JPH11130529A - High zirconia refractory - Google Patents

High zirconia refractory

Info

Publication number
JPH11130529A
JPH11130529A JP9290107A JP29010797A JPH11130529A JP H11130529 A JPH11130529 A JP H11130529A JP 9290107 A JP9290107 A JP 9290107A JP 29010797 A JP29010797 A JP 29010797A JP H11130529 A JPH11130529 A JP H11130529A
Authority
JP
Japan
Prior art keywords
glass
refractory
matrix glass
content
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9290107A
Other languages
Japanese (ja)
Other versions
JP4045329B2 (en
Inventor
Yoshihisa Beppu
義久 別府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP29010797A priority Critical patent/JP4045329B2/en
Publication of JPH11130529A publication Critical patent/JPH11130529A/en
Application granted granted Critical
Publication of JP4045329B2 publication Critical patent/JP4045329B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high zirconia refractory having excellent corrosion resistance and foamability, low base-contamination property to molten glass and capable of improving the yield of glass article by crushing a molten and solidified high-zirconia material composed mainly of monoclinic ZrO2 containing matrix glass, mixing the crushed product with a composition similar to the glass matrix and firing the mixture. SOLUTION: The objective refractory having a ZrO2 content of >=85 wt.% and an SiO2 content of <=10 wt.% can be produced by mixing (A) a molten and solidified high-zirconia material composed mainly of monoclinic ZrO2 , containing matrix glass containing Al2 O3 and SiO2 and crushed to particle diameter of <=0.15 mm with (B) a separately prepared composition similar to the matrix glass, having a chemical composition of 50-90 wt.% of SiO2 5-40 wt.% of Al2 O3 , 5-20 wt.% of Na2 O and 0-20 wt.% of ZrO2 and having particle diameter of <=0.15 mm at a B/(A+B) ratio of 2-7 wt.%, forming the mixture by a mold-pressing process or a CIP process and firing the molded article at >=1400 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主としてガラス溶
融槽窯用の耐火物として好適な高ジルコニア質耐火物に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high zirconia refractory suitable mainly as a refractory for a glass melting tank kiln.

【0002】[0002]

【従来の技術】従来のガラス溶融槽窯に用いられる耐火
物を大別すると、焼結(結合)耐火物と溶融耐火物とが
ある。焼結(結合)耐火物は、均質に混合した粉体原料
をプレス等によって成形後、焼成して製造される。この
耐火物は、原料としての粉体に付着した気体及び焼成中
に生じる気体の一部が焼成後も残存し、焼成体の密度が
低く、耐食性が低い。耐食性が低いことは、ガラス溶融
のために用いる場合には、泡や砂利等の欠点を発生する
確率が高いことを示す。
2. Description of the Related Art Refractories used in conventional glass melting tank kilns are roughly classified into sintered (bonded) refractories and molten refractories. Sintered (bonded) refractories are produced by molding powder materials that are homogeneously mixed by pressing or the like, and then firing. In this refractory, a gas attached to powder as a raw material and a part of a gas generated during firing remain even after firing, the density of the fired body is low, and the corrosion resistance is low. Low corrosion resistance indicates that when used for melting glass, the probability of occurrence of defects such as bubbles and gravel is high.

【0003】一方、溶融耐火物は均質に混合した原料を
電気アーク炉等の溶融炉で溶融し、鋳型に流し込み、冷
却再固化することによって得られ、緻密で発達した結晶
組織を有する。このうち、特に、ジルコニアを相対的に
多く含有する耐火物が、耐食性に優れ、ガラス溶融用窯
に好んで使用されている。このような溶融耐火物で広く
使用されている耐火物としては、ZrO2 含量が33〜
41重量%のAl23 −ZrO2 −SiO2 系耐火物
と、ZrO2 を80〜95重量%含有する高ジルコニア
系耐火物とがある。後者は、前者に比較して高耐食性及
び低素地汚染性であるため、近年、高品質ガラス溶解窯
用の耐火物として普及している。
On the other hand, a molten refractory is obtained by melting a homogeneously mixed raw material in a melting furnace such as an electric arc furnace, pouring it into a mold, cooling and resolidifying it, and has a dense and developed crystal structure. Among them, refractories containing a relatively large amount of zirconia have excellent corrosion resistance and are used favorably in glass melting furnaces. As a refractory widely used in such a molten refractory, a ZrO 2 content of 33 to 33 is used.
41% by weight of Al 2 O 3 -ZrO 2 -SiO 2 refractory material, there is a high zirconia refractory containing ZrO 2 80 to 95 wt%. Since the latter has higher corrosion resistance and lower soil contamination than the former, it has recently been widely used as a refractory for high-quality glass melting furnaces.

【0004】元来、ジルコニアは、900〜1200℃
において単斜晶と正方晶との相転移を起こすので、Y2
3 やCaOなどを添加し、ジルコニアを少なくとも部
分安定化させないかぎり、焼結体が得られない。部分安
定化又は安定化ジルコニアをガラス溶融用の耐火物とし
て使用しても、溶融ガラス又はガラス揮発物中のアルカ
リ等によって、安定化剤が選択的に溶出し、耐食性が著
しく低い。
[0004] Originally, zirconia is 900-1200 ° C.
Since undergoes a phase transition between monoclinic crystal and Akira Masakata at, Y 2
A sintered body cannot be obtained unless O 3 or CaO is added to at least partially stabilize zirconia. Even when partially stabilized or stabilized zirconia is used as a refractory for melting glass, the stabilizer is selectively eluted due to alkali or the like in the molten glass or glass volatiles, and the corrosion resistance is extremely low.

【0005】特開平7−293851及び特開平8−1
04567に、廃棄物溶融用炉及びガラス溶融炉の炉底
に用いる耐火物として、溶融ジルコニアを含むジルコニ
ア質耐火物が開示されており、溶融ジルコニアとして高
ジルコニア質溶融耐火物も開示されているが、焼結する
ために粘土などの焼結助剤を使用している。
[0005] JP-A-7-293851 and JP-A-8-1
No. 04567 discloses a zirconia-based refractory containing molten zirconia as a refractory used in the furnace bottom of a waste melting furnace and a glass melting furnace, and discloses a high zirconia-based molten refractory as molten zirconia. Sintering aids such as clay are used for sintering.

【0006】このような焼結助剤等の物質を添加する
と、耐火物自体の高温強度や耐食性が低下する。例え
ば、部分安定化ジルコニアに粘土を焼結助剤として添加
すると、耐磨耗性や組織の均一性が低下する(特公平5
−18774参照)。また、高ジルコニア質溶融耐火物
を用いる場合には、粘土等の焼結助剤とマトリックスガ
ラスとが反応して結晶を生成しやすくなり、相対的にマ
トリックスガラス含量が低下し、相転移にともなう体積
変化を吸収しにくくなり、耐サーマルサイクル性が低下
する。
When such a substance as a sintering agent is added, the high-temperature strength and corrosion resistance of the refractory itself decrease. For example, when clay is added to partially stabilized zirconia as a sintering aid, abrasion resistance and uniformity of the structure are reduced (Japanese Patent Publication No.
-18774). Further, when using a high zirconia-based molten refractory, a sintering aid such as clay and the matrix glass react with each other to easily form crystals, and the matrix glass content is relatively reduced, which is accompanied by a phase transition. It becomes difficult to absorb the change in volume, and the thermal cycle resistance decreases.

【0007】[0007]

【発明が解決しようとする課題】前述のように、焼結耐
火物は、気孔率が高く耐食性が低いために、特に、溶融
ガラス又はガラス揮発物と接触する部分では使用しにく
い欠点がある。一方、高ジルコニア質溶融耐火物は、ジ
ルコニアを多く含有し、また約2500℃で溶融し、鋳
型中で固化させるので高価である。さらに、製造上冷却
によって鋳込み巣(ボイド)が生じ、これを多く含む部
分が体積にして半分にも及ぶ場合もあり、製品歩留まり
が低い。この空隙を多く含む部分を粉砕し、戻りカレッ
トとして再利用する方法があるが、製品の成分制御が難
しく、粉砕時に混入する鉄分などにより純度が低下し、
この耐火物の長所である高耐食性及び低素地汚染性を損
ねることから、実用化にいたっていない。
As described above, the sintered refractory has a drawback that it is difficult to use, particularly in a portion in contact with molten glass or glass volatiles, because of its high porosity and low corrosion resistance. On the other hand, high zirconia-based molten refractories contain a large amount of zirconia and are expensive because they melt at about 2500 ° C. and solidify in a mold. Furthermore, casting cavities (voids) are produced by cooling in manufacturing, and a portion containing many of them may be as large as half in volume, resulting in a low product yield. There is a method of pulverizing the part containing many voids and reusing it as a return cullet.However, it is difficult to control the components of the product, and the purity decreases due to iron content mixed during pulverization,
The refractory has not been put to practical use because it loses the advantages of high corrosion resistance and low soil pollution, which are advantages of the refractory.

【0008】以上の結合耐火物と溶融耐火物との両者の
短所を改善し、長所を併有する耐火物の開発が望まれて
いたが、現在までにこのような耐火物は開発されていな
い。本発明の目的は、上述した問題を解決すべく、また
低コストで製造可能な高品質の耐火物を提供することで
ある。このような耐火物が製造できれば、ガラスの溶融
等の炉材として用いることによって、溶融物の歩留まり
が向上するはずである。さらに、ジルコニア資源の有効
利用にもつながる。
[0008] It has been desired to develop a refractory which improves the disadvantages of both the combined refractory and the molten refractory as described above and has both advantages. However, such a refractory has not yet been developed. It is an object of the present invention to solve the above problems and to provide a high quality refractory which can be manufactured at low cost. If such a refractory can be manufactured, the yield of the melt should be improved by using it as a furnace material for melting glass or the like. Furthermore, it leads to effective use of zirconia resources.

【0009】[0009]

【課題を解決するための手段】本発明は、主にガラス溶
融槽窯に用いられる耐火物であって、マトリックスガラ
スを含む単斜晶系ZrO2 を主成分とする高ジルコニア
質溶融再固化物の粉砕物と、別に調製した該マトリック
スガラス類似組成物との混合物を焼結したことを特徴と
する高ジルコニア質耐火物を提供する。
DISCLOSURE OF THE INVENTION The present invention relates to a refractory mainly used in a glass melting tank kiln, which is a high zirconia melt-resolidified material containing a matrix glass containing monoclinic ZrO 2 as a main component. The present invention provides a high zirconia refractory obtained by sintering a mixture of the pulverized product of the above and a matrix glass-like composition prepared separately.

【0010】高ジルコニア質溶融耐火物は、鋳込み巣部
分を除けば内部には孔隙がほとんどない。鋳込み巣のあ
る部分は気孔率が高いことや気孔が偏在するために、耐
火物として使用することはほとんどない。しかし、ある
程度の粉砕によって、容易に鋳込み巣を除去できる。こ
の鋳込み巣がない部位(鋳込み巣が多い部分から気孔を
除去した固相部分)は、大きさが耐火物として使用する
に及ばないだけであって、緻密で、気孔率は低く、製品
としている鋳込み巣がない又は少ない部位に比較して、
これらの物性はなんら劣らない。さらに、むしろ鋳込み
巣を含まない部位よりも酸化度は高い。
The high zirconia molten refractory has few pores inside except for the casting cavity. Since there is a high porosity and uneven distribution of pores in a portion having a casting cavity, it is hardly used as a refractory. However, the casting cavity can be easily removed by grinding to some extent. The portion without the casting cavity (the solid phase portion in which pores are removed from the portion having a large number of casting cavity) is only small in size as a refractory, is dense, has a low porosity, and is a product. Compared to the part with no or few casting cavities,
These properties are not inferior at all. Furthermore, the degree of oxidation is rather higher than that of a portion that does not include a casting cavity.

【0011】酸化度が高い溶融耐火物は、低素地汚染
性、特に低発泡性であることが知られている。本発明の
耐火物は、通常の溶融耐火物より酸化度の高い材料を用
い、さらに焼成するので、素地汚染性が低いと期待され
る。さらに、鋳込み巣を含む部位を利用するので、コス
トを低下でき、資源の有効利用にもなる。
[0011] It is known that molten refractories having a high degree of oxidation have low soil pollution, especially low foaming properties. The refractory of the present invention uses a material having a higher degree of oxidation than a normal molten refractory and is further fired, so that it is expected that the base material contamination is low. Furthermore, since the site including the casting cavity is used, the cost can be reduced and the resources can be effectively used.

【0012】本発明で用いる高ジルコニア質溶融耐火物
の粉砕物を得るための耐火物は、以下の方法等の通常の
溶融耐火物の製造方法によって製造できる。すなわち、
特公昭59−12619や特開平1−100068に示
されているような高ジルコニア溶融耐火物の製造に伴っ
て生じる鋳込み巣を含む部分を粉砕器を用いて、粉砕す
ることによって得られる。鋳込み巣は、それ自体大部分
体積が大きいので、粒径5mm程度に粉砕すればほぼ除
去できる。ただし、あまり粉砕物のサイズが大きいと、
焼結体中に気孔を作る原因となったり、組織の均一性が
低くなり、耐食性を低下させる原因となる。
The refractory for obtaining the pulverized high zirconia molten refractory used in the present invention can be produced by a usual method for producing a molten refractory, such as the following method. That is,
It can be obtained by pulverizing a portion containing a casting cavity generated during the production of a high zirconia molten refractory as disclosed in JP-B-59-12619 and JP-A-1-100068 by using a pulverizer. Since the casting cavity has a large volume in most cases, it can be almost removed by pulverizing the casting cavity to a particle size of about 5 mm. However, if the size of the crushed material is too large,
This may cause pores in the sintered body, lower the uniformity of the structure, and lower the corrosion resistance.

【0013】本発明で用いるマトリックスガラスを含む
単斜晶系ZrO2 を主成分とする高ジルコニア質の溶融
再固化物の粉砕物は、バデライト結晶相の周囲を少量の
マトリックスガラスが取り囲む組織からなるものであ
り、単斜晶系ZrO2 を主成分とするものであればよ
く、化学組成としては、ZrO2 :85〜97重量%、
SiO2 :2〜13重量%、Al23 :3重量%未
満、Na2 Oなどその他:1重量%未満程度のよく知ら
れたものでよい。
The pulverized high zirconia melt-resolidified material mainly composed of monoclinic ZrO 2 containing matrix glass used in the present invention has a structure in which a small amount of matrix glass surrounds a perimeter of a baddelite crystal phase. are those, as long as a main component monoclinic ZrO 2, as a chemical composition, ZrO 2: 85 to 97 wt%,
SiO 2: 2 to 13 wt%, Al 2 O 3: may be those well known in the order of less than 1 wt%: less than 3 wt%, Na 2 O and other.

【0014】このような本発明で使用する単斜晶系Zr
2 を主成分とする粉砕物のマトリックスガラスは通常
Al23 、SiO2 を含むもので、さらにNa2 Oを
含むものも多い。また、溶融再固化物の粉砕物を焼結し
ても、焼結体の化学組成は、粉砕物のそれとほとんど同
じである。
The monoclinic Zr used in the present invention as described above.
The matrix glass of the pulverized material containing O 2 as a main component usually contains Al 2 O 3 and SiO 2, and often contains Na 2 O. Further, even when the pulverized product of the molten and re-solidified product is sintered, the chemical composition of the sintered body is almost the same as that of the pulverized product.

【0015】マトリックスガラス類似組成物の添加は、
本発明品の使用時の熱履歴に対して、耐サーマルサイク
ル性改善の役割を果たす。高ジルコニア溶融耐火物の粉
砕物のみを焼結した場合には、マトリックスガラス相中
に、一部ジルコンが生成し、耐サーマルサイクル性が低
下する場合がある。これに、別に調製したマトリックス
ガラス類似組成物を添加すれば、ジルコニアの相転移を
緩和する役目のマトリックスガラス相の量を増やすこと
になり、耐サーマルサイクル性が向上する。
The addition of the matrix glass-like composition is as follows:
It plays a role of improving thermal cycle resistance against the heat history during use of the product of the present invention. When only the pulverized high zirconia molten refractory is sintered, zircon is partially generated in the matrix glass phase, and the thermal cycle resistance may be reduced. If a matrix glass-like composition prepared separately is added to this, the amount of the matrix glass phase that plays a role in relaxing the phase transition of zirconia is increased, and the thermal cycle resistance is improved.

【0016】本発明において、マトリックスガラス類似
組成物とは、単斜晶系ZrO2 を主成分とする粉砕物に
含まれているマトリックスガラス成分を形成している主
成分を主成分として同様に含むものであり、具体的には
該粉砕物は通常Al23 及びSiO2 を主成分とした
マトリックスガラスを含むものであるため、本発明で使
用するマトリックスガラス類似組成物としてもAl2
3 、SiO2 を主成分とし、さらに通常上記粉砕物のマ
トリックスガラスにはNa2 Oが含まれていることが多
いため、Na2 Oを含むものが好適である。
In the present invention, the matrix glass-like composition includes, as a main component, a main component forming a matrix glass component contained in a pulverized product containing monoclinic ZrO 2 as a main component. is intended, for specifically the pulverized material are those usually comprising a matrix glass composed mainly of Al 2 O 3 and SiO 2, also Al 2 O as a matrix glass like compositions used in the present invention
3, the SiO 2 as a main component, further in the matrix glass of the usual the pulverized product because they often contain a Na 2 O, is preferably those containing Na 2 O.

【0017】マトリックスガラス類似組成物の添加量
は、これと単斜晶系ZrO2 を主成分とする高ジルコニ
ア質溶融再固化物の粉砕物との合量中、2〜7重量%が
好ましい。2重量%未満では耐サーマルサイクル性の向
上が十分でなくなることがあり、7重量%超ではSiO
2 含量が高くまたZrO2 含量が低くなり、耐食性及び
高温強度が低下することになる。
The amount of the matrix glass-like composition to be added is preferably 2 to 7% by weight based on the total amount of the composition and the pulverized high zirconia melt-resolidified material mainly composed of monoclinic ZrO 2 . If the amount is less than 2% by weight, the thermal cycle resistance may not be sufficiently improved.
2 content is high and ZrO 2 content is low, so that corrosion resistance and high-temperature strength are reduced.

【0018】また、同様の理由から、焼結体である耐火
物のZrO2 含量は85重量%以上かつSiO2 含量は
10重量%以下とすることが望ましい。
For the same reason, it is desirable that the refractory as a sintered body has a ZrO 2 content of 85% by weight or more and a SiO 2 content of 10% by weight or less.

【0019】さらに、マトリックスガラス類似組成物の
組成を調整することで、ジルコンの生成を抑制又は防止
できる。そこで、マトリックスガラス類似組成物の化学
組成は、SiO2 :50〜90重量%、Al23 :5
〜40重量%、Na2 O:5〜20重量%、及びZrO
2 :0〜20重量%が好ましい。
Further, by adjusting the composition of the matrix glass-like composition, the formation of zircon can be suppressed or prevented. Therefore, the chemical composition of the matrix glass-like composition is as follows: SiO 2 : 50 to 90% by weight, Al 2 O 3 : 5
40 wt%, Na 2 O: 5 to 20 wt%, and ZrO
2 : 0 to 20% by weight is preferred.

【0020】さらに、添加するマトリックスガラス類似
組成物へのZrO2 成分の溶解を抑制するために、マト
リックスガラス類似組成物のAl23 含量及びZrO
2 含量のうち少なくとも一つが、高ジルコニア質溶融再
固化物のマトリックスガラス中に占めるそれらの割合よ
りも多いことが好ましい。
Further, in order to suppress the dissolution of the ZrO 2 component in the matrix glass-like composition to be added, the Al 2 O 3 content of the matrix glass-like composition and the ZrO 2 content
Preferably, at least one of the two contents is higher than their proportion in the matrix glass of the high zirconia melt-resolidification product.

【0021】ここで、高ジルコニア質溶融再固化物のマ
トリックスガラスのAl23 成分は、Al23 成分
がバデライト結晶相には存在しないので、溶融再固化物
のバルクのAl23 含量及びZrO2 含量から換算し
て次式で求められる。
Here, the Al 2 O 3 component of the matrix glass of the high zirconia molten and re-solidified material is a bulk Al 2 O 3 of the molten and re-solidified material because the Al 2 O 3 component does not exist in the baddelite crystal phase. It is calculated from the content and the ZrO 2 content by the following formula.

【0022】マトリックスガラスのAl23 含量(重
量%)=[バルクのAl23 含量(重量%)/(10
0−バルクのZrO2 含量(重量%))]×100。
Al 2 O 3 content (% by weight) of matrix glass = [bulk Al 2 O 3 content (% by weight) / (10
0- ZrO 2 content of bulk (weight%))] × 100.

【0023】一方、高ジルコニア質溶融再固化物のマト
リックスガラスのZrO2 含量は、上記により算出され
たマトリックスガラスのAl23 含量が10〜20重
量%程度の範囲では、電子線マイクロアナライザで測定
すると、通常2.0〜2.5重量%の範囲である。
On the other hand, the ZrO 2 content of the matrix glass of the high zirconia molten and re-solidified material is determined by an electron beam microanalyzer when the calculated Al 2 O 3 content of the matrix glass is about 10 to 20% by weight. When measured, it is usually in the range of 2.0-2.5% by weight.

【0024】マトリックスガラス類似組成物としては、
ガラス骨格形成酸化物として、B23 及びP25
を、ガラス骨格修飾酸化物として、Na2 O以外のアル
カリ金属酸化物、アルカリ土類金属酸化物等を含むもの
を用いてもよい。
As a matrix glass-like composition,
B 2 O 3 and P 2 O 5
May be used as a glass skeleton-modified oxide containing an alkali metal oxide other than Na 2 O, an alkaline earth metal oxide, or the like.

【0025】マトリックスガラス類似組成物は、以下の
ように調製する。原料として二酸化ケイ素、アルミナ、
炭酸ナトリウム、及びジルコニア等の所定量を混合し、
特開平6−345532記載の方法や酸化雰囲気下で電
気炉を用いて、1700℃程度以上の温度で溶融し室温
まで冷却する。溶融後、粗粉砕の手段として、高温溶融
物をそのまま水中に投入する方法を採用できる。
The matrix glass-like composition is prepared as follows. Silicon dioxide, alumina,
Mix predetermined amounts of sodium carbonate and zirconia,
Using an electric furnace in an oxidizing atmosphere or a method described in JP-A-6-345532, the mixture is melted at a temperature of about 1700 ° C. or more and cooled to room temperature. After the melting, as a means for coarse pulverization, a method in which a high-temperature molten material is directly introduced into water can be adopted.

【0026】本発明において、高ジルコニア質の溶融再
固化物の粉砕物の粒径は、焼結体の組織の均一性及び低
気孔率化を考慮すると、粒径は1.00mm未満が望ま
しい。ここで、1.00mm未満とは、目開き1.00
mmの篩を通過する粒子のことを意味する。さらに、高
ジルコニア溶融耐火物特有の不均一組織部分(ワームト
レーシングともいう)を含まないためには、粒径0.1
5mm以下のみ、さらには粒径0.10mm以下のみを
用いることが好ましい。この気孔やマトリックスガラス
を多く含む不均一組織は、おおむね0.1mmの帯状の
形態を呈するが、それらの影響を除去できるからであ
る。
In the present invention, the particle size of the pulverized high zirconia melt-resolidified product is preferably less than 1.00 mm in consideration of the uniformity of the structure of the sintered body and low porosity. Here, less than 1.00 mm means that the aperture is 1.00 mm.
mm means particles passing through a sieve. Further, in order not to include a non-uniform structure portion (also referred to as worm tracing) peculiar to a high zirconia molten refractory, a particle size of 0.1
It is preferable to use only 5 mm or less, and more preferably only 0.10 mm or less in particle size. This is because the heterogeneous structure containing a large amount of pores and matrix glass has a band shape of about 0.1 mm, but the influence thereof can be eliminated.

【0027】マトリックスガラス類似組成物の粒径は、
これが、焼結時に高ジルコニア溶融耐火物の周囲に均一
に分布するように、高ジルコニア質の溶融再固化物の粉
砕物と同等又はそれ以下とするのがよい。すなわち、マ
トリックスガラス類似組成物の好ましい粒径は0.15
mm以下である。
The particle size of the matrix glass-like composition is
It is preferable that this is equal to or less than the pulverized high zirconia molten re-solidified material so that it is uniformly distributed around the high zirconia molten refractory during sintering. That is, the preferred particle size of the matrix glass-like composition is 0.15
mm or less.

【0028】さらに、粉砕時、鉄製の粉砕器を用いる場
合には、粉砕後磁石を用い又は希塩酸等の酸洗浄によっ
て混入鉄を除去することが好ましい。このようにすると
さらに低素地汚染性となる。
Further, when an iron pulverizer is used at the time of pulverization, it is preferable to remove the mixed iron by using a magnet after the pulverization or by washing with an acid such as dilute hydrochloric acid. In this way, the soil becomes less polluted.

【0029】乾式又は湿式にて混合した高ジルコニア質
溶融再固化物の粉砕物とこのマトリックスガラス類似組
成物とを、金型プレス法又はCIP法によって成形す
る。特に結合材を用いなくても成形できる。ただし、粒
径が大きい原料を多く使用する場合には、結合材を用い
なくては成形が困難である。結合材を用いてもよいが、
焼成後の耐火物の耐食性、発泡性を悪化させるものであ
ってはいけない。
A pulverized high zirconia melt-resolidified material mixed in a dry or wet process and this matrix glass-like composition are formed by a die pressing method or a CIP method. In particular, molding can be performed without using a binder. However, when many raw materials having a large particle size are used, molding is difficult without using a binder. A binder may be used,
It should not deteriorate the corrosion resistance and foaming properties of the refractory after firing.

【0030】成形体を1400℃以上の温度で焼成す
る。この焼成によって、原料中の還元物質が酸化される
ので、さらに酸化度が上昇する。より酸化を促進したい
場合には、例えばカーボンの酸化が完了する900℃程
度で保持するとよい。焼成は、空気中又は酸化雰囲気
中、大気圧下又は加圧下で行うのが好ましい。焼成温度
は1500〜1700℃、特に1550〜1650℃が
好ましい。
The compact is fired at a temperature of 1400 ° C. or higher. By this calcination, the reducing substance in the raw material is oxidized, so that the degree of oxidation further increases. If it is desired to further promote oxidation, the temperature may be maintained at, for example, about 900 ° C. at which oxidation of carbon is completed. The calcination is preferably performed in air or an oxidizing atmosphere under atmospheric pressure or under pressure. The firing temperature is preferably from 1500 to 1700C, particularly preferably from 1550 to 1650C.

【0031】通常、安定化しない単斜晶系ジルコニア
は、焼成温度以下の冷却によって、残存膨張のため焼結
体が得られないが、本発明品は亀裂なく焼結体を得られ
る。これは、バデライト相を取り囲むマトリックスガラ
ス相及び添加するマトリックスガラス類似組成物が体積
残存膨張を緩和することにより、亀裂の発生を抑制して
いるためと考えられる。
Normally, monoclinic zirconia that is not stabilized cannot be sintered due to residual expansion when cooled below the firing temperature, but the sintered product of the present invention can be obtained without cracks. This is presumably because the matrix glass phase surrounding the baddelite phase and the matrix glass-like composition to be added alleviate the residual volume expansion, thereby suppressing the occurrence of cracks.

【0032】緻密で気孔率が低い溶融耐火物粉砕物を原
料としていることと、焼成時に高ジルコニア質溶融再固
化物に由来するマトリックスガラス及びマトリックスガ
ラス類似組成物は粘性が低くなるために、バデライト粒
の周辺を流動するので、焼結耐火物ながら気孔率が低
い。また、ある程度存在する気孔が体積残存膨張を緩和
しているとも考えられる。
Since the raw material is a dense and low porosity molten refractory pulverized material, and the matrix glass and the matrix glass-like composition derived from the high zirconia molten and re-solidified material at the time of firing have a low viscosity, Since it flows around the grains, it has a low porosity despite being a sintered refractory. It is also considered that the pores existing to some extent reduce the volume expansion.

【0033】焼成中に、バデライトの粒成長はほとんど
ないので、原料粒子状態以上のジルコニアの偏析は存在
しない。これは、高ジルコニア質の溶融耐火物が、気孔
やマトリックスガラスが多く存在し、局部的に耐食性及
び素地汚染性が劣る部分が存在することと比較すれば、
より均質な信頼性の高い耐火物である。
During firing, there is almost no grain growth of the badelite, so there is no segregation of zirconia beyond that of the raw material particles. This is because high zirconia molten refractory has many pores and matrix glass, and there is a part where corrosion resistance and base soil pollution are inferior locally.
It is a more homogeneous and highly reliable refractory.

【0034】[0034]

【実施例】以下、本発明を実施例(例1〜8)、比較例
(例9〜11)によって具体的に説明するが本発明はこ
れらに限定されない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples (Examples 1 to 8) and Comparative Examples (Examples 9 to 11), but the present invention is not limited thereto.

【0035】本発明品の製造方法の例を以下に示す。ま
ず、脱ケイ酸ジルコン、バイヤーアルミナ、ケイ砂、及
び炭酸ナトリウムを所定量秤取、混合後、これを黒鉛電
極を用いる500kVAの単相アーク電気炉にて、24
50℃程度にて、完全に溶融した。この溶湯をバイヤー
アルミナに埋めてある内寸160mm×200mm×3
50mmの黒鉛型に出湯し、室温まで放冷した。つい
で、鋳塊を切断し、鋳込み巣を含む部分を得た。
An example of the method for producing the product of the present invention will be described below. First, a predetermined amount of desilicated zircon, Bayer alumina, silica sand, and sodium carbonate were weighed and mixed, and then mixed in a 500 kVA single-phase electric arc furnace using a graphite electrode.
At about 50 ° C., it was completely melted. This molten metal is buried in Bayer Alumina with inner dimensions of 160 mm x 200 mm x 3
Hot water was poured into a 50 mm graphite mold and allowed to cool to room temperature. Next, the ingot was cut to obtain a portion including a casting cavity.

【0036】これをジョークラッシャ、次いで鉄鉢で粉
砕し、1cm程度の粒径の粉砕品を得た。次に、これを
1mol/Lの塩酸水溶液に浸漬し、混入鉄を溶解、除
去させ、水洗の後、乾燥させた。なお、粉砕によって、
約0.1重量%のFe23の混入が認められた。さら
に、アルミナボールを用いて粉砕した。ついで、篩を用
いて粒径0.15mm以下の粉砕品を得た。化学組成
(単位:重量%)を表1に示す。なお、化学組成は、粉
砕品の0.15mm未満の画分について以下のように測
定した。SiO2 含量及びAl23 含量は、ガラスビ
ード法によって蛍光X線分析装置を用いて定量し、Na
2 O含量は、フッ酸−硫酸で分解後、原子吸光光度計を
用いて定量した。
This was ground with a jaw crusher and then with an iron pot to obtain a ground product having a particle size of about 1 cm. Next, this was immersed in a 1 mol / L hydrochloric acid aqueous solution to dissolve and remove mixed iron, washed with water, and dried. In addition, by crushing,
About 0.1% by weight of Fe 2 O 3 was found to be incorporated. Furthermore, it was pulverized using alumina balls. Then, a pulverized product having a particle size of 0.15 mm or less was obtained using a sieve. Table 1 shows the chemical composition (unit:% by weight). The chemical composition was measured as follows for a fraction of less than 0.15 mm of the pulverized product. The SiO 2 content and Al 2 O 3 content were quantified by a glass bead method using a fluorescent X-ray analyzer,
The 2O content was determined using an atomic absorption spectrophotometer after decomposition with hydrofluoric acid-sulfuric acid.

【0037】[0037]

【表1】 [Table 1]

【0038】一方、マトリックスガラス類似組成物は、
二酸化ケイ素、酸化アルミナ、炭酸ナトリウム、及び酸
化ジルコニウム(全て試薬特級)を所定量秤取、混合
し、ランタンクロマイトを発熱体とする電気炉で、18
50℃にて4時間加熱して調製した。これをアルミナ製
乳鉢で粉砕して、粒径0.15mm以下の粉砕品を得
た。化学組成(単位:重量%)を表2に示す。なお、化
学組成は、粉砕品の0.15mm未満の画分について、
Al23 含量、Na2 O含量、及びZrO2 含量は、
フッ酸−硫酸で分解後、ICP発光分光分析装置又は原
子吸光光計を用いて定量した。
On the other hand, the matrix glass-like composition is
A predetermined amount of silicon dioxide, alumina oxide, sodium carbonate, and zirconium oxide (all special grades) were weighed and mixed, and an electric furnace using lanthanum chromite as a heating element was used.
It was prepared by heating at 50 ° C. for 4 hours. This was pulverized with an alumina mortar to obtain a pulverized product having a particle size of 0.15 mm or less. Table 2 shows the chemical composition (unit:% by weight). In addition, the chemical composition is about the fraction of less than 0.15 mm of the pulverized product,
The Al 2 O 3 content, Na 2 O content, and ZrO 2 content are:
After decomposition with hydrofluoric acid-sulfuric acid, quantification was performed using an ICP emission spectrometer or an atomic absorption spectrometer.

【0039】[0039]

【表2】 [Table 2]

【0040】ついで、高ジルコニア質溶融再固化物の粉
砕物とマトリックスガラス類似組成物との表3に示す割
合の混合物1000gを金型プレス、さらにCIP法
(1.5ton/cm2 )によってプレスし、生加工品
を得た。これを抵抗加熱式電気炉にて1600℃で24
時間焼成した。焼結体はいずれも亀裂を発生することな
く得られた。
Then, 1000 g of a mixture of the crushed high zirconia re-solidified material and the matrix glass-like composition at a ratio shown in Table 3 was pressed by a die press, and further by a CIP method (1.5 ton / cm 2 ). And a raw product was obtained. This is heated at 1600 ° C. for 24 hours in a resistance heating electric furnace.
Fired for hours. All of the sintered bodies were obtained without cracking.

【0041】なお、例9は、部分安定化ジルコニア焼結
品(3モル%Y23 添加)を、例10〜11は、高ジ
ルコニア質溶融再固化物(表1の試料Z2)と粘土(S
iO2 含量77.6重量%、Al23 含量17.1
%、強熱減量4.1%)とを、それぞれ重量比で、9
0:10(例10)及び95:5(例11)で混合した
ものを同様に処理したものを用いた。上記の例1〜11
について以下の試験を実施した。
In Example 9, a partially stabilized zirconia sintered product (3 mol% Y 2 O 3 added) was used, and in Examples 10 to 11, a high zirconia molten and re-solidified product (sample Z2 in Table 1) and a clay were used. (S
iO 2 content 77.6% by weight, Al 2 O 3 content 17.1
%, Loss on ignition 4.1%) and 9% by weight, respectively.
A mixture treated at 0:10 (Example 10) and 95: 5 (Example 11) in the same manner was used. Examples 1 to 11 above
The following tests were conducted for

【0042】耐食性を調べるために、15mm×15m
m×50mmの直方体の試料を焼成体から切り出し、白
金坩堝に充填した管球パネル用溶融ガラス中に1500
℃で48時間浸漬した。その後縦方向に2等分し、浸食
量を測定した(表3)。
For examining the corrosion resistance, a 15 mm × 15 m
A rectangular parallelepiped sample of mx 50 mm was cut out from the fired body and placed in a molten glass for a tube panel filled in a platinum crucible with 1500 pieces.
C. for 48 hours. Then, it was equally divided in the vertical direction, and the erosion amount was measured (Table 3).

【0043】また、発泡性を調べるために、50mm×
50mm×5mmの板状の試料を焼成体から切り出し、
これに内径30mmのアルミナ製リングを載せ、その中
に上記ガラスを入れ、1500℃で24時間加熱し、室
温まで徐冷した。その後、ガラス中の残存泡数を光学顕
微鏡を用いて、計測した(表3)。
Further, in order to examine the foaming property, a 50 mm ×
Cut out a 50 mm x 5 mm plate-shaped sample from the fired body,
An alumina ring having an inner diameter of 30 mm was placed thereon, and the glass was placed therein, heated at 1500 ° C. for 24 hours, and gradually cooled to room temperature. Thereafter, the number of bubbles remaining in the glass was measured using an optical microscope (Table 3).

【0044】[0044]

【表3】 [Table 3]

【0045】表3からわかるように、本発明品の耐食性
及び発泡性は優れる。以上のことから、本発明品は、ガ
ラス溶解用の窯に用いる耐火物として、溶解ガラスに対
し、接触又は非接触に関係なく使用できる。本発明の耐
火物は、ガラス溶解に限らず、金属溶解、焼却灰溶解等
に用いる耐火物としても利用できる。
As can be seen from Table 3, the products of the present invention have excellent corrosion resistance and foamability. From the above, the product of the present invention can be used as a refractory for use in a furnace for melting glass, regardless of contact or non-contact with the molten glass. The refractory of the present invention can be used not only for melting glass but also as a refractory used for melting metals, melting incineration ash, and the like.

【0046】[0046]

【発明の効果】本発明の高ジルコニア質の焼成耐火物
は、組織及び組成が均一であり、安定した品質と信頼性
を有しており、耐食性及び発泡性に優れる。したがっ
て、ガラス溶解槽窯用の耐火物として適切に使用でき、
溶融ガラスに対し、泡、砂利等のガラス欠点を生じさせ
がたく、すなわち素地汚染性が低く、ガラス製造の歩留
まりが向上するので工業的価値は多大である。また、本
発明品は、高ジルコニア質溶融耐火物の製品とできない
鋳込み巣を含む部分を利用できるので、資源のリサイク
ル化、すなわち省資源に貢献できる。
The fired refractory of high zirconia of the present invention has a uniform structure and composition, has stable quality and reliability, and is excellent in corrosion resistance and foamability. Therefore, it can be used appropriately as a refractory for glass melting tank kilns,
Since glass defects such as bubbles and gravel are unlikely to occur in the molten glass, that is, the soil pollution is low and the yield of glass production is improved, so that the industrial value is great. Further, since the product of the present invention can use a portion containing a casting cavity that cannot be used as a product of a high zirconia-based molten refractory, it can contribute to resource recycling, that is, resource saving.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】マトリックスガラスを含む単斜晶系ZrO
2 を主成分とする高ジルコニア質溶融再固化物の粉砕物
と、別に調製した該マトリックスガラス類似組成物との
混合物を焼結したことを特徴とする高ジルコニア質耐火
物。
1. Monoclinic ZrO containing matrix glass
2. A high zirconia refractory obtained by sintering a mixture of a pulverized high zirconia melt-resolidified material containing 2 as a main component and the matrix glass-like composition prepared separately.
【請求項2】マトリックスガラス類似組成物が、高ジル
コニア質溶融再固化物の粉砕物との合量中、2〜7重量
%である請求項1に記載の耐火物。
2. The refractory according to claim 1, wherein the matrix glass-like composition accounts for 2 to 7% by weight based on the total amount of the high zirconia melt-resolidified product and the pulverized product.
【請求項3】ZrO2 含量が85重量%以上であり、か
つSiO2 含量が10重量%以下である請求項1又は2
に記載の耐火物。
3. The method according to claim 1, wherein the ZrO 2 content is 85% by weight or more and the SiO 2 content is 10% by weight or less.
Refractories described in.
【請求項4】マトリックスガラスがAl23 、SiO
2 を含み、マトリックスガラス類似組成物の化学組成
が、SiO2 :50〜90重量%、Al23 :5〜4
0重量%、Na2 O:5〜20重量%、及びZrO2
0〜20重量%である請求項1、2又は3に記載の耐火
物。
4. A matrix glass comprising Al 2 O 3 , SiO 2
2 , the chemical composition of the matrix glass-like composition is as follows: SiO 2 : 50 to 90% by weight, Al 2 O 3 : 5 to 4
0 wt%, Na 2 O: 5 to 20 wt%, and ZrO 2:
The refractory according to claim 1, 2 or 3, wherein the content is 0 to 20% by weight.
【請求項5】マトリックスガラス類似組成物のAl2
3 含量及びZrO2 含量のうち少なくとも一つが、高ジ
ルコニア質溶融再固化物のマトリックスガラス中に占め
るそれらの割合よりも多い請求項1、2、3又は4に記
載の耐火物。
5. A matrix glass-like composition of Al 2 O
5. The refractory according to claim 1, wherein at least one of the 3 content and the ZrO 2 content is higher than the proportion of the high zirconia melt-resolidified material in the matrix glass. 6.
【請求項6】粒径0.15mm未満の高ジルコニア質溶
融再固化物と粒径0.15mm未満のマトリックスガラ
ス類似組成物とからなる混合物を焼結してなる請求項
1、2、3、4又は5に記載の耐火物。
6. A sintering mixture comprising a re-solidified high zirconia material having a particle size of less than 0.15 mm and a matrix glass-like composition having a particle size of less than 0.15 mm. The refractory according to 4 or 5.
【請求項7】耐火物が、ガラス溶融槽窯に使用されるも
のである請求項1、2、3、4、5又は6に記載の耐火
物。
7. The refractory according to claim 1, wherein the refractory is used in a glass melting tank kiln.
JP29010797A 1997-10-22 1997-10-22 Method for producing high zirconia refractories Expired - Lifetime JP4045329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29010797A JP4045329B2 (en) 1997-10-22 1997-10-22 Method for producing high zirconia refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29010797A JP4045329B2 (en) 1997-10-22 1997-10-22 Method for producing high zirconia refractories

Publications (2)

Publication Number Publication Date
JPH11130529A true JPH11130529A (en) 1999-05-18
JP4045329B2 JP4045329B2 (en) 2008-02-13

Family

ID=17751897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29010797A Expired - Lifetime JP4045329B2 (en) 1997-10-22 1997-10-22 Method for producing high zirconia refractories

Country Status (1)

Country Link
JP (1) JP4045329B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007403A (en) * 2007-08-24 2008-01-17 Hoya Corp Method for producing each of glass, glass substrate blank and glass substrate
US7739885B2 (en) 2001-10-24 2010-06-22 Hoya Corporation Methods for the production of glass substrate blank
JP2010168279A (en) * 2003-10-10 2010-08-05 Nippon Electric Glass Co Ltd Method for producing alkali-free glass
JP2011184297A (en) * 2011-06-15 2011-09-22 Hoya Corp Method for producing each of glass, glass substrate blank and glass substrate
JP2013043811A (en) * 2011-08-25 2013-03-04 Asahi Glass Co Ltd Stabilized zirconia sintered refractory and manufacturing method therefor
US10407349B2 (en) 2015-04-24 2019-09-10 Corning Incorporated Bonded zirconia refractories and methods for making the same
CN113620704A (en) * 2021-09-15 2021-11-09 郑州亿川复合新材料研究所有限公司 Preparation process of high-zirconium ceramic for special glass molten pool
US11634362B2 (en) * 2017-10-11 2023-04-25 Saint-Gobain Centre De Recherches Et D'etudes Europeen Process for the manufacture of a fused block having a high zirconia content

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7739885B2 (en) 2001-10-24 2010-06-22 Hoya Corporation Methods for the production of glass substrate blank
JP2010168279A (en) * 2003-10-10 2010-08-05 Nippon Electric Glass Co Ltd Method for producing alkali-free glass
JP2008007403A (en) * 2007-08-24 2008-01-17 Hoya Corp Method for producing each of glass, glass substrate blank and glass substrate
JP2011184297A (en) * 2011-06-15 2011-09-22 Hoya Corp Method for producing each of glass, glass substrate blank and glass substrate
JP2013043811A (en) * 2011-08-25 2013-03-04 Asahi Glass Co Ltd Stabilized zirconia sintered refractory and manufacturing method therefor
US10407349B2 (en) 2015-04-24 2019-09-10 Corning Incorporated Bonded zirconia refractories and methods for making the same
US11634362B2 (en) * 2017-10-11 2023-04-25 Saint-Gobain Centre De Recherches Et D'etudes Europeen Process for the manufacture of a fused block having a high zirconia content
CN113620704A (en) * 2021-09-15 2021-11-09 郑州亿川复合新材料研究所有限公司 Preparation process of high-zirconium ceramic for special glass molten pool

Also Published As

Publication number Publication date
JP4045329B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
CN101687711B (en) A sintered product based on alumina and chromium oxide
CN108367993B (en) Sintered refractory zircon composite material, method for the production thereof and use thereof
RU2456254C2 (en) Doped sintered article based on zircon and zirconium dioxide
JP5549891B2 (en) Refractory block for glass melting furnace
US6274525B1 (en) Process for making a high temperature-resistant ceramic material with an adjustable thermal expansion coefficient and method of use of same
CN105174974B (en) Alumina fused cast refractory and method for producing same
JP2012518588A (en) Refractory with high zirconia content
JP4297543B2 (en) Alumina / zirconia / silica fusion cast refractory and glass melting furnace using the same
JP4045329B2 (en) Method for producing high zirconia refractories
WO2016013384A1 (en) Alumina-zirconia-silica fused-cast refractory, glass melting furnace, and method for producing glass plate
EP0104025A2 (en) Baddeleyite sinterable refractory compositions and refractories produced therefrom
JP2013043811A (en) Stabilized zirconia sintered refractory and manufacturing method therefor
JP4394080B2 (en) Zirconia refractories
US4053320A (en) Production of refractory articles
JP3753479B2 (en) High zirconia refractory
WO2016006531A1 (en) Fused-cast alumina-zirconia-silica refractory, glass melting furnace, and method for producing glass plate
Thompson et al. Preparation of crucibles from special refractories by slip casting
JP3928818B2 (en) Induction furnace
CN114394842A (en) Preparation method of sintered compact high-zirconium brick
JPH0753258A (en) Fused-zirconia refractory material, its production and refractory product
JPH10120462A (en) Zirconia refractory
CN113860896A (en) High-temperature precision casting low-creep corundum mullite and manufacturing method thereof
KR20160136346A (en) Fused grains of magnesium-rich magnesium aluminate
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JP3944700B2 (en) Rare earth alloy melting crucible and rare earth alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

EXPY Cancellation because of completion of term