JP4045329B2 - Method for producing high zirconia refractories - Google Patents

Method for producing high zirconia refractories Download PDF

Info

Publication number
JP4045329B2
JP4045329B2 JP29010797A JP29010797A JP4045329B2 JP 4045329 B2 JP4045329 B2 JP 4045329B2 JP 29010797 A JP29010797 A JP 29010797A JP 29010797 A JP29010797 A JP 29010797A JP 4045329 B2 JP4045329 B2 JP 4045329B2
Authority
JP
Japan
Prior art keywords
refractory
matrix glass
glass
composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29010797A
Other languages
Japanese (ja)
Other versions
JPH11130529A (en
Inventor
義久 別府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Ceramics Co Ltd
Original Assignee
AGC Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Ceramics Co Ltd filed Critical AGC Ceramics Co Ltd
Priority to JP29010797A priority Critical patent/JP4045329B2/en
Publication of JPH11130529A publication Critical patent/JPH11130529A/en
Application granted granted Critical
Publication of JP4045329B2 publication Critical patent/JP4045329B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Description

【0001】
【発明の属する技術分野】
本発明は、主としてガラス溶融槽窯用の耐火物として好適な高ジルコニア質耐火物に関する。
【0002】
【従来の技術】
従来のガラス溶融槽窯に用いられる耐火物を大別すると、焼結(結合)耐火物と溶融耐火物とがある。
焼結(結合)耐火物は、均質に混合した粉体原料をプレス等によって成形後、焼成して製造される。この耐火物は、原料としての粉体に付着した気体及び焼成中に生じる気体の一部が焼成後も残存し、焼成体の密度が低く、耐食性が低い。耐食性が低いことは、ガラス溶融のために用いる場合には、泡や砂利等の欠点を発生する確率が高いことを示す。
【0003】
一方、溶融耐火物は均質に混合した原料を電気アーク炉等の溶融炉で溶融し、鋳型に流し込み、冷却再固化することによって得られ、緻密で発達した結晶組織を有する。このうち、特に、ジルコニアを相対的に多く含有する耐火物が、耐食性に優れ、ガラス溶融用窯に好んで使用されている。このような溶融耐火物で広く使用されている耐火物としては、ZrO2 含量が33〜41重量%のAl23 −ZrO2 −SiO2 系耐火物と、ZrO2 を80〜95重量%含有する高ジルコニア系耐火物とがある。後者は、前者に比較して高耐食性及び低素地汚染性であるため、近年、高品質ガラス溶解窯用の耐火物として普及している。
【0004】
元来、ジルコニアは、900〜1200℃において単斜晶と正方晶との相転移を起こすので、Y23 やCaOなどを添加し、ジルコニアを少なくとも部分安定化させないかぎり、焼結体が得られない。部分安定化又は安定化ジルコニアをガラス溶融用の耐火物として使用しても、溶融ガラス又はガラス揮発物中のアルカリ等によって、安定化剤が選択的に溶出し、耐食性が著しく低い。
【0005】
特開平7−293851及び特開平8−104567に、廃棄物溶融用炉及びガラス溶融炉の炉底に用いる耐火物として、溶融ジルコニアを含むジルコニア質耐火物が開示されており、溶融ジルコニアとして高ジルコニア質溶融耐火物も開示されているが、焼結するために粘土などの焼結助剤を使用している。
【0006】
このような焼結助剤等の物質を添加すると、耐火物自体の高温強度や耐食性が低下する。例えば、部分安定化ジルコニアに粘土を焼結助剤として添加すると、耐磨耗性や組織の均一性が低下する(特公平5−18774参照)。また、高ジルコニア質溶融耐火物を用いる場合には、粘土等の焼結助剤とマトリックスガラスとが反応して結晶を生成しやすくなり、相対的にマトリックスガラス含量が低下し、相転移にともなう体積変化を吸収しにくくなり、耐サーマルサイクル性が低下する。
【0007】
【発明が解決しようとする課題】
前述のように、焼結耐火物は、気孔率が高く耐食性が低いために、特に、溶融ガラス又はガラス揮発物と接触する部分では使用しにくい欠点がある。
一方、高ジルコニア質溶融耐火物は、ジルコニアを多く含有し、また約2500℃で溶融し、鋳型中で固化させるので高価である。さらに、製造上冷却によって鋳込み巣(ボイド)が生じ、これを多く含む部分が体積にして半分にも及ぶ場合もあり、製品歩留まりが低い。この空隙を多く含む部分を粉砕し、戻りカレットとして再利用する方法があるが、製品の成分制御が難しく、粉砕時に混入する鉄分などにより純度が低下し、この耐火物の長所である高耐食性及び低素地汚染性を損ねることから、実用化にいたっていない。
【0008】
以上の結合耐火物と溶融耐火物との両者の短所を改善し、長所を併有する耐火物の開発が望まれていたが、現在までにこのような耐火物は開発されていない。本発明の目的は、上述した問題を解決すべく、また低コストで製造可能な高品質の耐火物を提供することである。このような耐火物が製造できれば、ガラスの溶融等の炉材として用いることによって、溶融物の歩留まりが向上するはずである。さらに、ジルコニア資源の有効利用にもつながる。
【0009】
【課題を解決するための手段】
本発明は、主にガラス溶融槽窯に用いられる耐火物であって、マトリックスガラスを含む単斜晶系ZrO2 を主成分とする高ジルコニア質溶融再固化物の粉砕物と、別に調製した該マトリックスガラス類似組成物との混合物を焼結することを特徴とする高ジルコニア質耐火物の製造方法を提供する。
【0010】
高ジルコニア質溶融耐火物は、鋳込み巣部分を除けば内部には孔隙がほとんどない。鋳込み巣のある部分は気孔率が高いことや気孔が偏在するために、耐火物として使用することはほとんどない。しかし、ある程度の粉砕によって、容易に鋳込み巣を除去できる。この鋳込み巣がない部位(鋳込み巣が多い部分から気孔を除去した固相部分)は、大きさが耐火物として使用するに及ばないだけであって、緻密で、気孔率は低く、製品としている鋳込み巣がない又は少ない部位に比較して、これらの物性はなんら劣らない。さらに、むしろ鋳込み巣を含まない部位よりも酸化度は高い。
【0011】
酸化度が高い溶融耐火物は、低素地汚染性、特に低発泡性であることが知られている。本発明の耐火物は、通常の溶融耐火物より酸化度の高い材料を用い、さらに焼成するので、素地汚染性が低いと期待される。さらに、鋳込み巣を含む部位を利用するので、コストを低下でき、資源の有効利用にもなる。
【0012】
本発明で用いる高ジルコニア質溶融耐火物の粉砕物を得るための耐火物は、以下の方法等の通常の溶融耐火物の製造方法によって製造できる。すなわち、特公昭59−12619や特開平1−100068に示されているような高ジルコニア溶融耐火物の製造に伴って生じる鋳込み巣を含む部分を粉砕器を用いて、粉砕することによって得られる。鋳込み巣は、それ自体大部分体積が大きいので、粒径5mm程度に粉砕すればほぼ除去できる。ただし、あまり粉砕物のサイズが大きいと、焼結体中に気孔を作る原因となったり、組織の均一性が低くなり、耐食性を低下させる原因となる。
【0013】
本発明で用いるマトリックスガラスを含む単斜晶系ZrO2 を主成分とする高ジルコニア質の溶融再固化物の粉砕物は、バデライト結晶相の周囲を少量のマトリックスガラスが取り囲む組織からなるものであり、単斜晶系ZrO2 を主成分とするものであればよく、化学組成としては、ZrO2 :85〜97重量%、SiO2 :2〜13重量%、Al23 :3重量%未満、Na2 Oなどその他:1重量%未満程度のよく知られたものでよい。
【0014】
このような本発明で使用する単斜晶系ZrO2 を主成分とする粉砕物のマトリックスガラスは通常Al23 、SiO2 を含むもので、さらにNa2 Oを含むものも多い。また、溶融再固化物の粉砕物を焼結しても、焼結体の化学組成は、粉砕物のそれとほとんど同じである。
【0015】
マトリックスガラス類似組成物の添加は、本発明品の使用時の熱履歴に対して、耐サーマルサイクル性改善の役割を果たす。高ジルコニア溶融耐火物の粉砕物のみを焼結した場合には、マトリックスガラス相中に、一部ジルコンが生成し、耐サーマルサイクル性が低下する場合がある。これに、別に調製したマトリックスガラス類似組成物を添加すれば、ジルコニアの相転移を緩和する役目のマトリックスガラス相の量を増やすことになり、耐サーマルサイクル性が向上する。
【0016】
本発明において、マトリックスガラス類似組成物とは、単斜晶系ZrO2 を主成分とする粉砕物に含まれているマトリックスガラス成分を形成している主成分を主成分として同様に含むものであり、具体的には該粉砕物は通常Al23 及びSiO2 を主成分としたマトリックスガラスを含むものであるため、本発明で使用するマトリックスガラス類似組成物としてもAl23 、SiO2 を主成分とし、さらに通常上記粉砕物のマトリックスガラスにはNa2 Oが含まれていることが多いため、Na2 Oを含むものが好適である。
【0017】
マトリックスガラス類似組成物の添加量は、これと単斜晶系ZrO2 を主成分とする高ジルコニア質溶融再固化物の粉砕物との合量中、2〜7重量%が好ましい。2重量%未満では耐サーマルサイクル性の向上が十分でなくなることがあり、7重量%超ではSiO2 含量が高くまたZrO2 含量が低くなり、耐食性及び高温強度が低下することになる。
【0018】
また、同様の理由から、焼結体である耐火物のZrO2 含量は85重量%以上かつSiO2 含量は10重量%以下とすることが望ましい。
【0019】
さらに、マトリックスガラス類似組成物の組成を調整することで、ジルコンの生成を抑制又は防止できる。そこで、マトリックスガラス類似組成物の化学組成は、SiO2 :50〜90重量%、Al23 :5〜40重量%、Na2 O:5〜20重量%、及びZrO2 :0〜20重量%が好ましい。
【0020】
さらに、添加するマトリックスガラス類似組成物へのZrO2 成分の溶解を抑制するために、マトリックスガラス類似組成物のAl23 含量及びZrO2 含量のうち少なくとも一つが、高ジルコニア質溶融再固化物のマトリックスガラス中に占めるそれらの割合よりも多いことが好ましい。
【0021】
ここで、高ジルコニア質溶融再固化物のマトリックスガラスのAl23 成分は、Al23 成分がバデライト結晶相には存在しないので、溶融再固化物のバルクのAl23 含量及びZrO2 含量から換算して次式で求められる。
【0022】
マトリックスガラスのAl23 含量(重量%)=[バルクのAl23 含量(重量%)/(100−バルクのZrO2 含量(重量%))]×100。
【0023】
一方、高ジルコニア質溶融再固化物のマトリックスガラスのZrO2 含量は、上記により算出されたマトリックスガラスのAl23 含量が10〜20重量%程度の範囲では、電子線マイクロアナライザで測定すると、通常2.0〜2.5重量%の範囲である。
【0024】
マトリックスガラス類似組成物としては、ガラス骨格形成酸化物として、B23 及びP25 を、ガラス骨格修飾酸化物として、Na2 O以外のアルカリ金属酸化物、アルカリ土類金属酸化物等を含むものを用いてもよい。
【0025】
マトリックスガラス類似組成物は、以下のように調製する。原料として二酸化ケイ素、アルミナ、炭酸ナトリウム、及びジルコニア等の所定量を混合し、特開平6−345532記載の方法や酸化雰囲気下で電気炉を用いて、1700℃程度以上の温度で溶融し室温まで冷却する。溶融後、粗粉砕の手段として、高温溶融物をそのまま水中に投入する方法を採用できる。
【0026】
本発明において、高ジルコニア質の溶融再固化物の粉砕物の粒径は、焼結体の組織の均一性及び低気孔率化を考慮すると、粒径は1.00mm未満が望ましい。ここで、1.00mm未満とは、目開き1.00mmの篩を通過する粒子のことを意味する。さらに、高ジルコニア溶融耐火物特有の不均一組織部分(ワームトレーシングともいう)を含まないためには、粒径0.15mm以下のみ、さらには粒径0.10mm以下のみを用いることが好ましい。この気孔やマトリックスガラスを多く含む不均一組織は、おおむね0.1mmの帯状の形態を呈するが、それらの影響を除去できるからである。
【0027】
マトリックスガラス類似組成物の粒径は、これが、焼結時に高ジルコニア溶融耐火物の周囲に均一に分布するように、高ジルコニア質の溶融再固化物の粉砕物と同等又はそれ以下とするのがよい。すなわち、マトリックスガラス類似組成物の好ましい粒径は0.15mm以下である。
【0028】
さらに、粉砕時、鉄製の粉砕器を用いる場合には、粉砕後磁石を用い又は希塩酸等の酸洗浄によって混入鉄を除去することが好ましい。このようにするとさらに低素地汚染性となる。
【0029】
乾式又は湿式にて混合した高ジルコニア質溶融再固化物の粉砕物とこのマトリックスガラス類似組成物とを、金型プレス法又はCIP法によって成形する。特に結合材を用いなくても成形できる。ただし、粒径が大きい原料を多く使用する場合には、結合材を用いなくては成形が困難である。結合材を用いてもよいが、焼成後の耐火物の耐食性、発泡性を悪化させるものであってはいけない。
【0030】
成形体を1400℃以上の温度で焼成する。この焼成によって、原料中の還元物質が酸化されるので、さらに酸化度が上昇する。より酸化を促進したい場合には、例えばカーボンの酸化が完了する900℃程度で保持するとよい。焼成は、空気中又は酸化雰囲気中、大気圧下又は加圧下で行うのが好ましい。焼成温度は1500〜1700℃、特に1550〜1650℃が好ましい。
【0031】
通常、安定化しない単斜晶系ジルコニアは、焼成温度以下の冷却によって、残存膨張のため焼結体が得られないが、本発明品は亀裂なく焼結体を得られる。これは、バデライト相を取り囲むマトリックスガラス相及び添加するマトリックスガラス類似組成物が体積残存膨張を緩和することにより、亀裂の発生を抑制しているためと考えられる。
【0032】
緻密で気孔率が低い溶融耐火物粉砕物を原料としていることと、焼成時に高ジルコニア質溶融再固化物に由来するマトリックスガラス及びマトリックスガラス類似組成物は粘性が低くなるために、バデライト粒の周辺を流動するので、焼結耐火物ながら気孔率が低い。また、ある程度存在する気孔が体積残存膨張を緩和しているとも考えられる。
【0033】
焼成中に、バデライトの粒成長はほとんどないので、原料粒子状態以上のジルコニアの偏析は存在しない。これは、高ジルコニア質の溶融耐火物が、気孔やマトリックスガラスが多く存在し、局部的に耐食性及び素地汚染性が劣る部分が存在することと比較すれば、より均質な信頼性の高い耐火物である。
【0034】
【実施例】
以下、本発明を実施例(例1〜8)、比較例(例9〜11)によって具体的に説明するが本発明はこれらに限定されない。
【0035】
本発明品の製造方法の例を以下に示す。まず、脱ケイ酸ジルコン、バイヤーアルミナ、ケイ砂、及び炭酸ナトリウムを所定量秤取、混合後、これを黒鉛電極を用いる500kVAの単相アーク電気炉にて、2450℃程度にて、完全に溶融した。この溶湯をバイヤーアルミナに埋めてある内寸160mm×200mm×350mmの黒鉛型に出湯し、室温まで放冷した。ついで、鋳塊を切断し、鋳込み巣を含む部分を得た。
【0036】
これをジョークラッシャ、次いで鉄鉢で粉砕し、1cm程度の粒径の粉砕品を得た。次に、これを1mol/Lの塩酸水溶液に浸漬し、混入鉄を溶解、除去させ、水洗の後、乾燥させた。なお、粉砕によって、約0.1重量%のFe23 の混入が認められた。さらに、アルミナボールを用いて粉砕した。ついで、篩を用いて粒径0.15mm以下の粉砕品を得た。化学組成(単位:重量%)を表1に示す。なお、化学組成は、粉砕品の0.15mm未満の画分について以下のように測定した。SiO2 含量及びAl23 含量は、ガラスビード法によって蛍光X線分析装置を用いて定量し、Na2 O含量は、フッ酸−硫酸で分解後、原子吸光光度計を用いて定量した。
【0037】
【表1】

Figure 0004045329
【0038】
一方、マトリックスガラス類似組成物は、二酸化ケイ素、酸化アルミナ、炭酸ナトリウム、及び酸化ジルコニウム(全て試薬特級)を所定量秤取、混合し、ランタンクロマイトを発熱体とする電気炉で、1850℃にて4時間加熱して調製した。これをアルミナ製乳鉢で粉砕して、粒径0.15mm以下の粉砕品を得た。化学組成(単位:重量%)を表2に示す。なお、化学組成は、粉砕品の0.15mm未満の画分について、Al23 含量、Na2 O含量、及びZrO2 含量は、フッ酸−硫酸で分解後、ICP発光分光分析装置又は原子吸光光計を用いて定量した。
【0039】
【表2】
Figure 0004045329
【0040】
ついで、高ジルコニア質溶融再固化物の粉砕物とマトリックスガラス類似組成物との表3に示す割合の混合物1000gを金型プレス、さらにCIP法(1.5ton/cm2 )によってプレスし、生加工品を得た。これを抵抗加熱式電気炉にて1600℃で24時間焼成した。焼結体はいずれも亀裂を発生することなく得られた。
【0041】
なお、例9は、部分安定化ジルコニア焼結品(3モル%Y23 添加)を、例10〜11は、高ジルコニア質溶融再固化物(表1の試料Z2)と粘土(SiO2 含量77.6重量%、Al23 含量17.1%、強熱減量4.1%)とを、それぞれ重量比で、90:10(例10)及び95:5(例11)で混合したものを同様に処理したものを用いた。
上記の例1〜11について以下の試験を実施した。
【0042】
耐食性を調べるために、15mm×15mm×50mmの直方体の試料を焼成体から切り出し、白金坩堝に充填した管球パネル用溶融ガラス中に1500℃で48時間浸漬した。その後縦方向に2等分し、浸食量を測定した(表3)。
【0043】
また、発泡性を調べるために、50mm×50mm×5mmの板状の試料を焼成体から切り出し、これに内径30mmのアルミナ製リングを載せ、その中に上記ガラスを入れ、1500℃で24時間加熱し、室温まで徐冷した。その後、ガラス中の残存泡数を光学顕微鏡を用いて、計測した(表3)。
【0044】
【表3】
Figure 0004045329
【0045】
表3からわかるように、本発明品の耐食性及び発泡性は優れる。以上のことから、本発明品は、ガラス溶解用の窯に用いる耐火物として、溶解ガラスに対し、接触又は非接触に関係なく使用できる。本発明の耐火物は、ガラス溶解に限らず、金属溶解、焼却灰溶解等に用いる耐火物としても利用できる。
【0046】
【発明の効果】
本発明の高ジルコニア質の焼成耐火物は、組織及び組成が均一であり、安定した品質と信頼性を有しており、耐食性及び発泡性に優れる。したがって、ガラス溶解槽窯用の耐火物として適切に使用でき、溶融ガラスに対し、泡、砂利等のガラス欠点を生じさせがたく、すなわち素地汚染性が低く、ガラス製造の歩留まりが向上するので工業的価値は多大である。
また、本発明品は、高ジルコニア質溶融耐火物の製品とできない鋳込み巣を含む部分を利用できるので、資源のリサイクル化、すなわち省資源に貢献できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high zirconia refractory suitable mainly as a refractory for a glass melting tank kiln.
[0002]
[Prior art]
The refractories used in conventional glass melting tank kilns are roughly classified into sintered (bonded) refractories and molten refractories.
Sintered (bonded) refractories are manufactured by forming a powder material that has been homogeneously mixed with a press or the like and then firing it. In this refractory, the gas adhering to the powder as a raw material and a part of the gas generated during firing remain after firing, the density of the fired body is low, and the corrosion resistance is low. The low corrosion resistance indicates that there is a high probability that defects such as bubbles and gravel will occur when used for glass melting.
[0003]
On the other hand, a molten refractory is obtained by melting a homogeneously mixed raw material in a melting furnace such as an electric arc furnace, pouring it into a mold, and cooling and solidifying it, and has a dense and developed crystal structure. Among these, in particular, a refractory containing a relatively large amount of zirconia is excellent in corrosion resistance and is preferably used in a glass melting furnace. Refractories widely used in such molten refractories include Al 2 O 3 —ZrO 2 —SiO 2 refractories having a ZrO 2 content of 33 to 41% by weight and ZrO 2 of 80 to 95% by weight. There are high zirconia refractories to contain. The latter is more popular as a refractory for high-quality glass melting kilns because it has higher corrosion resistance and lower substrate contamination than the former.
[0004]
Originally, zirconia causes a phase transition between a monoclinic crystal and a tetragonal crystal at 900 to 1200 ° C. Therefore, unless zirconia is at least partially stabilized by adding Y 2 O 3 or CaO, a sintered body can be obtained. I can't. Even when partially stabilized or stabilized zirconia is used as a refractory for melting a glass, the stabilizer is selectively eluted by alkali or the like in the molten glass or glass volatiles, and the corrosion resistance is remarkably low.
[0005]
JP-A-7-293951 and JP-A-8-104567 disclose a zirconia refractory containing molten zirconia as a refractory used for the bottom of a waste melting furnace and a glass melting furnace, and high zirconia as molten zirconia. A molten refractory is also disclosed, but a sintering aid such as clay is used for sintering.
[0006]
When such a substance such as a sintering aid is added, the high temperature strength and corrosion resistance of the refractory itself are lowered. For example, when clay is added as a sintering aid to partially stabilized zirconia, the wear resistance and the uniformity of the structure are reduced (see Japanese Patent Publication No. 5-18774). In addition, when a high zirconia molten refractory is used, a sintering aid such as clay reacts with the matrix glass to easily form crystals, and the matrix glass content is relatively lowered, which is accompanied by a phase transition. It becomes difficult to absorb the volume change and the thermal cycle resistance is lowered.
[0007]
[Problems to be solved by the invention]
As described above, sintered refractories have a drawback that they are difficult to use, particularly in a portion that comes into contact with molten glass or glass volatiles because of high porosity and low corrosion resistance.
On the other hand, a high zirconia molten refractory is expensive because it contains a large amount of zirconia, is melted at about 2500 ° C., and is solidified in a mold. Furthermore, casting voids are generated due to cooling in production, and a portion containing a large amount of the void may reach half as much as the volume, resulting in a low product yield. There is a method of pulverizing the part containing a lot of voids and reusing it as a return cullet, but it is difficult to control the components of the product, the purity decreases due to iron mixed in during pulverization, and the high corrosion resistance and advantages of this refractory It has not been put into practical use because it impairs low substrate contamination.
[0008]
Although it has been desired to develop a refractory having both the advantages and the disadvantages of the combined refractory and the molten refractory as described above, no such refractory has been developed so far. An object of the present invention is to provide a high-quality refractory that can be manufactured at a low cost in order to solve the above-described problems. If such a refractory can be produced, the yield of the melt should be improved by using it as a furnace material for melting glass. Furthermore, it leads to effective use of zirconia resources.
[0009]
[Means for Solving the Problems]
The present invention is a refractory mainly used in a glass melting tank kiln, which is prepared separately from a pulverized product of a high zirconia melted resolidified material mainly composed of monoclinic ZrO 2 containing matrix glass. A method for producing a high zirconia refractory characterized by sintering a mixture with a matrix glass-like composition.
[0010]
The high zirconia molten refractory has almost no pore inside except for the cast nest. The part with the casting cavity has a high porosity and the pores are unevenly distributed, so it is rarely used as a refractory. However, the cast nest can be easily removed by a certain amount of grinding. The part without the casting cavity (solid phase part from which the pores have been removed from the part where there are many casting molds) is not enough in size to be used as a refractory, is dense, has a low porosity, and is a product. These physical properties are not inferior to those with no or little casting voids. Furthermore, the degree of oxidation is higher than that of the part that does not include the casting cavity.
[0011]
It is known that a molten refractory having a high degree of oxidation has low substrate contamination, particularly low foaming. Since the refractory of the present invention uses a material having a higher degree of oxidation than a normal molten refractory and is further fired, it is expected to have low substrate contamination. Furthermore, since the site | part containing a casting nest is utilized, cost can be reduced and it also becomes effective use of resources.
[0012]
The refractory for obtaining a pulverized product of the high zirconia molten refractory used in the present invention can be produced by a usual method for producing a molten refractory such as the following method. That is, it can be obtained by pulverizing a portion including a cast nest generated with the production of a high zirconia molten refractory as disclosed in Japanese Patent Publication No. 59-12619 and Japanese Patent Application Laid-Open No. 1-100068 using a pulverizer. Since the casting nest itself has a large volume, it can be almost removed by grinding to a particle size of about 5 mm. However, if the size of the pulverized product is too large, it may cause pores in the sintered body, or the uniformity of the structure may be lowered, and the corrosion resistance may be reduced.
[0013]
The pulverized product of high-zirconia melt-resolidified material mainly composed of monoclinic ZrO 2 and containing matrix glass used in the present invention is composed of a structure in which a small amount of matrix glass surrounds the bedrite crystal phase. As long as the main component is monoclinic ZrO 2 , the chemical composition is ZrO 2 : 85 to 97% by weight, SiO 2 : 2 to 13% by weight, Al 2 O 3 : less than 3% by weight. Others such as Na 2 O, etc .: well-known ones of less than about 1% by weight may be used.
[0014]
Such a matrix glass of a pulverized material mainly composed of monoclinic ZrO 2 used in the present invention usually contains Al 2 O 3 and SiO 2 , and more often contains Na 2 O. Moreover, even if the pulverized product of the melt resolidified product is sintered, the chemical composition of the sintered body is almost the same as that of the pulverized product.
[0015]
Addition of the matrix glass-like composition plays a role of improving thermal cycle resistance against the heat history during use of the product of the present invention. When only the pulverized product of the high zirconia molten refractory is sintered, a part of zircon is generated in the matrix glass phase, and the thermal cycle resistance may be lowered. If the matrix glass similar composition prepared separately is added to this, the quantity of the matrix glass phase which plays the role of relaxing the phase transition of a zirconia will be increased, and thermal cycle resistance will improve.
[0016]
In the present invention, the matrix glass-like composition means that the main component that forms the matrix glass component contained in the pulverized product containing monoclinic ZrO 2 as the main component is also included as the main component. Specifically, since the pulverized material usually contains matrix glass mainly composed of Al 2 O 3 and SiO 2 , the matrix glass-like composition used in the present invention is mainly composed of Al 2 O 3 and SiO 2 . As a component, since the matrix glass of the pulverized product usually contains Na 2 O in many cases, those containing Na 2 O are suitable.
[0017]
The addition amount of the matrix glass-like composition is preferably 2 to 7% by weight in the total amount of this and the pulverized product of the high zirconia melt resolidified product mainly composed of monoclinic ZrO 2 . If it is less than 2% by weight, the thermal cycle resistance may not be sufficiently improved. If it exceeds 7% by weight, the SiO 2 content is high and the ZrO 2 content is low, and the corrosion resistance and high-temperature strength are lowered.
[0018]
For the same reason, it is desirable that the refractory material as a sintered body has a ZrO 2 content of 85% by weight or more and an SiO 2 content of 10% by weight or less.
[0019]
Furthermore, the production of zircon can be suppressed or prevented by adjusting the composition of the matrix glass-like composition. Therefore, the chemical composition of the matrix glass similar composition, SiO 2: 50 to 90 wt%, Al 2 O 3: 5~40 wt%, Na 2 O: 5 to 20 wt%, and ZrO 2: 0 to 20 weight % Is preferred.
[0020]
Furthermore, in order to suppress dissolution of the ZrO 2 component in the added matrix glass-like composition, at least one of the Al 2 O 3 content and the ZrO 2 content of the matrix glass-like composition is a high zirconia melt resolidified product. It is preferable that it is more than the ratio occupied in the matrix glass.
[0021]
Here, Al 2 O 3 component of the matrix glass of the high zirconia fused again solidified product, since Al 2 O 3 component is not present in the baddeleyite crystal phase, bulk Al 2 O 3 content and ZrO molten resolidified material 2 Calculated from the following formula in terms of content.
[0022]
Al 2 O 3 content (% by weight) of matrix glass = [Bulk Al 2 O 3 content (% by weight) / (100−ZrO 2 content (% by weight)) in bulk]] × 100.
[0023]
On the other hand, the ZrO 2 content of the matrix glass of the high zirconia melt resolidified product is measured by an electron microanalyzer in the range where the Al 2 O 3 content of the matrix glass calculated as described above is about 10 to 20% by weight, Usually, it is in the range of 2.0 to 2.5% by weight.
[0024]
As a matrix glass-like composition, B 2 O 3 and P 2 O 5 are used as glass skeleton-forming oxides, alkali metal oxides other than Na 2 O, alkaline earth metal oxides, etc. as glass skeleton-modified oxides, etc. You may use what contains.
[0025]
A matrix glass-like composition is prepared as follows. A predetermined amount of silicon dioxide, alumina, sodium carbonate, zirconia or the like is mixed as a raw material, and melted at a temperature of about 1700 ° C. or higher using an electric furnace under the method described in JP-A-6-345532 or an oxidizing atmosphere. Cooling. After melting, as a means for coarse pulverization, a method in which the high-temperature melt is poured into water as it is can be adopted.
[0026]
In the present invention, the particle size of the pulverized product of the highly zirconia melted and re-solidified product is preferably less than 1.00 mm in consideration of the uniformity of the structure of the sintered body and the low porosity. Here, less than 1.00 mm means particles that pass through a sieve having a mesh size of 1.00 mm. Furthermore, in order not to include a heterogeneous structure portion (also referred to as worm tracing) peculiar to high zirconia molten refractories, it is preferable to use only a particle size of 0.15 mm or less, and more preferably only a particle size of 0.10 mm or less. This is because the heterogeneous structure containing a large amount of pores and matrix glass generally exhibits a strip-like form of 0.1 mm, but the influence thereof can be removed.
[0027]
The particle size of the matrix glass-like composition should be equal to or less than the pulverized product of the high zirconia melt resolidified so that it is uniformly distributed around the high zirconia melt refractory during sintering. Good. That is, the preferred particle size of the matrix glass-like composition is 0.15 mm or less.
[0028]
Further, when an iron pulverizer is used at the time of pulverization, it is preferable to remove the mixed iron by using a magnet after pulverization or by acid cleaning such as dilute hydrochloric acid. In this way, it becomes more low-polluting.
[0029]
The pulverized product of the high zirconia melt re-solidified mixed in a dry or wet manner and this matrix glass-like composition are molded by a die press method or a CIP method. In particular, molding can be performed without using a binder. However, when many raw materials having a large particle size are used, molding is difficult without using a binder. A binder may be used, but it must not deteriorate the corrosion resistance and foamability of the refractory after firing.
[0030]
The molded body is fired at a temperature of 1400 ° C. or higher. By this firing, the reducing substance in the raw material is oxidized, so that the degree of oxidation further increases. When it is desired to further promote oxidation, for example, the temperature may be maintained at about 900 ° C. when the oxidation of carbon is completed. Firing is preferably performed in air or in an oxidizing atmosphere, under atmospheric pressure or under pressure. The firing temperature is preferably 1500 to 1700 ° C, particularly 1550 to 1650 ° C.
[0031]
Normally, monoclinic zirconia that is not stabilized cannot be obtained due to residual expansion by cooling below the firing temperature, but the product of the present invention can be obtained without cracks. This is presumably because the matrix glass phase surrounding the badelite phase and the matrix glass-like composition to be added suppress the occurrence of cracks by relaxing the volume residual expansion.
[0032]
Since the viscosity of the matrix glass and the matrix glass-like composition derived from the high zirconia melted and re-solidified product at the time of firing is low Therefore, the porosity is low although it is a sintered refractory. It is also considered that pores existing to some extent mitigate residual volume expansion.
[0033]
During the firing, there is almost no grain growth of badelite, so there is no segregation of zirconia beyond the raw material particle state. This is because the high zirconia molten refractory has more pores and matrix glass, and there are parts that are locally inferior in corrosion resistance and substrate contamination. It is.
[0034]
【Example】
EXAMPLES Hereinafter, although an Example (Examples 1-8) and a comparative example (Examples 9-11) demonstrate this invention concretely, this invention is not limited to these.
[0035]
The example of the manufacturing method of this invention goods is shown below. First, a predetermined amount of desilicated zircon, Bayer alumina, silica sand, and sodium carbonate were weighed and mixed, and then completely melted at about 2450 ° C. in a 500 kVA single-phase arc electric furnace using a graphite electrode. did. The molten metal was poured out into a graphite mold having an inner size of 160 mm × 200 mm × 350 mm embedded in buyer alumina and allowed to cool to room temperature. Next, the ingot was cut to obtain a portion including a casting cavity.
[0036]
This was pulverized with a jaw crusher and then with an iron bowl to obtain a pulverized product having a particle size of about 1 cm. Next, this was immersed in a 1 mol / L hydrochloric acid aqueous solution to dissolve and remove the mixed iron, washed with water, and dried. In addition, mixing of about 0.1 wt% Fe 2 O 3 was observed by pulverization. Furthermore, it grind | pulverized using the alumina ball | bowl. Next, a pulverized product having a particle size of 0.15 mm or less was obtained using a sieve. The chemical composition (unit:% by weight) is shown in Table 1. The chemical composition was measured as follows for the fraction of the pulverized product having a size of less than 0.15 mm. The SiO 2 content and Al 2 O 3 content were quantified by a glass bead method using a fluorescent X-ray analyzer, and the Na 2 O content was quantified using an atomic absorption photometer after being decomposed with hydrofluoric acid-sulfuric acid.
[0037]
[Table 1]
Figure 0004045329
[0038]
On the other hand, a matrix glass-like composition is an electric furnace in which silicon dioxide, alumina oxide, sodium carbonate, and zirconium oxide (all reagent special grades) are weighed and mixed, and lanthanum chromite is used as a heating element at 1850 ° C. Prepared by heating for 4 hours. This was pulverized with an alumina mortar to obtain a pulverized product having a particle size of 0.15 mm or less. The chemical composition (unit:% by weight) is shown in Table 2. The chemical composition of the fraction of less than 0.15 mm of the pulverized product is Al 2 O 3 content, Na 2 O content, and ZrO 2 content after decomposition with hydrofluoric acid-sulfuric acid, ICP emission spectrometer or atom Quantification was done using an absorptiometer.
[0039]
[Table 2]
Figure 0004045329
[0040]
Next, 1000 g of a mixture of the pulverized product of the high zirconia melt re-solidified product and the matrix glass-like composition in the ratio shown in Table 3 was pressed by a die press and further by the CIP method (1.5 ton / cm 2 ). I got a product. This was fired at 1600 ° C. for 24 hours in a resistance heating electric furnace. All the sintered bodies were obtained without generating cracks.
[0041]
In addition, Example 9 is a partially stabilized zirconia sintered product (3 mol% Y 2 O 3 added), and Examples 10 to 11 are a high zirconia melt re-solidified product (sample Z2 in Table 1) and clay (SiO 2 77.6 wt%, Al 2 O 3 content 17.1%, loss on ignition 4.1%) were mixed at a weight ratio of 90:10 (Example 10) and 95: 5 (Example 11), respectively. What was processed similarly was used.
The following tests were carried out for Examples 1 to 11 above.
[0042]
In order to investigate the corrosion resistance, a 15 mm × 15 mm × 50 mm rectangular parallelepiped sample was cut out from the fired body and immersed in a molten glass for tube panels filled in a platinum crucible at 1500 ° C. for 48 hours. Then, it was divided into two equal parts in the vertical direction, and the amount of erosion was measured (Table 3).
[0043]
Further, in order to examine foamability, a plate-like sample of 50 mm × 50 mm × 5 mm was cut out from the fired body, an alumina ring having an inner diameter of 30 mm was placed on this, the glass was put therein, and heated at 1500 ° C. for 24 hours. And slowly cooled to room temperature. Thereafter, the number of remaining bubbles in the glass was measured using an optical microscope (Table 3).
[0044]
[Table 3]
Figure 0004045329
[0045]
As can be seen from Table 3, the corrosion resistance and foamability of the product of the present invention are excellent. From the above, the product of the present invention can be used as a refractory used in a glass melting furnace regardless of contact or non-contact with molten glass. The refractory of the present invention can be used not only for melting glass but also as a refractory used for melting metals, melting incinerated ash, and the like.
[0046]
【The invention's effect】
The high zirconia fired refractory of the present invention has a uniform structure and composition, stable quality and reliability, and excellent corrosion resistance and foamability. Therefore, it can be used appropriately as a refractory for a glass melting tank kiln, and it is difficult to cause glass defects such as foam and gravel against molten glass, that is, it has low substrate contamination and improves the yield of glass production. The target value is tremendous.
In addition, since the product of the present invention can use a portion including a casting cavity that cannot be made of a high zirconia molten refractory product, it can contribute to resource recycling, that is, resource saving.

Claims (7)

マトリックスガラスを含む単斜晶系ZrO2 を主成分とする高ジルコニア質溶融再固化物の粉砕物と、別に調製した該マトリックスガラス類似組成物との混合物を焼結することを特徴とする高ジルコニア質耐火物の製造方法High zirconia characterized by sintering a mixture of a pulverized product of high zirconia melt re-solidified containing monoclinic ZrO 2 containing matrix glass and the matrix glass-like composition prepared separately Quality refractory manufacturing method . マトリックスガラス類似組成物が、高ジルコニア質溶融再固化物の粉砕物との合量中、2〜7重量%である請求項1に記載の耐火物の製造方法The method for producing a refractory according to claim 1, wherein the matrix glass-like composition is 2 to 7% by weight in the total amount of the high-zirconia melt-resolidified pulverized product. ZrO2 含量が85重量%以上であり、かつSiO2 含量が10重量%以下である請求項1又は2に記載の耐火物の製造方法The method for producing a refractory according to claim 1 or 2, wherein the ZrO 2 content is 85% by weight or more and the SiO 2 content is 10% by weight or less. マトリックスガラスがAl23 、SiO2 を含み、マトリックスガラス類似組成物の化学組成が、SiO2 :50〜90重量%、Al23 :5〜40重量%、Na2 O:5〜20重量%、及びZrO2 :0〜20重量%である請求項1、2又は3に記載の耐火物の製造方法The matrix glass comprises Al 2 O 3, SiO 2, is the chemical composition of the matrix glass like compositions, SiO 2: 50 to 90 wt%, Al 2 O 3: 5~40 wt%, Na 2 O: 5~20 The method for producing a refractory according to claim 1, 2 or 3, wherein the weight percentage is ZrO 2 : 0 to 20% by weight. マトリックスガラス類似組成物のAl23 含量及びZrO2 含量のうち少なくとも一つが、高ジルコニア質溶融再固化物のマトリックスガラス中に占めるそれらの割合よりも多い請求項1、2、3又は4に記載の耐火物の製造方法Claims 1, 2, 3, or 4 wherein at least one of the Al 2 O 3 content and the ZrO 2 content of the matrix glass-like composition is greater than their proportion in the matrix glass of the high zirconia melt resolidification. The manufacturing method of the refractory material of description. 粒径0.15mm未満の高ジルコニア質溶融再固化物と粒径0.15mm未満のマトリックスガラス類似組成物とからなる混合物を焼結してなる請求項1、2、3、4又は5に記載の耐火物の製造方法6. A mixture comprising a high zirconia melt resolidified material having a particle size of less than 0.15 mm and a matrix glass-like composition having a particle size of less than 0.15 mm is sintered. Refractory manufacturing method . 耐火物が、ガラス溶融槽窯に使用されるものである請求項1、2、3、4、5又は6に記載の耐火物の製造方法The method for producing a refractory according to claim 1, 2, 3, 4, 5 or 6, wherein the refractory is used in a glass melting tank kiln.
JP29010797A 1997-10-22 1997-10-22 Method for producing high zirconia refractories Expired - Lifetime JP4045329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29010797A JP4045329B2 (en) 1997-10-22 1997-10-22 Method for producing high zirconia refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29010797A JP4045329B2 (en) 1997-10-22 1997-10-22 Method for producing high zirconia refractories

Publications (2)

Publication Number Publication Date
JPH11130529A JPH11130529A (en) 1999-05-18
JP4045329B2 true JP4045329B2 (en) 2008-02-13

Family

ID=17751897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29010797A Expired - Lifetime JP4045329B2 (en) 1997-10-22 1997-10-22 Method for producing high zirconia refractories

Country Status (1)

Country Link
JP (1) JP4045329B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4587257B2 (en) 2001-10-24 2010-11-24 Hoya株式会社 Manufacturing method of glass, glass substrate blanks and glass substrate
JP5263719B2 (en) * 2003-10-10 2013-08-14 日本電気硝子株式会社 Method for producing alkali-free glass
JP4781330B2 (en) * 2007-08-24 2011-09-28 Hoya株式会社 Manufacturing method of glass, glass substrate blanks and glass substrate
JP2011184297A (en) * 2011-06-15 2011-09-22 Hoya Corp Method for producing each of glass, glass substrate blank and glass substrate
JP2013043811A (en) * 2011-08-25 2013-03-04 Asahi Glass Co Ltd Stabilized zirconia sintered refractory and manufacturing method therefor
KR20170139656A (en) 2015-04-24 2017-12-19 코닝 인코포레이티드 Combined zirconia refractories and methods for making same
FR3072092B1 (en) * 2017-10-11 2021-11-12 Saint Gobain Ct Recherches PROCESS FOR MANUFACTURING A MELTED BLOCK WITH A HIGH ZIRCONIA CONTENT
CN113620704A (en) * 2021-09-15 2021-11-09 郑州亿川复合新材料研究所有限公司 Preparation process of high-zirconium ceramic for special glass molten pool

Also Published As

Publication number Publication date
JPH11130529A (en) 1999-05-18

Similar Documents

Publication Publication Date Title
AU2006317007B2 (en) Refractory brick
KR101497729B1 (en) AZS refractory composition
JP5549891B2 (en) Refractory block for glass melting furnace
JP4917235B2 (en) Porous high alumina fusion cast refractory and method for producing the same
JP2010513208A (en) Doped sintered products based on zircon and zirconia
US6274525B1 (en) Process for making a high temperature-resistant ceramic material with an adjustable thermal expansion coefficient and method of use of same
JP2005526683A (en) Melt cast refractory products with high zirconia content
JP2012518588A (en) Refractory with high zirconia content
JP4045329B2 (en) Method for producing high zirconia refractories
JP4297543B2 (en) Alumina / zirconia / silica fusion cast refractory and glass melting furnace using the same
CN105174974B (en) Alumina fused cast refractory and method for producing same
JP2007504088A (en) Green component for manufacturing sintered refractory products with improved bubble generation behavior
JP3904264B2 (en) Alumina / zirconia / silica molten refractory
JPWO2006051793A1 (en) Refractory brick for float bath bottom and method for producing the same
JPS5964574A (en) Baddeleyite sinter refractory composition and refractory pr-oduct
JP4394080B2 (en) Zirconia refractories
JPH09202667A (en) Castable refractory for slide gate
JP2020502024A (en) Zircon-based sintered concrete
JP2013534895A (en) Refractory block and glass furnace
US4053320A (en) Production of refractory articles
JP3753479B2 (en) High zirconia refractory
JP4503339B2 (en) High zirconia electroformed refractories and manufacturing method thereof
JP3928818B2 (en) Induction furnace
CN114394842A (en) Preparation method of sintered compact high-zirconium brick
JPH10120462A (en) Zirconia refractory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

EXPY Cancellation because of completion of term