnace cannot be used, and an expensive special furnace using a graphite heating element must be used.

本発明に係る耐火材においては、骨材及び結合材ともに
高純度のアルミナを使用し、アルミニウム溶湯の侵食に
対して十分な耐久性を確保し、また結合材に水酸化アル
ミニウムから得られた易焼結性の微粒アルミナを使用し
ているので、低い焼成温度でも十分な結合力が得られる
In the fireproof material according to the present invention, high-purity alumina is used for both the aggregate and the binder to ensure sufficient durability against the erosion of molten aluminum, and the binder is made of aluminum hydroxide. Since sinterable fine-grain alumina is used, sufficient bonding strength can be obtained even at low firing temperatures.

結合材の混合量が比較的多いので、微粒アルミナは骨材
を完全に被覆するとともに骨材粒子間にも充填され、耐
火材のかさ比重及び強度を向上させている。
Since the amount of the binder mixed is relatively large, the fine alumina completely covers the aggregate and is also filled between the aggregate particles, improving the bulk specific gravity and strength of the refractory material.

[実施例] 次に本発明を実施例及び比較例により具体的に説明する
[Examples] Next, the present invention will be specifically explained using Examples and Comparative Examples.

ボーキサイトを原料として作られた溶融アルミナ骨材A
、及びアルミナを原料として作られた溶融アルミナ骨材
A2の各100重量部に、水酸化アルミニウムを焼成し
て得られた微粒アルミナ結合材B、の平均粒径1.0μ
mのものを50重量部混合して試料No、 1及び平均
粒径0,7μmのものを30重量部混合して試料No、
 2を作成した。No、 1及びNo、 2の骨材の最
大粒は6rnm及び8mmで、また0、1mm以上の粒
子を80%及び65%含む。
Fused alumina aggregate A made from bauxite as raw material
, and 100 parts by weight each of molten alumina aggregate A2 made from alumina as a raw material, and fine alumina binder B obtained by firing aluminum hydroxide, with an average particle size of 1.0 μm.
Sample No. 1 was prepared by mixing 50 parts by weight of 0.7 μm particles, and Sample No. 1 was prepared by mixing 30 parts by weight of particles with an average particle size of 0.7 μm.
2 was created. The largest grains of No. 1 and No. 2 aggregates were 6rnm and 8mm, and contained 80% and 65% of particles larger than 0.1mm.

試料No、 1及びNo、 2に用いた骨材の粒度分布
を第1図に粒度分布1及び粒度分布2として示す。
The particle size distributions of the aggregates used for samples No. 1 and No. 2 are shown in FIG. 1 as particle size distribution 1 and particle size distribution 2.

比較例として粒度分布を変えた骨材A2と試料No、 
2と同じ平均粒径の結合材B、とて試料No、 3とN
o、 4を作成した。試料No、 3は最大粒径14m
m、0゜1mm以上の粒子が80%、No、4は最大粒
2 mm、最小粒0.2mm(従って0 、1 mm以
上の骨材が100%)で、いずれも第1図に粒度分布3
及び粒度分布4として示される分布を持つ骨材を使用し
た。
As a comparative example, aggregate A2 with different particle size distribution and sample No.
Binder B with the same average particle size as 2, sample No. 3 and N
o, 4 was created. Sample No. 3 has a maximum particle size of 14 m
For No. 4, the maximum particle size is 2 mm and the minimum particle size is 0.2 mm (therefore, 100% of aggregate is 0.1 mm or larger), and the particle size distribution is shown in Figure 1. 3
and particle size distribution 4 was used.

試料No、 1及びNo、 2は領域ABCDE内に含
まれるが、試料No、 3及びNo、 4は一部がこの
領域から外れている。
Samples No. 1 and No. 2 are included in the area ABCDE, but samples No. 3 and No. 4 are partially outside this area.

また、粒度分布1で示される骨材A2と市販の結合材B
2(日本琺瑯釉薬(株)製フリット)を使用し試料No
、 5を作成した。なお、結合材B2の組成はAl2O
311,2%、5i0233.6%、CaO3,7%、
MgO18,6%、B20,17.7%。
In addition, aggregate A2 having a particle size distribution of 1 and commercially available binder B
2 (frit made by Nippon Enamel Glaze Co., Ltd.) and sample No.
, 5 was created. Note that the composition of the binder B2 is Al2O
311.2%, 5i0233.6%, CaO3.7%,
MgO 18.6%, B20, 17.7%.

Ba0 13−5%及びNa2O0,3%である。Ba0 13-5% and Na2O 0.3%.

これらの配合割合等をまとめて第1表に示す。Table 1 summarizes these blending ratios.

上記骨材と結合材を用い、保形材として澱粉を水に溶解
して20%水溶液として用い、骨材100重量部に対し
て5重量部添加した。
Using the above aggregate and binder, starch was dissolved in water as a shape retaining material to form a 20% aqueous solution, and 5 parts by weight was added to 100 parts by weight of the aggregate.

成形は、骨材、結合材および保形材をよく混合して、圧
カフ 50 kg/ cm2の型込め法で行い、乾燥後
、電気炉を用いて約1400℃で1時間焼成を行った。
The molding was carried out by mixing the aggregate, binder and shape retaining material thoroughly and using a molding method using a pressure cuff of 50 kg/cm2. After drying, the molding was performed at about 1400° C. for 1 hour using an electric furnace.

(1)物性試験 焼成後の試料について、組成分析、かさ比重、圧縮強度
及び曲げ強度の測定を行った。また市販の耐火材2種類
(試料No、 6及びNo、 7 )についても、同様
の測定を行った。結果を第1表に示す。
(1) Physical property test For the sample after firing, compositional analysis, bulk specific gravity, compressive strength and bending strength were measured. Similar measurements were also performed on two types of commercially available refractory materials (Samples No. 6 and No. 7). The results are shown in Table 1.

この結果、本発明は、かさ比重及び機械的強度ともに十
分な値を示しているのに対し、本発明条件から外れる試
料No、 3及びNo、 4はかさ比重、圧縮強度及び
曲げ強度のいずれかにおいて低い値を示すことが判る。
As a result, the present invention shows sufficient values for both bulk specific gravity and mechanical strength, whereas samples No. 3 and No. 4, which deviate from the present invention conditions, have either bulk specific gravity, compressive strength, or bending strength. It can be seen that this shows a low value.

(2)溶出試験 試料No、2(本発明材)及び試料No、 5 、No
、 6゜No、7(比較材)について、るつぼ法(耐火
材に50φX50mmの穴を開け、この中にアルミニウ
ム溶湯を入れて、一定時間保持後、アルミニウム溶湯中
の不純物の増加量を測る)により、耐火材成分のメタル
への溶出量を測定した。アルミニウム溶湯としては99
.99%A1とA1−4%Mg合金を使用し、850℃
で48時間保持して試験を行った。結果を第2表に示す
(2) Elution test sample No. 2 (invention material) and sample No. 5, No.
, 6゜No. and 7 (comparative materials) were tested using the crucible method (drill a hole of 50φ x 50mm in the refractory material, pour the molten aluminum into the hole, and measure the increase in impurities in the molten aluminum after holding it for a certain period of time). The amount of elution of refractory components into metal was measured. 99 as molten aluminum
.. Using 99% A1 and A1-4% Mg alloy, 850℃
The test was carried out by holding it for 48 hours. The results are shown in Table 2.

この結果、本発明の耐火材はSi、B、Pの溶出がない
ことが判る。また試料No、 5及び市販品No、 6
及びNo、 7は結合材成分であるこれらの溶出が認め
られることが判る。
As a result, it can be seen that the refractory material of the present invention does not elute Si, B, and P. In addition, sample No. 5 and commercial product No. 6
It can be seen that in No. 7 and No. 7, elution of binder components was observed.

また、本発明材はるつぼの側壁が剥がれることなく、耐
スポーリング性のあることが判る。
Furthermore, it can be seen that the material of the present invention has spalling resistance without peeling of the side wall of the crucible.

4゜ [発明の効果] 本発明に係る耐火材はかさ比重及び強度に優れ、しかも
該耐火材をアルミニウム溶湯用炉材に使用した場合、溶
湯への微量不純物の溶出がなく、従って品質が安定する
4゜[Effect of the invention] The refractory material according to the present invention has excellent bulk specific gravity and strength, and when the refractory material is used as a furnace material for molten aluminum, there is no elution of trace impurities into the molten metal, so the quality is stable. do.

さらに、耐スポーリング性があり、結合材が溶湯によっ
て侵食を受は難いので、長期間の使用が可能であり、工
業上その効果の大きい発明である。
Furthermore, it has spalling resistance and the binding material is not easily corroded by molten metal, so it can be used for a long period of time, making this invention highly effective industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、粒子径(対数目盛り)−篩上3図における本
発明に係る溶融アルミナ骨材の粒度分布の適用領域を示
す図面である。
FIG. 1 is a drawing showing the applicable range of the particle size distribution of the fused alumina aggregate according to the present invention in particle size (logarithmic scale) - 3 sieve diagrams.

Claims (2)

【特許請求の範囲】[Claims] 1.溶融アルミナと水酸化アルミニウムを焼成した微粒
アルミナの焼成体であって、該焼成体のかさ比重が3.
0以上であることを特徴とする溶湯汚染の少ない耐火材
1. A fired body of fine alumina obtained by firing molten alumina and aluminum hydroxide, the fired body having a bulk specific gravity of 3.
A refractory material with little molten metal contamination, characterized in that the temperature is 0 or more.
2.溶融アルミナが、対数目盛りの横軸を溶融アルミナ
粒子径(mm),等間隔目盛りの縦軸を篩上(%)とし
た第1図に示す図面において、 点A:粒子径10mm,篩上0% B:粒子径4mm,篩上0% C:粒子径0.1mm,篩上50% D:粒子径0.001mm,篩上100% E:粒子径0.1mm,篩上100% で囲まれた領域ABCDE内に含まれ、かつ直線AB上
の1点と直線DE上の1点を両端とする直線または曲線
に沿う粒度分布を有するものであって、該溶融アルミナ
100重量部に対し、水酸化アルミニウムを焼成した平
均粒径0.1〜10μmの微粒アルミナ10〜75重量
部を保形材及び水とともに混練し、成形後1300℃以
上の温度で焼成することを特徴とする請求項1記載の耐
火材の製造法。
2. In the drawing shown in Figure 1, where the horizontal axis of the logarithmic scale is the molten alumina particle size (mm) and the vertical axis of the evenly spaced scale is the sieve size (%), point A: particle size 10 mm, sieve size 0. % B: Particle size 4 mm, 0% on the sieve C: Particle size 0.1 mm, 50% on the sieve D: Particle size 0.001 mm, 100% on the sieve E: Particle size 0.1 mm, 100% on the sieve Surrounded by It is included in the area ABCDE and has a particle size distribution along a straight line or a curved line with one point on the straight line AB and one point on the straight line DE as both ends. 10. 10 to 75 parts by weight of fine alumina having an average particle diameter of 0.1 to 10 μm obtained by firing aluminum oxide is kneaded with a shape retaining material and water, and after molding, the mixture is fired at a temperature of 1300° C. or higher. manufacturing method for refractory materials.
JP2246295A 1990-09-18 1990-09-18 Refractory material and its production Pending JPH04130050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2246295A JPH04130050A (en) 1990-09-18 1990-09-18 Refractory material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2246295A JPH04130050A (en) 1990-09-18 1990-09-18 Refractory material and its production

Publications (1)

Publication Number Publication Date
JPH04130050A true JPH04130050A (en) 1992-05-01

Family

ID=17146430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2246295A Pending JPH04130050A (en) 1990-09-18 1990-09-18 Refractory material and its production

Country Status (1)

Country Link
JP (1) JPH04130050A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037806A (en) * 1973-06-27 1975-04-08
JPS5116442A (en) * 1974-07-31 1976-02-09 Akiko Hirata Chikudenchino denkaiekijohatsuboshihoho
JPS5978926A (en) * 1982-10-29 1984-05-08 Mitsubishi Chem Ind Ltd Manufacture of easily sinterable alumina
JPS61132513A (en) * 1984-11-28 1986-06-20 Asahi Chem Ind Co Ltd Alpha-alumina powder and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037806A (en) * 1973-06-27 1975-04-08
JPS5116442A (en) * 1974-07-31 1976-02-09 Akiko Hirata Chikudenchino denkaiekijohatsuboshihoho
JPS5978926A (en) * 1982-10-29 1984-05-08 Mitsubishi Chem Ind Ltd Manufacture of easily sinterable alumina
JPS61132513A (en) * 1984-11-28 1986-06-20 Asahi Chem Ind Co Ltd Alpha-alumina powder and its production

Similar Documents

Publication Publication Date Title
EP1840101B1 (en) Fused siliceous refractory and production method thereof
CA2842515A1 (en) Feeder and shapeable compositions for production thereof
EP0649334B1 (en) Filters for light metals
JP4888121B2 (en) Refractory brick for float bath bottom and method for producing the same
CN105819875A (en) Refractory castable for Ausmelt copper smelting furnace flue and preparation method thereof
US4158568A (en) Corrosion resistant refractory mix
US4060424A (en) Low temperature setting refractory cements
CN106977216A (en) Anti-erosion liner for aluminium melting furnace and preparation method thereof
JP6570241B2 (en) Siliceous composition and method for obtaining the same
JPH04130050A (en) Refractory material and its production
EP0670293A1 (en) Method for producing silica brick
JP4394080B2 (en) Zirconia refractories
US3135616A (en) Refractory x
JP4292016B2 (en) Method for producing fused siliceous refractories
JP4907094B2 (en) Method for producing fused siliceous refractories
CN110713380A (en) Preparation method of high-purity compact forsterite
US3226241A (en) Alumina refractories
JP3368960B2 (en) SiC refractory
JP3027721B2 (en) Porous plug refractory and manufacturing method thereof
CN105060902B (en) Modified zircon stone sintered article and preparation method thereof
JPS5919073B2 (en) Method for manufacturing sintered compacts
US3864136A (en) Direct bonded refractory brick having improved hot strength and its method of manufacture
JP3128427B2 (en) Alumina / Spinel amorphous refractories
JPH05117043A (en) Dry ramming refractory for induction furnace
JP3176836B2 (en) Irregular refractories