JPH05117043A - Dry ramming refractory for induction furnace - Google Patents

Dry ramming refractory for induction furnace

Info

Publication number
JPH05117043A
JPH05117043A JP3308467A JP30846791A JPH05117043A JP H05117043 A JPH05117043 A JP H05117043A JP 3308467 A JP3308467 A JP 3308467A JP 30846791 A JP30846791 A JP 30846791A JP H05117043 A JPH05117043 A JP H05117043A
Authority
JP
Japan
Prior art keywords
refractory
magnesia
alumina
induction furnace
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3308467A
Other languages
Japanese (ja)
Inventor
Kazuo Uchida
和夫 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd filed Critical Kawasaki Refractories Co Ltd
Priority to JP3308467A priority Critical patent/JPH05117043A/en
Publication of JPH05117043A publication Critical patent/JPH05117043A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a lining material having better durability and prolong the life of an inner lining of an induction furnace in a dry ramming material for the inner lining of the induction furnace. CONSTITUTION:A dry ramming refractory for an induction furnace is characterized by blending 0.3-5.0 pts.wt. zirconium compound powder such as zirconium carbonate or zirconium hydroxide with 100 pts.wt. refractory aggregate containing one or more raw materials in an alumina, a magnesia and a spinel raw materials.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低周波および高周波誘
導炉の、内張り用乾式ラミング耐火材に関する。
FIELD OF THE INVENTION This invention relates to a dry ramming refractory material for linings of low frequency and high frequency induction furnaces.

【0002】[0002]

【従来の技術】従来、低周波および高周波誘導炉の内張
り材としては、一般には粒度調整された珪石質乾式ラミ
ング耐火材が用いられていた。先ず誘導炉内に、鋼製中
子を設置し、鋼製中子と誘導炉の鉄皮との間に、乾式ラ
ミング耐火材をバイブレ−タ−などにより、乾式充填施
工し、次に施工された耐火材を鋼製中子と共に誘導加熱
し、一体化された耐火ライニング層として使用してい
た。従来の乾式ラミング耐火材としては、粒度調整され
た珪石と硼酸とからなる耐火材がある。この耐火材を使
用した耐火ライニング層は、炉の操業時には溶鋼などと
接する稼働面のみが焼結しており、炉の耐火ライニング
層の背面側では、粉末状態の未焼結層となっている。こ
のため、溶鋼などと接する稼働面で亀裂が発生しても、
炉の耐火ライニング層の背面側まで亀裂が伸展しないた
め、炉の継続操業ができた。しかし、近年誘導炉におい
て高温操業の特殊鋳鋼の溶解などが行われるようになる
と、上記のような珪石質乾式ラミング耐火材ではその耐
用が不十分となり、アルミナ質、マグネシア質、スピネ
ル質、アルミナ−マグネシア質およびアルミナ・マグネ
シア・スピネル質などの耐火材料が使用されるようにな
った。
2. Description of the Related Art Conventionally, a siliceous dry ramming refractory material having a controlled grain size has been generally used as a lining material for low frequency and high frequency induction furnaces. First, a steel core is installed in the induction furnace, and a dry ramming refractory material is dry-filled by a vibrator, etc. between the steel core and the iron shell of the induction furnace. The refractory material was induction-heated together with the steel core and used as an integrated refractory lining layer. As a conventional dry ramming refractory material, there is a refractory material composed of silica stone and boric acid whose particle size is adjusted. The refractory lining layer that uses this refractory material is sintered only on the operating surface that is in contact with molten steel during furnace operation, and on the back side of the furnace refractory lining layer is a powdery unsintered layer. . Therefore, even if a crack occurs on the operating surface that contacts molten steel,
Since the crack did not extend to the back side of the refractory lining layer of the furnace, the furnace could be continuously operated. However, in recent years, when melting of special cast steel of high temperature operation is started in induction furnace, its durability becomes insufficient with the above-mentioned siliceous dry ramming refractory material, and alumina, magnesia, spinel, alumina- Refractory materials such as magnesia and alumina magnesia spinel have come into use.

【0003】[0003]

【発明が解決しようとする課題】近年使用されるように
なったアルミナ質、マグネシア質、スピネル質、アルミ
ナ−マグネシア質およびアルミナ・マグネシア・スピネ
ル質などの耐火材料は、高耐食性および高耐火性である
ため溶鋼による溶損が少ないが、しかし、一方で対熱衝
撃性に劣り、炉の間欠操業の場合、炉の操業中に耐火ラ
イニング層に亀裂が入り、耐火ライニング層の厚みが十
分にあるにもかかわらず、使用を中止しなければならな
いという問題があった。その原因としては、アルミナ
質、マグネシア質、スピネル質、アルミナ−マグネシア
質およびアルミナ−マグネシア−スピネル質などの耐火
材料などでは熱伝導率が高く、使用中稼働面だけでなく
背面層まで焼結が進み、強固な一体層が生成されるが、
−旦亀裂が生ずると、亀裂は背面まで進行し、溶鋼がそ
の亀裂を通って耐火ライニング層の背面まで浸透すると
いう重大な欠陥があった。上記の問題を解決するため
に、 高純度の材料を使用する、 アルミナ、マグ
ネシアの活性超微粉を用い、アルミナとマグネシアが反
応し膨張して焼結を抑制する方法が試みられたが、いず
れも十分な効果が上げられなかった。
The refractory materials such as alumina, magnesia, spinel, alumina-magnesia and alumina magnesia spinel which have been used in recent years have high corrosion resistance and high fire resistance. Since there is little melting loss due to molten steel, on the other hand, it is inferior in thermal shock resistance, and in the case of intermittent operation of the furnace, the refractory lining layer cracks during operation of the furnace, and the thickness of the refractory lining layer is sufficient. Nevertheless, there was a problem that the use had to be stopped. The reason is that the refractory material such as alumina, magnesia, spinel, alumina-magnesia and alumina-magnesia-spinel has high thermal conductivity, and not only the working surface during use but also sintering to the back layer. Proceeds and creates a solid monolithic layer,
There was a serious defect that once the crack had developed, the crack had propagated to the back surface and the molten steel had penetrated through the crack to the back surface of the refractory lining layer. In order to solve the above problem, a method of suppressing the sintering by using alumina and magnesia activated ultrafine powder, which uses a high-purity material, and the reaction of alumina and magnesia to expand and suppress sintering has been attempted. The effect was not sufficient.

【0004】[0004]

【課題を解決するための手段】本発明は、前記の問題に
ついて、鋭意研究を重ねた結果、アルミナおよびマグネ
シアの反応温度より低い温度で、単結晶から正方晶への
結晶変化にともなう酸化ジルコニウムの大きな容積変化
に着目し、さらに、加熱により活性な酸化ジルコニウム
を生成する炭酸ジルコニウム、水酸化ジルコニウムなど
のジルコニウム化合物を乾式ラミング耐火材に添加する
ことによって、耐火材の焼結を抑制することができると
考えた。すなわち本発明は、アルミナ原料、マグネシア
およびスピネル原料の内、1種以上の原料を含有する耐
火骨材100重量部に対して、炭酸ジルコニウム、水酸
化ジルコニウムなどのジルコニウム化合物粉末を0.3
〜5.0重量部配合してなることを特徴とする誘導炉用
乾式ラミング耐火材である。
Means for Solving the Problems The present invention has conducted extensive studies on the above problems, and as a result, at a temperature lower than the reaction temperature of alumina and magnesia, zirconium oxide of Focusing on a large volume change, and by adding zirconium carbonate, zirconium hydroxide, or other zirconium hydroxide, which produces active zirconium oxide upon heating, to the dry ramming refractory material, sintering of the refractory material can be suppressed. I thought. That is, in the present invention, 0.3 parts of zirconium compound powder such as zirconium carbonate and zirconium hydroxide is added to 100 parts by weight of a refractory aggregate containing at least one raw material among alumina raw materials, magnesia and spinel raw materials.
It is a dry ramming refractory material for an induction furnace, characterized by being mixed in an amount of up to 5.0 parts by weight.

【0005】[0005]

【作用】本発明におけるアルミナ原料は、アルミナ9
5.0%以上のものならいずれも使用でき、特に電融品
が望ましい。マグネシア原料としては、通常品はいずれ
も使用でき、特にマグネシア95.0%以上のものが望
ましい。スピネル原料としては、Mgo/Al2O3 比が、5/95
〜50/50 でかつマグネシア、アルミナ以外の成分が5.
0%以下ならいずれも使用でき、特に電融品が望まし
い。耐火骨材としては、アルミナ原料、マグネシアおよ
びスピネル原料の内、1種以上の原料を含有する耐火骨
材であればよいが、アルミナ、マグネシアおよびスピネ
ルの組成で、アルミナ60〜95重量部、マグネシア5
〜40重量部で計100重量部に対し、スピネル3〜3
0重量部を添加した組成のものが特に耐用性に優れてい
る。
The function of the alumina raw material in the present invention is alumina 9
Any of 5.0% or more can be used, and an electromelted product is particularly desirable. As the magnesia raw material, any ordinary material can be used, and particularly, magnesia of 95.0% or more is desirable. As a spinel raw material, the Mgo / Al 2 O 3 ratio is 5/95
~ 50/50 and other than magnesia and alumina 5.
Any content of 0% or less can be used, and an electromelted product is particularly desirable. The refractory aggregate may be any one of alumina raw material, magnesia and spinel raw material as long as it contains one or more raw materials, but the composition of alumina, magnesia and spinel is 60 to 95 parts by weight of alumina, magnesia. 5
Spinel 3 to 3 for 100 parts by weight of -40 parts by weight
The composition with 0 part by weight added is particularly excellent in durability.

【0006】耐火骨材の粒度としては、粒径5〜1mm:
30〜50重量部、粒径1〜0.074mm:20〜40
重量部、−0.074mm:20〜40重量部が代表的な
ものであるが、アルミナ原料が80重量部以上の場合に
は、マグネシア原料は0.074mm 以下の微粉を配合
し、マグネシア原料が50重量部以上の場合には、アル
ミナ原料は0.074mm以下の微粉を配合するのが望ま
しい。ジルコニウム化合物粉末としては、市販のもので
よいが、特に、炭酸ジルコニウムZrOCO3・nH2O、水酸化
ジルコニウムZrO(OH)2・nH2O などが良い。添加量とし
ては、耐火骨材100重量部に対してジルコニウム化合
物粉末を0.3〜5.0重量部添加するのが良く、0.
3重量部未満では効果が全くなく、5.0 重量部超で
は、ジルコニウム化合物粉末が熱的に不安定な原料のた
め、耐火材料の耐食性を著しく低下させる。本発明の乾
式ラミング耐火材は、アイリッヒミキサ−で簡単に製造
でき、また、誘導炉の内張りに従来の方法によって施工
でき、誘導加熱することにより、耐火ライニング層とし
て使用できる。
The particle size of the refractory aggregate is 5 to 1 mm:
30-50 parts by weight, particle size 1-0.074 mm: 20-40
By weight, -0.074 mm: 20 to 40 parts by weight is typical, but when the alumina raw material is 80 parts by weight or more, the magnesia raw material is blended with fine powder of 0.074 mm or less, and the magnesia raw material is When the amount is 50 parts by weight or more, it is desirable to mix fine particles of 0.074 mm or less as the alumina raw material. The zirconium compound powder may be a commercially available one, but zirconium carbonate ZrOCO 3 .nH 2 O and zirconium hydroxide ZrO (OH) 2 .nH 2 O are particularly preferable. The amount of zirconium compound powder added is preferably 0.3 to 5.0 parts by weight, based on 100 parts by weight of the refractory aggregate.
If it is less than 3 parts by weight, there is no effect, and if it exceeds 5.0 parts by weight, the zirconium compound powder is a thermally unstable raw material, so that the corrosion resistance of the refractory material is significantly lowered. The dry ramming refractory material of the present invention can be easily manufactured by an Erich mixer, can be applied to the lining of an induction furnace by a conventional method, and can be used as a fire lining layer by induction heating.

【0007】[0007]

【実施例】表1に、実施例および比較例の試料の原料配
合、焼結度判定試験およびスポ−リング試験の結果を記
載した。
[Examples] Table 1 shows the raw material blending of the samples of Examples and Comparative Examples, the results of the sinterability determination test and the spooling test.

【0008】[0008]

【表1】 [Table 1]

【0009】以下に焼結度判定試験およびスポ−リング
試験の試験方法を述べる。 焼結度判定試験 焼結度判定試験は、耐火物の耐食性試験に常用されてい
る回転侵食法を採用した。 試料は回転ドラム内に大小
2個のパイプ(径100mmおよび200mmで長さ1
00mm)を設置し、2個のパイプ間に、縦割りにラミ
ング材を充填して製作した。内側のパイプは、試験時に
加熱溶融し除去した。侵食材としてC/S=1、Fe2
3 20%のスラグを使用し、1600℃で3時間加熱
した。試験終了後、外側のパイプとともに試料を横方向
に切断し、溶損厚みおよび焼結層の厚み(パウダ−状態
でない稼働面側の固結部分)を測定した。 スポ−リング試験 スポ−リング試験は焼結度判定試験に準じて実施した。
但しラミング材の内張り方法は、ラミング材を横割りに
(層状に)充填する方法を採用した。試験は1650℃
で1時間加熱後30分空冷(温度は500℃まで下げ
る)というサイクルを20回繰り返して行い、試験後試
料を横割りにして亀裂の発生状況を判定した。
The test methods for the sinterability determination test and the spooling test will be described below. Sintering degree determination test For the sintering degree determination test, the rotary erosion method which is commonly used for the corrosion resistance test of refractory materials was adopted. The sample consists of two large and small pipes (diameter 100 mm and 200 mm, length 1
(00 mm) was installed, and the ramming material was vertically filled between the two pipes to manufacture. The inner pipe was heated and melted and removed during the test. C / S = 1, Fe 2 as corrosive material
Heated at 1600 ° C. for 3 hours using 20% O 3 slag. After the test was completed, the sample was cut in the lateral direction together with the outer pipe, and the melt loss thickness and the thickness of the sintered layer (consolidated portion on the working surface side that was not in the powder state) were measured. Spooling test The sporing test was performed according to the sintering degree determination test.
However, as the lining method of the ramming material, a method of horizontally filling the ramming material (in layers) was adopted. Test 1650 ℃
The cycle of heating for 1 hour at 30 ° C. and air cooling for 30 minutes (the temperature is lowered to 500 ° C.) was repeated 20 times. After the test, the sample was divided into pieces and the state of crack generation was determined.

【0010】表1における実施例1〜4には主原料(ア
ルミナ、マグネシア、スピネル系)に炭酸ジルコニウム
または水酸化ジルコニウムが添加されており、比較例1
は主原料のみで、比較例2は従来品の珪石質原料であ
る。耐食性試験においては、比較例2は珪石質のため、
溶損厚みは実施例に比較して2倍以上であった。実施例
1〜4と比較例1とを比較すると、溶損厚みはあまり変
わらないが、焼結層の厚みが比較例1に比べて実施例1
〜4のほうが1/4 〜1/5 と少なく、従って実施例は比較
例に比べ、焼結が抑制されて焼結層厚みが薄い。耐
スポ−リング性に優れている。
In Examples 1 to 4 in Table 1, zirconium carbonate or zirconium hydroxide was added to the main raw materials (alumina, magnesia, spinel), and Comparative Example 1
Is a main raw material only, and Comparative Example 2 is a conventional siliceous raw material. In the corrosion resistance test, since Comparative Example 2 is a silica stone,
The erosion thickness was more than twice that of the example. Comparing Examples 1 to 4 with Comparative Example 1, the erosion thickness does not change much, but the thickness of the sintered layer is different from that of Comparative Example 1 in Example 1.
.About.4 is as small as 1/4 to 1/5. Therefore, in the example, the sintering is suppressed and the thickness of the sintered layer is smaller than that of the comparative example. Excellent anti-spooling property.

【0011】[0011]

【発明の効果】本発明の誘導炉用乾式ラミング耐火材
を、1t高周波誘導炉の内張りに使用した結果、炉のラ
イニングの寿命が、従来の珪石質乾式ラミング耐火材に
比較して2倍以上延びた。
As a result of using the dry ramming refractory material for an induction furnace of the present invention as the lining of a 1t high frequency induction furnace, the life of the lining of the furnace is more than twice as long as that of the conventional siliceous dry ramming refractory material. Extended.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ原料、マグネシアおよびスピネ
ル原料の内、1種以上の原料を含む耐火骨材100重量
部に対して、炭酸ジルコニウム、水酸化ジルコニウムな
どのジルコニウム化合物粉末を0.3〜5.0重量部配
合してなることを特徴とする誘導炉用乾式ラミング耐火
材。
1. A zirconium compound powder such as zirconium carbonate or zirconium hydroxide is added in an amount of 0.3 to 5. with respect to 100 parts by weight of a refractory aggregate containing one or more raw materials among alumina raw materials, magnesia and spinel raw materials. A dry ramming refractory material for an induction furnace, characterized by containing 0 part by weight.
JP3308467A 1991-10-28 1991-10-28 Dry ramming refractory for induction furnace Pending JPH05117043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3308467A JPH05117043A (en) 1991-10-28 1991-10-28 Dry ramming refractory for induction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3308467A JPH05117043A (en) 1991-10-28 1991-10-28 Dry ramming refractory for induction furnace

Publications (1)

Publication Number Publication Date
JPH05117043A true JPH05117043A (en) 1993-05-14

Family

ID=17981378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3308467A Pending JPH05117043A (en) 1991-10-28 1991-10-28 Dry ramming refractory for induction furnace

Country Status (1)

Country Link
JP (1) JPH05117043A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6929691B1 (en) * 1999-08-04 2005-08-16 Pilkington Plc Fire resistant glazings
US7334435B2 (en) * 2000-09-20 2008-02-26 Pilkington Plc Production of fire resistant laminates
JP2013173657A (en) * 2012-02-27 2013-09-05 Agc Ceramics Co Ltd Dry ramming material and method for manufacturing refractory material using the same
CN114873996A (en) * 2022-07-12 2022-08-09 中南大学 Slag-corrosion-resistant ladle castable and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6929691B1 (en) * 1999-08-04 2005-08-16 Pilkington Plc Fire resistant glazings
US7282092B2 (en) * 1999-08-04 2007-10-16 Pilkington Plc Fire resistant glazings
US7334435B2 (en) * 2000-09-20 2008-02-26 Pilkington Plc Production of fire resistant laminates
JP2013173657A (en) * 2012-02-27 2013-09-05 Agc Ceramics Co Ltd Dry ramming material and method for manufacturing refractory material using the same
CN114873996A (en) * 2022-07-12 2022-08-09 中南大学 Slag-corrosion-resistant ladle castable and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3009705B2 (en) Chromium oxide refractories with improved thermal shock resistance
US4513089A (en) Superrefractory dry ramming material based on zirconium oxide for the lining of induction-type crucible furnaces
US5506181A (en) Refractory for use in casting operations
JPH09202667A (en) Castable refractory for slide gate
JPH05117043A (en) Dry ramming refractory for induction furnace
JP2874831B2 (en) Refractory for pouring
JP2002234776A (en) Monolithic refractory composition for molten steel ladle
US4999325A (en) Rebonded fused brick
KR100299460B1 (en) Monolithic refractory contained carbon
JP2005008496A (en) Monolithic refractory
KR20050006119A (en) Unshaped refractory composition
JP2604310B2 (en) Pouring refractories
JP4960541B2 (en) Magnesia-alumina-titania brick
JP2009242122A (en) Brick for blast furnace hearth and blast furnace hearth lined with the same
JPH0952755A (en) Magnesia-chrome refractory
JPS6247834B2 (en)
JP3031192B2 (en) Sliding nozzle plate refractories
JPS593068A (en) Magnesia-carbon-silicon carbide refractories
JP2518559B2 (en) Refractory materials and their preparation method
JPH09157043A (en) Casting refractory for blast-furnace launder
GB1564927A (en) Bonds for refractory materials
JP3238592B2 (en) Irregular cast refractory moldings
JP2000191364A (en) Shaped magnesia-chrome refractory
JP2003226583A (en) Unshaped refractory for hot metal
JPH06172044A (en) Castable refractory of alumina spinel