JP4394080B2 - Zirconia refractories - Google Patents
Zirconia refractories Download PDFInfo
- Publication number
- JP4394080B2 JP4394080B2 JP2006041161A JP2006041161A JP4394080B2 JP 4394080 B2 JP4394080 B2 JP 4394080B2 JP 2006041161 A JP2006041161 A JP 2006041161A JP 2006041161 A JP2006041161 A JP 2006041161A JP 4394080 B2 JP4394080 B2 JP 4394080B2
- Authority
- JP
- Japan
- Prior art keywords
- refractory
- zirconia
- alumina
- glass
- molten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/42—Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
- C03B5/43—Use of materials for furnace walls, e.g. fire-bricks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Description
本発明は、主としてガラス溶融窯用の耐火物として、好適なジルコニア質耐火物に関する。 The present invention relates to a zirconia refractory suitable mainly as a refractory for a glass melting furnace.
従来のガラス溶融窯用の耐火物を大別すると、焼結(結合)耐火物と溶融耐火物とがある。 Conventional refractories for glass melting kilns are roughly classified into sintered (bonded) refractories and molten refractories.
前者は、均質に混合した粉体原料をプレス後、焼成することによって作られる。この耐火物は、原料としての粉体に付着した気体及び焼成中に生じる気体の一部が、焼成後も残存し、焼成体の密度が低く、耐蝕性が劣る。耐蝕性が低いということは、ガラスを溶融する場合には、泡や砂利等の欠点を発生する確率が高いということを示す。 The former is made by pressing and firing a homogeneously mixed powder raw material. In this refractory, the gas adhering to the powder as a raw material and part of the gas generated during firing remain after firing, the density of the fired body is low, and the corrosion resistance is poor. Low corrosion resistance indicates that there is a high probability that defects such as bubbles and gravel will occur when glass is melted.
一方、後者は均質に混合した原料を溶融炉で溶融し、鋳型に流し込み、冷却固化することによって得られ、緻密で発達した結晶組織を有する。このなかで、特に、ジルコニアを相対的に多く含有する耐火物が、耐蝕性に優れ、ガラス溶融用窯に好んで使用されている。このような溶融耐火物としては、ZrO2含量が33wt%ないし41wt%のAl2O3−ZrO2−SiO2系耐火物と、ZrO2を80wt%ないし95wt%含有する高ジルコニア系耐火物とがある。後者は、前者に比較して、高耐食性及び低素地汚染性であるため、近年、高品質ガラス溶解窯用の耐火物として、普及するにいたっている。 On the other hand, the latter is obtained by melting a homogeneously mixed raw material in a melting furnace, pouring it into a mold and solidifying by cooling, and has a dense and developed crystal structure. Among these, in particular, a refractory containing a relatively large amount of zirconia is excellent in corrosion resistance and is preferably used in a glass melting kiln. As such a molten refractory, an Al 2 O 3 —ZrO 2 —SiO 2 refractory having a ZrO 2 content of 33 wt% to 41 wt%, a high zirconia refractory containing ZrO 2 of 80 wt% to 95 wt%, and There is. Since the latter has higher corrosion resistance and lower substrate contamination than the former, in recent years it has come to be widely used as a refractory for high-quality glass melting kilns.
元来、ジルコニアは、900℃と1200℃との間で、単斜晶と正方晶との相転移を起こすので、Y2O3やCaOなどを添加し、ジルコニアを少なくとも部分安定化させない限り、焼結体を得ることはできない。ジルコニアにアルミナを添加しても、同様である。部分安定化あるいは安定化ジルコニアをガラス溶融用の耐火物として使用しても、溶融ガラスあるいはガラス揮発物中のアルカリ等によって、安定化剤が選択的に溶出し、耐蝕性が著しく低い。 Originally, zirconia causes a phase transition between a monoclinic crystal and a tetragonal crystal between 900 ° C. and 1200 ° C. Therefore, unless Y 2 O 3 or CaO is added and zirconia is at least partially stabilized, A sintered body cannot be obtained. The same applies when alumina is added to zirconia. Even when partially stabilized or stabilized zirconia is used as a refractory for melting a glass, the stabilizer is selectively eluted by alkali or the like in the molten glass or glass volatiles, and the corrosion resistance is remarkably low.
また、ジルコニアとアルミナとからなる溶融耐火物は、冷却固化中に、亀裂が生じ、耐火物として使用しうる大きさを有する鋳塊を得ることが困難である。この欠点を回復すべく開発されたのが、上記のAl2O3−ZrO2−SiO2系溶融耐火物であり、10〜20wt%程度のマトリックスガラス相を有する。 In addition, a molten refractory composed of zirconia and alumina is cracked during cooling and solidification, and it is difficult to obtain an ingot having a size that can be used as a refractory. The above-described Al 2 O 3 —ZrO 2 —SiO 2 molten refractory has been developed to recover from this defect, and has a matrix glass phase of about 10 to 20 wt%.
従来より、ジルコニアとアルミナを含む耐火物として、アルミナ−ムライト系溶融耐火物あるいはジルコン−ムライト系焼結耐火物があるが、特に溶融ガラスに接触するような場合、耐蝕性が低く、普及するにいたっていない。 Conventionally, as a refractory containing zirconia and alumina, there is an alumina-mullite-based molten refractory or a zircon-mullite-based sintered refractory, but the corrosion resistance is low, especially when it comes into contact with molten glass. It ’s not there.
一方、特開平7−293851及び特開平8−104567には、廃棄物溶融用炉及びガラス溶融炉の炉の炉底に用いる耐火物として溶融耐火物の再固化粉砕物を含むジルコニア質耐火物が開示されている。このなかで、溶融再固化物として高ジルコニア質粉砕物が使用されているが、焼結するために粘土などの焼結助剤を使用している。このような焼結助剤等の物質を添加すると、耐火物自体の高温強度や耐蝕性が低下する。 On the other hand, in Japanese Patent Laid-Open Nos. 7-293851 and 8-104567, there is a zirconia refractory containing a resolidified pulverized product of a molten refractory as a refractory used for the bottom of a furnace for melting a waste and a furnace for a glass melting. It is disclosed. Among them, a high zirconia pulverized product is used as a melt resolidified product, but a sintering aid such as clay is used for sintering. When such a substance such as a sintering aid is added, the high temperature strength and corrosion resistance of the refractory itself are lowered.
また、高ジルコニア質溶融耐火物の再固化粉砕物を骨材として、アルミナセメント、
アルミナ粉末等を結合材として利用する方法が、特開昭63−103869、特公平4−20872、及び特開平5−213676に提案されているが、不定形耐火物に限られている。
In addition, re-solidified pulverized high zirconia molten refractory is used as an aggregate, alumina cement,
A method of using alumina powder or the like as a binder has been proposed in Japanese Patent Laid-Open No. 63-103869, Japanese Patent Publication No. 4-20872, and Japanese Patent Laid-Open No. 5-213676, but is limited to an amorphous refractory.
前述の焼結耐火物は、気孔率が高く、耐蝕性が低いために、特に、溶融ガラスあるいはガラス揮発物と接触する部分では、使用しにくいという欠点がある。 The sintered refractories described above have a drawback that they are difficult to use, particularly in the portions that come into contact with molten glass or glass volatiles, because of their high porosity and low corrosion resistance.
また、高ジルコニア質溶融耐火物は、ジルコニアを多く含有し、また約2500℃で溶融し、鋳型中で固化させるので、高価である。さらに、製造上冷却によって鋳込み巣(ボイド)が生じ、これを多く含む部分が、体積にして半分にも及ぶ場合もあり、製品歩留まりが低い。この空隙を多く含む部分を粉砕し、戻りカレットとして再利用する方法があるが、製品の成分制御が難しく、また粉砕時に混入する鉄分などにより、純度が低下し、この耐火物の長所である高耐食性及び低素地汚染性を損ねる。 Further, the high zirconia molten refractory contains a large amount of zirconia, is melted at about 2500 ° C., and is solidified in the mold, so that it is expensive. Furthermore, casting voids are generated due to cooling in production, and a portion containing a large amount of the void may reach half as much as the volume, resulting in a low product yield. There is a method to pulverize the part that contains a lot of voids and reuse it as a return cullet. However, it is difficult to control the components of the product, and the purity decreases due to the iron content mixed during pulverization, which is an advantage of this refractory. Impairs corrosion resistance and low substrate contamination.
以上の耐火物煉瓦と耐火物煉瓦との両者の短所を改善し、長所を合わせ持った性能を有する耐火物の開発が望まれていたが、現在までにこのような耐火物は開発されていない。本発明の目的は、上述した問題を解決すべく、また低コストで製造可能な耐火物を提供することである。このような耐火物が製造できれば、ガラスの溶融等の炉材として用いることによって、溶融物の歩留まりが向上するはずである。さらに、ジルコニア資源の有効利用にも繋がる。 It was desired to develop a refractory with performance that combines the advantages of both refractory bricks and refractory bricks, but no such refractories have been developed to date. . An object of the present invention is to provide a refractory that can be manufactured at a low cost in order to solve the above-described problems. If such a refractory can be produced, the yield of the melt should be improved by using it as a furnace material for melting glass. Furthermore, it leads to the effective use of zirconia resources.
本発明は、前述の課題を達成すべくなされたものであり、主にガラス溶融窯に用いられる耐火物であって、単斜晶系ZrO2を主成分とする、化学成分がZrO 2 ;80.5〜95.5%、SiO 2 ;3.03〜15.1%、Al 2 O 3 ;0.80〜2.61%、Na 2 O;0.38〜1.33%の高ジルコニア質溶融再固化物の粉砕物と、Al2O398重量%以上のアルミナ粉末と、からなる混合物を焼結して、前記単斜晶(バデライト)相の周囲の一部又は全てをムライト相で構成することを特徴とするジルコニア質耐火物を提供するものである。
The present invention has been made to achieve the aforementioned problems, primarily a refractory used for glass melting furnace, the monoclinic ZrO 2 as a main component, chemical composition ZrO 2; 80 .5~95.5%, SiO 2; 3.03~15.1% , Al 2
本発明のジルコニア質の焼成耐火物は、従来のジルコニア質耐火物に比べ、組織及び組成が均一であることと、強固な結合をしているために、安定した品質と信頼性を有しており、耐食性及び発泡性に優れているので、溶融ガラスに対し、泡、砂利等のガラス欠点を生じさせがたく、耐素地汚染性が低く、ガラス製造の歩留まりが向上する。 Compared to conventional zirconia refractories, the zirconia fired refractories of the present invention have a uniform structure and composition, and have a strong bond, so they have stable quality and reliability. In addition, since it is excellent in corrosion resistance and foamability, it is difficult to cause glass defects such as bubbles and gravel with respect to molten glass, and the substrate contamination resistance is low, so that the yield of glass production is improved.
また、本発明品は、高ジルコニア質溶融耐火物の製品とできない鋳込み巣を含む部分を利用できるので、低コストで製造でき、資源のリサイクル化、すなわち省資源に貢献できる。 In addition, since the product of the present invention can use a portion including a casting cavity that cannot be made of a high zirconia molten refractory product, it can be manufactured at low cost and can contribute to resource recycling, that is, resource saving.
高ジルコニア質溶融耐火物は、鋳込み巣を除けば、内部には孔隙がほとんどない。鋳込み巣のある部分は、気孔率が高いことや気孔が偏在するために、耐火物として使用することは、ほとんどない。しかし、ある程度の粉砕によって、容易に鋳込み巣を除去できる。この鋳込み巣がない部位(鋳込み巣が多い部分から気孔を除去した固相部分)は、大きさが耐火物として使用するに及ばないだけであって、緻密で、気孔率は低く、製品としている鋳込み巣がないあるいは少ない部位に比較して、これらの物性は、なんら劣るものではない。さらに、むしろ鋳込み巣を含まない部位よりも、酸化度は高い。 High zirconia molten refractories have almost no pores inside, except for the casting cavity. Since the porosity is high and the pores are unevenly distributed, the portion with the casting nest is rarely used as a refractory. However, the cast nest can be easily removed by a certain amount of grinding. The part without the casting nest (the solid phase part from which the pores have been removed from the part where there are many casting nests) is not enough in size to be used as a refractory, is dense, has a low porosity, and is a product. These physical properties are not inferior to those with no or few casting voids. In addition, the degree of oxidation is higher than that of the portion not including the casting cavity.
酸化度が高い溶融耐火物は、耐素地汚染性、特に発泡性が低いことが知られている。本発明の耐火物は、通常の溶融耐火物より酸化度の高い材料を用い、さらに焼成するので、耐素地汚染性が低いと期待される。さらに、鋳込み巣を含む部位を利用するので、コストを低下させることができ、資源の有効利用である。 It is known that a molten refractory having a high degree of oxidation has a low resistance to substrate contamination, in particular, foamability. Since the refractory of the present invention uses a material having a higher degree of oxidation than a normal molten refractory and is further fired, it is expected to have a low resistance to substrate contamination. Furthermore, since the site | part containing a casting nest is utilized, cost can be reduced and it is effective utilization of resources.
単斜晶系ZrO2を主成分とする高ジルコニア質溶融耐火物の粉砕物を焼結した耐火物は、以下の方法によって、作ることができる。特公昭59−12619、特公平8−18880、及び特開平3−218980に示されているような高ジルコニア質溶融耐火物の製造に伴って生じる鋳込み巣を含む部分を粉砕器を用いて、粉砕する。鋳込み巣は、それ自体大部分体積が大きいので、粒径5mm程度に粉砕すれば、ほぼ除去できる。ただし、あまり粉砕物のサイズが大きいと、焼結体中に気孔を作る原因となったり、組織の均一性が低くなり、耐蝕性を低下させる原因となる。 A refractory obtained by sintering a pulverized product of a high zirconia molten refractory mainly composed of monoclinic ZrO 2 can be produced by the following method. Using a pulverizer, pulverize the portion containing the cast nest that is produced in the production of high zirconia molten refractories as disclosed in JP-B-59-12619, JP-B-8-18880, and JP-A-3-218980. To do. Since the casting nest itself has a large volume, it can be almost removed by grinding to a particle size of about 5 mm. However, if the size of the pulverized product is too large, it may cause pores in the sintered body, or the uniformity of the structure may be reduced, and the corrosion resistance may be reduced.
本発明で用いる単斜晶系ZrO2を主成分とする高ジルコニア質溶融再固化物は、バデライト結晶相の周りを少量のマトリックスガラス相が取り囲んでいる組織からなるもので、化学組成としては重量%でZrO2 ;80.5〜95.5%、SiO 2 ;3.03〜15.1%、Al 2 O 3 ;0.80〜2.61%、Na 2 O;0.38〜1.33%である。
The high zirconia melt-resolidified material mainly composed of monoclinic ZrO 2 used in the present invention is composed of a structure in which a small amount of matrix glass phase surrounds the badelite crystal phase. % in ZrO 2; 80.5~95.5%, SiO 2 ; 3.03~15.1%, Al 2
粉砕物の粒径は、一つには、粉砕効率及び耐熱衝撃抵抗性を考慮すると、粒径1.00mm以上4.76mm未満(粗粒)が10重量%ないし50重量%、粒径0.15mm以上1.00mm未満(中粒)が10重量%ないし50重量%、粒径0.15mm未満(微粒)が40重量%以下という構成が好ましい。ここで、粒径Xmm以上とは、目開きXmmの篩を通過しない粒子、一方、粒径Ymm未満以上とは、目開きYmmの篩を通過する粒子のことをそれぞれ示す。粗粒あるいは中粒が、これ以上含まれると、焼結性が低下し、所望の焼結体を得ることが困難な場合がある。 As for the particle size of the pulverized product, in consideration of the pulverization efficiency and the thermal shock resistance, the particle size of 1.00 mm to less than 4.76 mm (coarse particles) is 10% to 50% by weight, and the particle size of 0.1%. A configuration in which the particle size is 15% to less than 1.00 mm (medium particles) is 10 to 50% by weight and the particle size is less than 0.15 mm (fine particles) is preferably 40% by weight or less. Here, the particle size of X mm or more indicates particles that do not pass through a sieve having an opening of X mm, and the particle size of less than Y mm indicates particles that pass through a sieve having an opening of Y mm. When coarse grains or medium grains are contained more than this, the sinterability is lowered, and it may be difficult to obtain a desired sintered body.
もう一つには、組織の均一性及び低気孔率化を考慮すると、粒径は、0.15mm未満のみが好ましい。 Another is that the particle size is preferably less than 0.15 mm, considering the uniformity of the structure and the reduction in porosity.
また、鉄製の粉砕器を用いる場合には、粉砕後、磁石、あるいは希塩酸等の酸洗浄によって、混入鉄を除去することが望ましい。このようにすると、耐素地汚染性が低下する。 When using an iron pulverizer, it is desirable to remove the mixed iron after pulverization by washing with a magnet or acid such as dilute hydrochloric acid. If it does in this way, substrate pollution resistance will fall.
アルミナ粉末は、アルミナ質溶融耐火物を上記方法と同様にして、再固化したものとして得ることができるが、Na2Oを多く含むので好ましくはない。バイヤー法で製造したアルミナが安価で市販されているので、これを利用するとよい。他のアルミナも利用できるが、不純物の多いものは使用を避けるのが好ましいので、Al2O398重量%以上のものを使用する。 The alumina powder can be obtained by re-solidifying the alumina molten refractory in the same manner as described above, but is not preferable because it contains a large amount of Na 2 O. Since alumina produced by the Bayer method is commercially available at a low price, it may be used. Other aluminas can also be used, but it is preferable to avoid the use of a material having a large amount of impurities, so that a material containing Al 2 O 3 of 98% by weight or more is used.
アルミナは焼結助剤としての役割も果たすので、アルミナの粒径は、高ジルコニア質溶融再固化の粉砕物のそれより小さい方がよい。アルミナの粒径は、好ましくは0.15mm未満、より好ましくは0.01mm未満である。 Since alumina also serves as a sintering aid, the particle size of the alumina should be smaller than that of the high zirconia melt resolidified pulverized product. The particle size of alumina is preferably less than 0.15 mm, more preferably less than 0.01 mm.
粉砕した粒状又は紛状原料を、金型プレス法あるいはCIP法等によって成形する。特に結合材を用いなくても、成形可能である。これはムライトの生成する1400℃程度以上の温度で焼成するのが望ましいからである。以上の操作によってなんら亀裂のない焼結体を得ることができる。 The pulverized granular or powdery raw material is molded by a die press method or a CIP method. In particular, molding is possible without using a binder. This is because firing is preferably performed at a temperature of about 1400 ° C. or higher where mullite is generated. By the above operation, a sintered body having no cracks can be obtained.
本発明は、図1に示されているように、基本的にはジルコニア粒子中のバデライト相1の周りをムライト相2(一部マトリックス相を含む)が取り巻いた構造をしている。ここでムライトは、高ジルコニア質溶融再固化粉砕物のバデライト相を取り囲んでいたマトリックスガラス相中のシリカとアルミナが反応して生じたものである。したがって、ムライトはバデライト粒子間を強固に結合する役割をなし、遊離の結晶としては存在しない。この点は、ジルコン−ムライト耐火物と異なり、耐蝕性が優れると考えられる。また、アルミナ−ムライト系耐火物に比べ、ZrO2含量が著しく高く、耐蝕性が優れている。ムライトの組成は、3Al2O3・2SiO2(実際には、これとAl2O3・SiO2程度の間の組成を示す。)であり、重量比でこの順で72:28及び63:37であるので、原料中のSiO2含量の100/28(100/37)以上は生成しない。ムライトは、アルミナ及びジルコニアに比べて、耐蝕性が劣るので、多く生成しないように、SiO2含量は、1重量%以上6重量%以下が好ましい。
As shown in FIG. 1, the present invention basically has a structure in which a mullite phase 2 (including part of a matrix phase) is surrounded around a
このSiO2含量は、通常生産されている高ジルコニア質溶融耐火物のそれとほぼ一致し、原料が入手しやすく、成分調整の必要がない。 This SiO 2 content is almost the same as that of the normally produced high zirconia molten refractory, and the raw materials are easily available, and there is no need to adjust the components.
また、ムライトあるいはアルミナは、溶融ガラスあるいはガラス揮発物と本発明耐火物が接触した場合に、界面にアルミナに富む層を形成し保護層の役目をし、バデッライトが溶出するのを抑制する。したがって、アルミナを添加することによって、耐蝕性はさらに良くなる。さらに、アルミナは、低温(例えば1300℃以下)での発泡性においては、ジルコニアにより優れる。 In addition, mullite or alumina forms a layer rich in alumina at the interface when molten glass or glass volatiles come into contact with the refractory of the present invention, and serves as a protective layer to suppress elution of badellite. Therefore, the corrosion resistance is further improved by adding alumina. Furthermore, alumina is superior to zirconia in foaming properties at a low temperature (for example, 1300 ° C. or lower).
これらを考慮すると、耐火物の使用目的にもよるが、本発明において高ジルコニア質溶融再固化粉砕物とアルミナ粉末の割合は、合量中重量%で前者が98〜50%、後者が2〜50%が好ましく、より望ましくは前者が90〜70%、後者が10〜30%である。 Considering these, although depending on the purpose of use of the refractory, in the present invention, the ratio of the high zirconia melted resolidified pulverized product to the alumina powder is 98% to 50% for the former in the total weight and 2 to 2 for the latter. 50% is preferable, more desirably, the former is 90 to 70%, and the latter is 10 to 30%.
焼成中に、バデッライトの粒成長はほとんどないので、原料粒子状態以上のジルコニアの偏析は存在しない。これは、高ジルコニア質の溶融耐火物が、気孔やマトリックスガラスが多く存在し、局部的に耐蝕性及び耐素地汚染性が劣る部分が存在することと比較すれば、より均質な信頼性の高い耐火物である。 During firing, there is almost no grain growth of badellite, so there is no segregation of zirconia beyond the raw material particle state. This is because the high zirconia molten refractory has more pores and matrix glass, and there are parts that are locally inferior in corrosion resistance and substrate contamination resistance. Refractory.
なお、図1において3は主としてマトリックスガラス相、アルミナ粒子あるいは気孔である。 In FIG. 1, 3 is mainly a matrix glass phase, alumina particles or pores.
本発明はこのように実質的に高ジルコニア質溶融再固化粉砕物とアルミナ粒子からなるものであるが、その目的・効果を損なわない程度において他の成分を添加することはできるが、可及的少量にとどめることが望ましい。 The present invention substantially consists of a high-zirconia melt-resolidified pulverized product and alumina particles as described above, but other components can be added to the extent that they do not impair the purpose and effect. It is desirable to keep it small.
以下、本発明を実施例によって具体的に説明するが本発明はこれらの実施例によってなんら限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
本発明品の作成方法の例を以下に示す。まず、脱珪酸ジルコン、バイヤーアルミナ、珪砂、及び炭酸ナトリウムを所定量秤取、混合後、これを黒鉛電極を用いる500kVAの単相アーク電気炉にて、2500℃程度にて、完全に溶融した。この溶湯をバイヤーアルミナに埋めてある内寸160mm×200mm×350mmの黒鉛型に出湯し、室温まで放冷した。ついで、鋳塊を切断し、鋳込み巣を含む部分を得た。 An example of a method for producing the product of the present invention is shown below. First, a predetermined amount of desilicated zircon, Bayer alumina, silica sand, and sodium carbonate were weighed and mixed, and then completely melted at about 2500 ° C. in a 500 kVA single-phase arc electric furnace using a graphite electrode. The molten metal was poured out into a graphite mold having an inner size of 160 mm × 200 mm × 350 mm embedded in buyer alumina and allowed to cool to room temperature. Next, the ingot was cut to obtain a portion including a casting cavity.
溶融再固化物の鋳込み巣を含む部分をジョークラッシャー、次いで鉄鉢で粉砕し、1cm程度の粒径の粉砕品を得た。次に、これを1mol/リットルの塩酸水溶液に浸漬し、洗浄し、混入鉄を溶解させ、乾燥させた。なお、粉砕によって、約0.1wt%Fe2O3の混入が認められた。さらに、アルミナボールを用いて粉砕した。同一鋳造品について、0.15mm未満の粒度について、化学組成を測定した。ZrO2含量、SiO2含量、及びAl2O3含量は、ガラスビード法によって、蛍光X線分析装置を用いて定量し、Na2O含量は、フッ酸−硫酸で分解後、原子吸光光度計で定量した(表1)。 The part including the cast nest of the melted and re-solidified product was pulverized with a jaw crusher and then with an iron bowl to obtain a pulverized product having a particle size of about 1 cm. Next, this was immersed in 1 mol / liter hydrochloric acid aqueous solution, washed, mixed iron was dissolved and dried. In addition, about 0.1 wt% Fe 2 O 3 was found to be mixed by pulverization. Furthermore, it grind | pulverized using the alumina ball | bowl. For the same cast product, the chemical composition was measured for a particle size of less than 0.15 mm. The ZrO 2 content, the SiO 2 content, and the Al 2 O 3 content are quantified by a glass bead method using a fluorescent X-ray analyzer, and the Na 2 O content is decomposed with hydrofluoric acid-sulfuric acid and then an atomic absorption photometer. (Table 1).
なお、得られた高ジルコニア質溶融再固化粉砕物は、単斜晶系ZrO2を主成分とするものであった。 The obtained high-zirconia melt-resolidified pulverized product was mainly composed of monoclinic ZrO 2 .
次いで、篩別した原料を所定の粒度分布を示すように調合した(表2)。これと所定の粒度分布(表2)を示すアルミナとを混合した。用いたアルミナは、バイヤー法で得たもので、Al2O399%以上のものである。実施例1ないし実施例16を表3に示す。次いで、それぞれの混合原料を次のように成形及び焼成した。 Next, the sieved raw materials were prepared so as to exhibit a predetermined particle size distribution (Table 2). This and alumina showing a predetermined particle size distribution (Table 2) were mixed. The alumina used was obtained by the Bayer method and is Al 2 O 3 99% or more. Examples 1 to 16 are shown in Table 3. Subsequently, each mixed raw material was shape | molded and baked as follows.
混合原料500gを金型プレス、さらにCIP法(1500kg/cm3)によってプレスし、生加工品を得た。これを抵抗加熱式電気炉にて、1600℃で、24時間焼成した。焼成体は、いずれも亀裂を発生することなく得られた。 500 g of the mixed raw material was pressed by a die press and further by a CIP method (1500 kg / cm 3 ) to obtain a raw processed product. This was fired at 1600 ° C. for 24 hours in a resistance heating electric furnace. All the fired bodies were obtained without generating cracks.
得られた焼結体について、アルキメデス法によって、嵩密度を測定した(表4)。
耐食性を調べるために、15mm×15mm×50mmの直方体の試料を焼成体から切り出し、管球パネルガラス中に1500℃で48時間浸漬した。その後縦方向に二等分し、浸食量を測定した(表4)。
About the obtained sintered compact, the bulk density was measured by Archimedes method (Table 4).
In order to investigate the corrosion resistance, a 15 mm × 15 mm × 50 mm rectangular parallelepiped sample was cut from the fired body and immersed in a tube panel glass at 1500 ° C. for 48 hours. Then, it was divided into two equal parts in the vertical direction and the amount of erosion was measured (Table 4).
また、発泡性を調べるために、40mm×40mm×5mmの板状の試料を焼成体から切り出し、これにアルミナ製の内径30mmのリングを載せ、1500℃で24時間加熱した。その後、残存泡数を光学顕微鏡を用いて、計測した(表4)。
なお、対照(比較例)として、表1組成Vに示す。高ジルコニア質溶融再固化の粉砕物(粒径0.15mm未満)のみを焼結したもの(比較例1)、これに粘土を内割りで5重量%及び10重量%添加し焼結したもの(比較例2及び比較例3)、及びジルコン・ムライト焼結品(比較例4)を用いた。これらの比較例の化学組成、嵩比重、浸食量、及び発泡量の結果を表4に示す。試験方法は、いずれも実施例と同じである。
Moreover, in order to investigate foamability, a plate-like sample of 40 mm × 40 mm × 5 mm was cut out from the fired body, and a ring made of alumina having an inner diameter of 30 mm was placed thereon and heated at 1500 ° C. for 24 hours. Thereafter, the number of remaining bubbles was measured using an optical microscope (Table 4).
In addition, it shows in Table 1 composition V as a control | contrast (comparative example). Sintered high zirconia melt re-solidified pulverized product (particle size less than 0.15 mm) (Comparative Example 1), and added 5% by weight and 10% by weight of clay to this and sintered ( Comparative Example 2 and Comparative Example 3) and a zircon-mullite sintered product (Comparative Example 4) were used. Table 4 shows the results of the chemical composition, bulk specific gravity, erosion amount, and foaming amount of these comparative examples. The test methods are the same as in the examples.
実施例及び比較例の浸食量及び発泡量は、比較例1を100としたときの相対比較で示してある。これらにおいて、浸食量の値が100以上ならば、比較例1に比べ、浸食量が多いことを示し、発泡量が100以上ならば、同じく、発泡量が多いことを示す。 The amount of erosion and the amount of foaming in Examples and Comparative Examples are shown as relative comparisons when Comparative Example 1 is taken as 100. In these, if the value of erosion amount is 100 or more, it shows that there is much erosion amount compared with the comparative example 1, and if the amount of foaming is 100 or more, it shows that the amount of foaming is also large.
なお、実施例に示したものについてその断面組織を顕微鏡観察したところすべてが基本的には図1に示すような組織からなるものであることが確認された。 In addition, when the cross-sectional structure | tissue of what was shown in the Example was observed with the microscope, it was confirmed that all consist of a structure | tissue as shown in FIG. 1 fundamentally.
表4からわかるように、高ジルコニア溶融再固化の粉砕物にアルミナを添加することによって、耐食性及び特に発泡性が改善されることがわかる。さらに、本発明品は、従来のジルコン・ムライト焼結品や、高ジルコニア溶融耐火物の粉砕物に粘土を添加した焼結品に比べ、その耐食性及び発泡性が、著しく優れている。 As can be seen from Table 4, the addition of alumina to the pulverized product of high zirconia melt resolidification improves the corrosion resistance and particularly the foamability. Furthermore, the product of the present invention is remarkably superior in corrosion resistance and foamability compared to conventional zircon mullite sintered products and sintered products obtained by adding clay to a pulverized product of high zirconia molten refractory.
表4において、
1)実施例は、表1の組成値と表3の混合比からとの理論値、比較例は、実測値、
2)比較例1を100としたときの相対比較値。100以上で浸食量が多いことを示す。NMは、ストーンのため測定不能を示す、
3)比較例1を100としたときの相対比較値。100以上で発泡量が多いことを示す。
以上のことから、本発明品は、ガラス溶解用の窯に用いる耐火物として、溶融ガラスに対し、接触あるいは非接触に関係なく使用可能であり、泡、砂利等のガラス欠点を生じさせがたい耐火物である。本発明の耐火物は、ガラス溶解に限らず、金属溶解、焼却灰溶解等に用いる耐火物としても利用できる。
In Table 4,
1) Examples are theoretical values based on composition values in Table 1 and mixing ratios in Table 3, comparative examples are actually measured values,
2) Relative comparison value when Comparative Example 1 is 100. It shows that there is much erosion amount at 100 or more. NM indicates that it cannot be measured due to stone,
3) Relative comparison value when Comparative Example 1 is 100. A value of 100 or more indicates a large amount of foaming.
From the above, the product of the present invention can be used as a refractory used in a glass melting kiln regardless of contact or non-contact with molten glass, and hardly causes glass defects such as foam and gravel. Refractory. The refractory of the present invention can be used not only for melting glass but also for refractory used for melting metals, melting incinerated ash, and the like.
本発明は、前述の課題を達成すべくなされたものであり、主にガラス溶融窯に用いられる耐火物であって、高ジルコニア質溶融再固化物の単斜晶系ZrO2を主成分とする粉砕物とアルミナ粉末との混合物を焼結してなることを特徴とするジルコニア質耐火物を提供するものである。 The present invention has been made to achieve the above-mentioned problems, and is a refractory mainly used in a glass melting furnace, which is mainly composed of monoclinic ZrO 2 which is a high zirconia melt resolidification product. The present invention provides a zirconia refractory characterized by sintering a mixture of a pulverized product and alumina powder.
1:バデライト相
2:ムライト相(一部マトリックスガラス相)
3:マトリックスガラス相、アルミナ相あるいは気孔
1: Badelite phase 2: Mullite phase (partially matrix glass phase)
3: Matrix glass phase, alumina phase or pores
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006041161A JP4394080B2 (en) | 2006-02-17 | 2006-02-17 | Zirconia refractories |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006041161A JP4394080B2 (en) | 2006-02-17 | 2006-02-17 | Zirconia refractories |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8276194A Division JPH10120462A (en) | 1996-10-18 | 1996-10-18 | Zirconia refractory |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006188429A JP2006188429A (en) | 2006-07-20 |
JP4394080B2 true JP4394080B2 (en) | 2010-01-06 |
Family
ID=36795972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006041161A Expired - Lifetime JP4394080B2 (en) | 2006-02-17 | 2006-02-17 | Zirconia refractories |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4394080B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103224391A (en) * | 2013-03-22 | 2013-07-31 | 西北有色金属研究院 | Multi-component stable thermal-corrosion-resistant zirconia coat material |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4595944B2 (en) * | 2007-01-19 | 2010-12-08 | 修 廣田 | Ultra-high temperature pyrolysis equipment |
CN115894018B (en) * | 2023-01-05 | 2023-09-22 | 郑州方铭高温陶瓷新材料有限公司 | Glass kiln material flow nozzle brick and preparation method thereof |
-
2006
- 2006-02-17 JP JP2006041161A patent/JP4394080B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103224391A (en) * | 2013-03-22 | 2013-07-31 | 西北有色金属研究院 | Multi-component stable thermal-corrosion-resistant zirconia coat material |
Also Published As
Publication number | Publication date |
---|---|
JP2006188429A (en) | 2006-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101497729B1 (en) | AZS refractory composition | |
AU2006317007B2 (en) | Refractory brick | |
CN108367993B (en) | Sintered refractory zircon composite material, method for the production thereof and use thereof | |
JP5507262B2 (en) | Aggregate particles for mold | |
CN105174974B (en) | Alumina fused cast refractory and method for producing same | |
JP4888121B2 (en) | Refractory brick for float bath bottom and method for producing the same | |
CN1072626C (en) | Light mullite pouring material | |
CN1807352A (en) | Higly oxidized zirconia refractory preparation method | |
JP4394080B2 (en) | Zirconia refractories | |
JP4045329B2 (en) | Method for producing high zirconia refractories | |
CN109279906A (en) | A kind of castable and preparation method thereof | |
KR20160114578A (en) | Siliceous composition and method for obtaining same | |
CN112209624B (en) | Foamed ceramic with high thermal stability and fire resistance and preparation method thereof | |
JP3753479B2 (en) | High zirconia refractory | |
CN101786890A (en) | Method for producing electro-fused zirconia-corundum ramming material by utilizing waste bricks of glass kiln | |
JP2007320827A (en) | Method of producing aggregate | |
JPH10120462A (en) | Zirconia refractory | |
JP7130903B2 (en) | Refractory materials for low-melting non-ferrous metals | |
JP2005298277A (en) | High-zirconia electrocasted refractory and manufacturing method thereof | |
JP2003171184A (en) | SiC FOR MONOLITHIC REFRACTORY HAVING EXCELLENT CORROSION RESISTANCE, SPALLING RESISTANCE AND DRYNESS, PRODUCTION METHOD THEREFOR, AND RAW MATERIAL FOR THE MONOLITHIC REFRACTORY | |
JP2003292383A (en) | Manufacturing method for monolithic refractory | |
JP2013173657A (en) | Dry ramming material and method for manufacturing refractory material using the same | |
CN117550617B (en) | Technology for preparing mullite by taking coal-series kaolinite as raw material | |
JP3978578B2 (en) | Rare earth alloy melting crucible and rare earth alloy | |
JP3944700B2 (en) | Rare earth alloy melting crucible and rare earth alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090417 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090526 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090724 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090727 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091013 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091014 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121023 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131023 Year of fee payment: 4 |
|
EXPY | Cancellation because of completion of term |