KR20160074211A - 포스트 패키지 리페어 장치 - Google Patents

포스트 패키지 리페어 장치 Download PDF

Info

Publication number
KR20160074211A
KR20160074211A KR1020140183247A KR20140183247A KR20160074211A KR 20160074211 A KR20160074211 A KR 20160074211A KR 1020140183247 A KR1020140183247 A KR 1020140183247A KR 20140183247 A KR20140183247 A KR 20140183247A KR 20160074211 A KR20160074211 A KR 20160074211A
Authority
KR
South Korea
Prior art keywords
fuse
resource
bank
signal
outputs
Prior art date
Application number
KR1020140183247A
Other languages
English (en)
Inventor
노영규
Original Assignee
에스케이하이닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이하이닉스 주식회사 filed Critical 에스케이하이닉스 주식회사
Priority to KR1020140183247A priority Critical patent/KR20160074211A/ko
Priority to US14/684,608 priority patent/US9401227B2/en
Publication of KR20160074211A publication Critical patent/KR20160074211A/ko

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/18Auxiliary circuits, e.g. for writing into memory
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/003Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation in serial memories
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/027Detection or location of defective auxiliary circuits, e.g. defective refresh counters in fuses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/44Indication or identification of errors, e.g. for repair
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • G11C29/785Masking faults in memories by using spares or by reconfiguring using programmable devices with redundancy programming schemes
    • G11C29/787Masking faults in memories by using spares or by reconfiguring using programmable devices with redundancy programming schemes using a fuse hierarchy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • G11C29/80Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout
    • G11C29/812Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout using a reduced amount of fuses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C2029/4402Internal storage of test result, quality data, chip identification, repair information

Landscapes

  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Abstract

본 발명은 포스트 패키지 리페어 장치에 관한 것으로, 포스트 패키지 리페어용 퓨즈의 리소스(Resource) 정보를 외부로 출력할 수 있도록 하는 기술이다. 이러한 본 발명은 패일 어드레스를 저장하기 위한 퓨즈 어레이를 포함하는 ARE 어레이부, 포스트 패키지 리페어 동작시 퓨즈 어레이를 스캔하여 퓨즈 리소스 정보를 출력하는 부트업 제어부, 퓨즈 리소스 정보를 저장하고 퓨즈의 사용 가능 여부를 나타내는 리소스 신호를 출력하는 리소스 검출부 및 리소스 검출부로부터의 리소스 신호에 대응하여 ARE 어레이부의 럽처 동작을 제어하는 럽처 제어부를 포함한다.

Description

포스트 패키지 리페어 장치{Post package repair device}
본 발명은 포스트 패키지 리페어 장치에 관한 것으로, 포스트 패키지 리페어용 퓨즈의 리소스(Resource) 정보를 외부로 출력할 수 있도록 하는 기술이다.
디램(DRAM: Dynamic Random Access Memory)은 매트릭스 형태로 배열되는 복수개의 메모리 셀(memory cell) 들로 구성된다. 그런데, 많은 메모리 셀 들 중 하나의 메모리 셀에서라도 결함이 발생하면, 반도체 메모리 장치는 제대로 동작을 수행하지 못하므로 불량 처리된다. 더욱이 반도체 메모리 장치의 고집적화 및 고속화에 따라 결함 셀이 발생 될 확률도 높아진다.
그러므로, 디램의 제조비용을 결정하는 전체 칩 수에 대한 양품 칩 수의 비로 나타내는 수율이 낮아지고 있다. 따라서, 반도체 메모리 장치의 고집적화 및 고속화 방안과 더불어 수율을 향상시키기 위해 결함 셀을 효율적으로 리페어(repair) 하기 위한 방안에 대한 연구가 이루어진다.
결함 셀을 리페어하기 위한 하나의 방법으로 결함 셀을 여분의 다른 셀(redundancy cell)로 대체하는 리페어 회로(repair circuit)를 내장하는 기술이 사용되고 있다. 일반적으로 리페어 회로는 여분의 메모리 셀 들로 이루어지는 컬럼(column)과, 로오(row)로 배열되는 리던던시(redundancy) 컬럼/로오를 구비한다. 그리고, 결함이 발생 된 컬럼/로오를 대신하여 리던던시 컬럼/로오를 선택한다.
즉, 결함 셀을 지정하는 로우 및/또는 컬럼 어드레스 신호가 입력되면 노멀(normal) 메모리 셀 뱅크(block)의 결함 컬럼/로오를 대신하여 리던던시 컬럼/로우가 선택된다.
결함 셀을 지정하는 어드레스(address)를 알아내기 위해 일반적으로 절단 가능한 다수개의 퓨즈(fuse)들이 구비되고, 이들이 선택적으로 절단됨으로써 결함 셀의 어드레스가 프로그램(program) 된다.
현재 디램(DRAM)에서의 불량 셀(cell)에 대한 리페어(repair) 방법은 웨이퍼(wafer) 상태에서 리페어하는 방법과 패키징(package) 상태에서 리페어 하는 방법이 있다.
여기서, 웨이퍼 리페어 방법은 웨이퍼 레벨에서 테스트(test)를 수행한 후 불량 셀을 리던던시 셀(redundancy cell)로 교체하는 방법이다. 그리고, 패키징 리페어 방법은 패키징 상태에서 테스트를 진행한 후 패키징 상태에서 리던던지 셀로 불량 셀을 대체하는 방법이다. 이렇게 패키징 상태에서 리페어를 진행하는 경우를 PPR(Post Package Repair) 방법이라 한다.
그런데, PPR 동작에서 2 개의 뱅크의 리던던시 워드라인을 동시에 대체하는 회로 구성일 경우 퓨즈 리소스가 동시에 감소하게 될 수 있다. 그리고, PPR 동작시 사용 가능한 퓨즈가 남아 있는지의 여부를 판별할 수 없다. 또한, 각각의 독립적인 뱅크에 할당된 퓨즈 구성일 경우 퓨즈를 최대한으로 사용할 수 없으며 PPR의 남은 퓨즈와 상관없이 럽처 동작이 중복적으로 진행될 수 있다.
본 발명은 포스트 패키지 리페어용 퓨즈의 리소스(Resource) 정보를 외부로 출력할 수 있도록 하는 특징을 갖는다.
본 발명의 실시예에 따른 포스트 패키지 리페어 장치는, 리페어 정보를 표시하는 퓨즈를 포함하고 퓨즈를 특정 개수 단위로 공유하는 다수의 뱅크 그룹; 및 다수의 뱅크 그룹 중 퓨즈가 사용 가능한지의 여부를 판단하는 리소스 검출부를 포함하는 것을 특징으로 한다.
본 발명의 다른 실시예에 따른 포스트 패키지 리페어 장치는, 패일 어드레스를 저장하기 위한 퓨즈 어레이를 포함하는 ARE 어레이부; 포스트 패키지 리페어 동작시 퓨즈 어레이를 스캔하여 퓨즈 리소스 정보를 출력하는 부트업 제어부; 퓨즈 리소스 정보를 저장하고 퓨즈의 사용 가능 여부를 나타내는 리소스 신호를 출력하는 리소스 검출부; 및 리소스 검출부로부터의 리소스 신호에 대응하여 ARE 어레이부의 럽처 동작을 제어하는 럽처 제어부를 포함하는 것을 특징으로 한다.
본 발명은 다음과 같은 효과를 제공한다.
첫째, 본 발명은 포스트 패키지 리페어용 퓨즈의 리소스(Resource) 정보를 외부로 출력할 수 있도록 하여 퓨즈의 사용 여부와 오동작 여부를 쉽게 판단할 수 있도록 한다.
둘째, 본 발명은 PPR에 사용되는 퓨즈의 리소스를 퓨즈 대체 방법과 상관없이 뱅크별로 표시할 수 있도록 한다.
셋째, 본 발명은 복수 개로 나뉘어져 각각 독립적으로 할당된 퓨즈가 뱅크에서 사용할 수 있는 최대 개수를 표시할 수 있도록 한다.
넷째, 본 발명은 PPR 리소스를 상관하지 않고 진행했을 경우 럽처 마스킹 동작을 수행하여 중복 럽처를 방지할 수 있도록 하는 효과를 제공한다.
아울러 본 발명의 실시예는 예시를 위한 것으로, 당업자라면 첨부된 특허청구범위의 기술적 사상과 범위를 통해 다양한 수정, 변경, 대체 및 부가가 가능할 것이며, 이러한 수정 변경 등은 이하의 특허청구범위에 속하는 것으로 보아야 할 것이다.
도 1은 본 발명의 실시예에 따른 포스트 패키지 리페어 장치의 구성도.
도 2는 도 1의 리소스 검출부에 관한 상세 구성도.
도 3은 본 발명의 실시예에 따른 채널에 관한 상세 구성도.
도 4는 도 3의 채널에 관한 상세 구성도.
도 5는 도 4의 채널 CH0A에서 퓨즈라인의 래치 순서를 설명하기 위한 도면.
도 6 및 도 7은 도 2의 리소스 제어부에서 퓨즈의 뱅크 할당 방법을 설명하기 위한 도면.
도 8은 도 2의 마스킹 제어부에 관한 상세 구성도.
도 9 내지 도 11은 도 8의 마스킹 제어부에 관한 동작 타이밍도.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명하고자 한다.
도 1은 본 발명의 실시예에 따른 포스트 패키지 리페어 장치의 구성도이다.
본 발명의 실시예는 부트업 제어부(100), 리소스 검출부(200), 럽처 제어부(300), ARE(Array Rupture Electrical fuse) 어레이부(400), 명령 디코더(500) 및 시스템(600)을 포함한다.
여기서, 부트업 제어부(100)는 PPR 동작시 사용할 퓨즈를 스캔하여 스캔한 퓨즈 리소스 정보를 리소스 검출부(200)에 출력한다. 여기서, 부트업 제어부(100)는 모드 레지스터 세트(MRS; Mode Register Set)를 이용하여 미리 저장된 퓨즈 리소스 정보를 1 비트 정보로 출력할 수 있다.
이러한 부트업 제어부(100)는 부트업신호 BOOTUP에 따라 부트 업 동작을 개시하고, 카운팅 동작에 대응하여 퓨즈 라인의 위치를 나타내는 어드레스 FADDLAT를 출력한다.
그리고, 부트업 제어부(100)는 어떠한 채널의 퓨즈가 미사용되었는지를 리드하기 위한 채널선택신호 CHA<0:3>를 출력한다. 또한, 부트업 제어부(100)는 각각의 뱅크에서 좌측 영역과 우측 영역의 퓨즈 사용 정보를 리드하기 위한 뱅크선택신호 BAL<0:3>, BAL<0:3>를 출력한다. 또한, 부트업 제어부(100)는 각각의 뱅크 내에서 어느 매트의 퓨즈가 미사용되었는지를 리드하기 위한 매트 선택신호 MAT<0:3>를 출력한다.
그리고, 부트업 제어부(100)는 뱅크의 어떤 영역에 미사용된 퓨즈가 있는지를 리드하기 위한 뱅크그룹 선택신호 BA<0>를 출력한다. 또한, 부트업 제어부(100)는 각 뱅크에 저장된 데이터를 리셋시키기 위한 리셋신호 RST, RSTB를 출력한다. 여기서, 리셋신호 RSTB는 리셋신호 RST의 반전 신호이다.
부트업 제어부(100)는 파워 업 동작 이후 메모리가 동작하기 이전에 ARE 어레이부(400)의 전기 퓨즈에 저장된 패일 어드레스에 대한 퓨즈 데이터를 스캔한다.
즉, 부트업 제어부(100)는 ARE 어레이부(400)에서 럽처된 로오 또는 컬럼 퓨즈 정보를 스캔하여 퓨즈의 사용 여부를 나타내는 어드레스 FADDLAT를 리소스 제어부(200)에 출력한다. 이때, 부트업 제어부(100)는 부트 업 동작시 ARE 어레이부(400)의 모든 뱅크에서 각 퓨즈 영역을 서치(Search) 한다. 그리고, 퓨즈 셋의 사용 정보가 리소스 제어부(200)에 출력된다.
반도체 장치의 최종 사용자가 퓨즈의 사용 여부를 알 수 있도록 하기 위해 PPR(Post Package Repair) 기능이 필요하다. 이를 위해, 반도체 장치의 내부에 전기적인 퓨즈를 구비하여야 하고, 이 퓨즈가 사용 가능한지 아닌지의 여부를 판별할 수 있는 리소스 검출부(200)가 필요하다. 리소스 검출부(200)는 PPR 용 퓨즈가 있을 경우 퓨즈의 리소스 정보를 외부의 시스템(600)에 알려주도록 한다.
이를 위해, 리소스 검출부(200)는 부트 업 동작시 퓨즈가 몇 개 남아 있는지를 검출하기 위하여 퓨즈의 리소스 정보를 저장한다. 이러한 리소스 검출부(200)는 부트 업 동작시 여러 개의 채널 및 채널 내의 여러 개의 뱅크에서 모든 퓨즈의 리소스를 래치하게 된다. 이에 따라, 사용자가 PPR 퓨즈 리소스 정보를 무시하고 PPR의 진행시 미리 저장한 퓨즈 데이터 FD<0:3>를 이용하여 각 채널 및 뱅크별로 럽처 진행 여부를 판단하게 된다.
이러한 리소스 검출부(200)는 채널선택신호 CHA<0:3>에 따라 해당 채널을 선택하고, 매트 선택신호 MAT<0:3>에 따라 해당 매트를 선택한다. 그리고, 리소스 검출부(200)는 뱅크그룹 선택신호 BA<0>에 따라 업 영역에 배치된 뱅크 그룹 및 다운 영역에 배치된 뱅크 그룹의 리소스 정보를 검출한다. 그리고, 리소스 검출부(200)는 뱅크선택신호 BAL<0:3>, BAL<0:3>에 따라 각각의 뱅크에서 좌측 영역 또는 우측 영역을 선택한다.
그리고, 리소스 검출부(200)는 어드레스 FADDLAT에 따라 각 뱅크의 리소스 정보를 검출하여 럽처 제어신호 SELMRD, 리소스 신호 PPRFBK_CH<0:3> 및 마스킹 신호 BK_RSC를 럽처 제어부(300)에 출력한다. 이때, 그리고, 리소스 검출부(200)는 출력제어신호 SRCHA<0:3>에 대응하여 럽처 제어신호 SELMRD를 럽처 제어부(300)에 출력한다. 여기서, 출력제어신호 SRCHA<0:3>는 럽처 동작을 수행하기 위해서 시스템(600)에서 요구하는 신호이다.
또한, 리소스 검출부(200)는 리셋신호 RST, RSTB에 대응하여 저장된 리소스 검출 정보를 리셋시킨다. 그리고, 리소스 검출부(200)는 ARE 어레이부(400)로부터 퓨즈 데이터 FD<0:3>를 입력받아 부트업 제어부(100)에서 리드된 데이터를 비교하여 퓨즈의 사용 여부를 판단한다. 그리고, 리소스 검출부(200)는 미 사용된 퓨즈가 없는 경우 럽처 동작이 중복 수행되는 것을 방지하기 위해 마스킹 신호 BK_RSC를 럽처 제어부(300)에 출력한다.
럽처 제어부(300)는 리소스 검출부(200)로부터 인가되는 럽처 제어신호 SELMRD와, 리소스 신호 PPRFBK_CH<0:3> 및 마스킹 신호 BK_RSC에 대응하여 ARE 어레이부(400)에 구비된 전기 퓨즈의 럽처 동작을 제어하기 위한 어드레스 ARE_ADD를 출력한다.
반도체 집적 회로 장치를 구성하는 각 소자의 사이즈가 미세화되고, 한 개의 반도체 칩 내에 포함되는 소자의 수가 거대화됨에 따라, 결함 밀도의 수준도 증대되고 있다. 이러한 결함 밀도의 증대는 반도체 장치의 수율을 저하시키는 직접적인 원인이 된다. 결함 밀도가 심하게 증가할 경우 반도체 소자가 형성되는 웨이퍼를 폐기처분하여야 한다.
이러한 결함 밀도를 낮추기 위해, 결함 셀을 여분의 셀로 교체하는 리던던시(redundancy) 회로가 제안되었다. 리던던시 회로(혹은 퓨즈 회로)는 반도체 메모리 장치의 경우, 로오(row)계 배선(예컨대, 워드 라인) 및 컬럼(column)계 배선(예컨대, 비트 라인) 각각에 대해 설치될 수 있다.
이러한 리던던시 회로는 결함 셀의 어드레스 정보를 저장하는 ARE 어레이부(400)를 포함한다. ARE 어레이부(400)는 복수의 퓨즈 배선들을 포함하는 복수의 퓨즈셋들로 구성된다. ARE 어레이부(400)는 모든 패일 어드레스의 각 비트에 대한 정보를 저장하고 있는 메모리이다. ARE 어레이부(400)는 퓨즈 선택정보인 어드레스 ARE_ADD에 따라 해당하는 로오 라인을 선택하게 된다.
그리고, 각각의 퓨즈셋은 과전류로 퓨즈를 녹이는 방식으로 정보를 프로그래밍한다. 또한, 메모리의 패키지 상태에서 비트 패일의 구제 목적으로 셀프 리페어(repair or rupture)를 진행한다.
ARE 어레이부(400)는 메모리의 테스트가 끝나면 이들 정보를 메모리에 인가하여 ARE 어레이부(400)에서 각 비트에 해당하는 전기 퓨즈(Electrical Fuse)를 럽처(Rupture) 하여 패일 정보를 영구히 저장한다. 그리고, ARE 어레이부(400)는 파워 업 이후에 메모리의 동작에 앞서 저장된 로오 퓨즈 데이터 및 컬럼 퓨즈 데이터를 출력할 수 있다.
ARE 어레이부(400)는 어드레스 ARE_ADD의 활성화시 럽처(Rupture) 동작에 따라 결함 셀의 어드레스 정보를 저장한다. 여기서, 각각의 퓨즈셋은 과전류로 퓨즈를 녹이는 방식으로 정보를 프로그래밍하는 전기 퓨즈(E-fuse)로 이루어질 수 있다.
반도체 장치는 파워 업 신호에 따라 ARE 어레이부(400)의 정보를 리드하기 위해 부트 업 동작을 개시하게 된다. 그러면, 액세스 된 퓨즈셋의 비트 정보들이 퓨즈 데이터 FD<0:3>에 실리게 되고 리소스 검출부(200)에 순차적으로 출력된다.
즉, ARE 어레이부(400)는 첫 번째 퓨즈셋으로부터 마지막 퓨즈셋 까지 순차적으로 리드 동작을 수행하게 된다. ARE 어레이부(400)의 리드 동작이 수행되면 첫 번째 퓨즈셋으로부터 마지막 퓨즈셋에 저장된 결함 셀의 어드레스 정보가 순차적 또는 동시에 리드 된다.
명령 디코더(500)는 시스템(600)으로부터 인가되는 명령신호를 디코딩하여 출력제어신호 SRCHA<0:3>를 리소스 검출부(200)에 출력한다.
도 2는 도 1의 리소스 검출부(200)에 관한 상세 구성도이다.
리소스 검출부(200)는 복수의 리소스 제어부(210~240), 복수의 출력부(250~280) 및 래치부(290)를 포함한다. 여기서, 복수의 리소스 제어부(210~240)는 각각 마스킹 제어부(211, 221, 231, 241)를 포함한다.
리소스 제어부(210~240)는 부트 업 동작시 할당된 PPR(Post Package Repair) 퓨즈 영역의 ARE 어드레스를 래치한다. 이를 위해, 리소스 제어부(210~240)는 채널별, 뱅크별, 매트별 영역을 구분하여 리소스 데이터를 리드하게 된다.
이러한 리소스 제어부(210~240)는 부트업 제어부(100)로부터 어드레스 FADDLAT, 채널선택신호 CHA<0:3>, 매트 선택신호 MAT<0:3>, 뱅크그룹 선택신호 BA<0>, 뱅크선택신호 BAL/R<0:3> 및 리셋신호 RST, RSTB를 입력받는다. 그리고, 리소스 제어부(210~240)는 ARE 어레이부(400)로부터 퓨즈 FD<0:3>를 입력받아 부트업 제어부(100)에서 인가되는 퓨즈 데이터와 비교한다.
예를 들어, 리소스 제어부(210~240)는 채널선택신호 CHA<0:3>에 따라 하나의 채널을 선택하고, 뱅크그룹 선택신호 BA<0>에 따라 뱅크 그룹을 선택하고, 매트 선택신호 MAT<0:3>에 따라 매트를 선택하며, 뱅크선택신호 BAL<0:3>, BAR<0:3>에 따라 좌측 또는 우측 뱅크를 선택하고, 선택된 뱅크에서 퓨즈 어드레스 FADDLAT를 선택할 수 있다.
또한, 리소스 제어부(210~240)는 각 채널의 선택 정보를 포함하는 선택신호 BK0SELMRD<16:17>를 각 출력부(250~280)에 출력한다. 그리고, 리소스 제어부(210~240)는 각 채널에서 해당하는 리소스 정보를 포함하는 리소스 신호 PPRFBK_CH<0:3>를 럽처 제어부(300)에 출력한다. 또한, 마스킹 제어부(211, 221, 231, 241)는 미 사용된 퓨즈가 없는 경우 럽처 동작이 중복 수행되는 것을 방지하기 위해 마스킹 신호 BK_RSC를 럽처 제어부(300)와 시스템(600)에 출력한다.
또한, 복수의 출력부(250~280)는 리소스 제어부(210~240)로부터 인가되는 선택신호 BK0SELMRD<16:17>를 각각 저장한다. 그리고, 시스템(600)으로부터 인가되는 출력제어신호 SRCHA<0:3>의 활성화 여부에 따라 저장된 신호를 래치부(290)에 선택적으로 출력한다.
예를 들어, 출력제어신호 SRCHA<0>가 인에이블 되는 경우 리소스 제어부(210)로부터 인가되는 신호가 출력부(250)를 통해 래치부(290)에 출력된다. 그리고, 출력제어신호 SRCHA<1>가 인에이블 되는 경우 리소스 제어부(220)로부터 인가되는 신호가 출력부(260)를 통해 래치부(290)에 출력된다. 그리고, 출력제어신호 SRCHA<2>가 인에이블 되는 경우 리소스 제어부(230)로부터 인가되는 신호가 출력부(270)를 통해 래치부(290)에 출력된다. 또한, 출력제어신호 SRCHA<3>가 인에이블 되는 경우 리소스 제어부(240)로부터 인가되는 신호가 출력부(280)를 통해 래치부(290)에 출력된다.
래치부(290)는 출력부(250~280)의 출력신호를 일정 시간 동안 래치하고 럽처 제어신호 SELMRD를 출력한다. 래치부(290)는 리셋신호 RST에 따라 저장된 정보를 리셋시킨다.
도 3은 본 발명의 실시예에 따른 채널의 상세 구성도이다.
본 발명의 실시예는 복수의 채널 CH0A~CH0D과, 복수의 채널 CH1A~CH1D을 포함하여 멀티 채널 구조를 이룬다. 여기서, 제 1그룹의 채널 CH0A~CH0D은 최 외곽 영역에 배치될 수 있으며, 제 2그룹의 채널 CH1A~CH1D은 센터 영역에 배치될 수 있다.
본 발명의 실시예에서는 8개의 채널 구비하는 것을 일 예로 설명하였으나, 본 발명의 실시예는 이에 한정되는 것이 아니며, 채널의 개수 및 배치 관계는 다른 형태로도 변형이 가능하다.
그리고, 복수의 채널 CH0A~CH0D 각각은 복수의 뱅크 BK0~BK3를 포함한다. 예를 들어, 채널 CH0A는 상부 좌측 영역에 뱅크 BK0이 배치되고, 상부 우측 영역에 뱅크 BK1이 배치된다. 그리고, 채널 CH0A는 하부 좌측 영역에 뱅크 BK2이 배치되고, 하부 우측 영역에 뱅크 BK3이 배치된다.
본 발명의 실시예에서는 하나의 채널에 4개의 뱅크를 구비하는 것을 일 예로 설명하였으나, 본 발명의 실시에는 이에 한정되는 것이 아니며, 뱅크의 개수 및 배치 관계는 다른 형태로도 변형이 가능하다.
또한, 복수의 채널 CH0A~CH0D 각각은 복수의 매트 MAT0~MAT3를 포함한다. 예를 들어, 하나의 채널 CH0A은 순차적으로 배치된 4개의 매트 MAT0~MAT3로 구분될 수 있다.
본 발명의 실시예에서는 하나의 채널에 4개의 매트를 구비하는 것을 일 예로 설명하였으나, 본 발명의 실시에는 이에 한정되는 것이 아니며, 매트의 개수 및 배치 관계는 다른 형태로도 변형이 가능하다.
ARE 어레이부(400)에서 출력된 퓨즈 정보는 로오 디코더, 리페어 수단을 거쳐 채널 CH0A~CH0D에 인가되며, 퓨즈 정보에 대응하여 리페어 동작이 수행된다.
도 4는 도 3의 채널 CH0A에 관한 상세 구성도이다.
하나의 채널 CH0A은 복수의 뱅크 BK0~BK3를 포함한다. 즉, 뱅크 BK0~BK3 중 상부의 2개의 뱅크 BK0, BK1을 하나의 뱅크 그룹으로 정의하고, 하부의 2개의 뱅크 BK2, BK3을 다른 하나의 뱅크 그룹으로 정의한다. 여기서, 복수의 뱅크 BK0~BK3 각각은 포스트 패키지 리페어 동작을 위해 할당된 퓨즈라인들을 포함한다.
사용자가 PPR을 사용하는 경우 남은 미사용 퓨즈가 있어야만 PPR을 사용할 수 있고 이전의 PPR을 사용한 퓨즈도 문제없이 동작할 수 있게 된다. 만약, PPR시 사용할 퓨즈가 없다면 이전의 사용된 퓨즈가 오동작을 할 수 있을 뿐 아니라 리페어가 실패한 것인지 퓨즈가 없는 것인지를 파악하기가 쉽지 않다. 또한, 로오 리페어는 2 뱅크의 리던던시 워드라인을 동시에 대체하는 방식으로 사용되면 퓨즈 리소스가 1개 감소되지만, 2 뱅크의 리던던시 워드라인이 감소하여 원하지 않는 뱅크까지 리소스가 감소 될 수 있다.
이를 위해, 본 발명의 실시예에서는 테스트 모드시 두 개의 뱅크를 하나의 그룹으로 쉐어하여 퓨즈 라인들이 공유되도록 한다. 이에 따라, 퓨즈라인의 순서로 뱅크를 구분하도록 한다. 즉, 2개의 뱅크를 공유하는 구조이지만, 각각의 뱅크별로 퓨즈를 제어할 수 있도록 한다. 이에 따라, 본 발명의 실시예는 로오 워드라인이 동시 대체일 경우에도 각 뱅크의 리소스를 동시 대체와 상관없도록 출력하게 된다. 즉, 2개의 뱅크를 동시에 대체하는 퓨즈 리페어 방식이라 하더라도 PPR이 다른 뱅크의 퓨즈 리소스에 영향을 주지 않도록 한다.
예를 들어, 상부 영역 UP1에 구비된 제 1그룹의 뱅크 BK0, BK1은 로오 방향으로 배치된 퓨즈라인들 F0_L, F1_L, F0_R, F1_R을 공유한다. 여기서, 상부 영역 UP1은 매트 MAT0에 대응될 수 있다. 그리고, 하부 영역 DN1에 구비된 뱅크 BK0, BK1은 로오 방향으로 배치된 퓨즈라인들을 공유한다. 여기서, 하부 영역 DN1은 매트 MAT1에 대응될 수 있다. 본 발명의 실시예에서는 하나의 매트가 8K 단위로 구분되어 퓨즈가 할당될 수 있다.
또한, 상부 영역 UP2에 구비된 제 2그룹의 뱅크 BK2, BK3은 로오 방향으로 배치된0. 퓨즈라인들을 공유한다. 여기서, 상부 영역 UP2은 매트 MAT2에 대응될 수 있다. 그리고, 하부 영역 DN2에 구비된 뱅크 BK2, BK3은 로오 방향으로 배치된 퓨즈라인들을 공유한다. 여기서, 하부 영역 DN2은 매트 MAT3에 대응될 수 있다.
즉, 본 발명의 실시예에서는 뱅크 BK0과 뱅크 BK1이 공유되어 있는 구조이다. 하지만, 뱅크 BK0의 퓨즈라인들 F0_L, F1_L과 뱅크 BK1의 퓨즈라인들 F0_R, F1_R이 구분되어 독립적인 리페어 동작을 수행할 수 있다. 즉, 한 개의 퓨즈로 2 개의 뱅크를 동시 대체하는 경우에도 PPR 퓨즈는 리페어하는 뱅크의 리소스만을 감소시켜야만 한다.
또한, 본 발명의 실시예에서는 각 매트 단위로 4개의 퓨즈라인이 구비되는 것을 일 예로 설명하였다. 하지만, 본 발명의 실시예는 이에 한정되는 것이 아니며 매트에 구비되는 퓨즈라인의 개수는 변경이 가능하다.
이에 따라, 각 뱅크 BK0~BK3의 상부 영역에 할당된 퓨즈 라인들을 "BK0", PPR0, PPR1으로 정의한다. 그리고, 각 뱅크 BK0~BK3의 하부 영역에 할당된 퓨즈 라인들을 "BK1", PPR0, PPR1으로 정의한다.
예를 들어, 퓨즈라인들 F0_L, F1_L, F0_R, F1_R은 2 개의 뱅크 BK0, BK1에 의해 공유된다. 하지만, 상부영역 UP1에서 위의 2개의 퓨즈라인 F0_L, F1_L은 좌측의 뱅크 BK0에 할당되는 퓨즈라인이며, 아래의 2개의 퓨즈라인 F0_R, F1_R은 우측의 뱅크 BK1에 할당되는 퓨즈라인이다.
도 5는 도 4의 채널 CH0A에서 퓨즈라인의 래치 순서를 설명하기 위한 도면이다.
퓨즈라인의 부트 업 방향이 좌측에서부터 우측으로 진행된다고 가정한다. 채널 CH0A의 리소스 제어부(210~240)는 부트 업 동작시 클록에 동기하여 각 뱅크의 퓨즈라인을 순차적으로 래치한다.
즉, 리소스 제어부(210~240)는 뱅크 BK0, BK1의 상부 영역 UP1에 구비된 퓨즈라인을 래치하고, 뱅크 K0, BK1의 하부 영역 DN1에 구비된 퓨즈라인을 래치한다. 이후에, 리소스 제어부(210~240)는 뱅크 BK2, BK3의 상부 영역 UP2에 구비된 퓨즈라인을 래치하고, 뱅크 K2, BK3의 하부 영역 DN2에 구비된 퓨즈라인을 래치한다.
도 6 및 도 7은 도 2의 리소스 제어부(210~240)에서 퓨즈의 뱅크 할당 방법을 설명하기 위한 도면이다.
부트업 제어부(100)는 클록 CLK에 대응하여 카운팅 동작을 수행하여 포스트 패키징 리페어 동작을 수행하기 위한 어드레스 FADDLAT<16:17>을 생성한다. 즉, 클록 CLK에 동기하여 어드레스 FADDLAT<17>가 입력되고, 특정 주기로(예를 들면, 2배) 분주된 어드레스 FADDLAT<16>가 순차적으로 입력된다.
그리고, ARE 어레이부(400)로부터 뱅크선택신호 BAL<0>가 인가되는 경우 상부의 좌측 뱅크 KK0이 선택된다. 그리고, ARE 어레이부(400)로부터 뱅크선택신호 BAR<1>가 인가되는 경우 상부의 우측 뱅크 KK1이 선택된다.
즉, 도 7에 도시된 바와 같이, 상부 영역 UP1의 좌측 뱅크 L_BK01<0>와 하부영역 DN1의 좌측 뱅크 L_BK01<1>은 뱅크 BK0의 리소스 정보를 리드한다. 그리고, 상부 영역 UP1의 우측 뱅크 R_BK01<0>와 하부영역 DN1의 우측 뱅크 R_BK01<1>은 뱅크 BK1의 리소스 정보를 리드한다.
상부 영역 UP2의 좌측 뱅크 L_BK23<0>와 하부영역 DN2의 좌측 뱅크 L_BK23<1>은 뱅크 BK2의 리소스 정보를 리드한다. 또한, 상부 영역 UP2의 우측 뱅크 R_BK23<0>와 하부영역 DN2의 우측 뱅크 R_BK23<1>은 뱅크 BK3의 리소스 정보를 리드한다.
도 8은 도 2의 마스킹 제어부(211, 221,231,241)에 관한 상세 구성도이다. 본 발명의 실시예에서는 마스킹 제어부(211, 221,231,241) 중 마스킹 제어부(211)의 구성을 그 일 예로 설명하기로 한다.
마스킹 제어부(211)는 복수의 플립플롭(212, 213)과, 조합부(214)를 포함한다. 여기서, 플립플롭(212)은 전원전압 VDD와, 리셋신호 RST 및 좌측 상부 뱅크선택신호 BAL_BK01<0>를 플립플롭시켜 검출신호 BK01_A를 출력한다. 그리고, 플립플롭(213)은 전원전압 VDD와, 리셋신호 RST 및 좌측 하부 뱅크선택신호 BAL_BK01<1>를 플립플롭시켜 검출신호 BK01_B를 출력한다.
그리고, 조합부(214)는 검출신호 BK01_A와 검출신호 BK01_B를 조합하여 마스킹 신호 BK_RSC를 출력한다. 이때, 조합부(214)는 검출신호 BK01_A와 검출신호 BK01_B가 모두 하이 레벨인 경우 마스킹 신호 BK_RSC를 하이 레벨로 출력한다.
이를 위해 조합부(214)는 낸드게이트 ND1와, 인버터 IV1를 포함한다. 낸드게이트 ND1는 검출신호 BK01_A와 검출신호 BK01_B를 낸드연산한다. 그리고, 인버터 IV1는 낸드게이트 ND1의 출력을 반전하여 마스킹 신호 BK_RSC를 출력한다.
도 9 내지 도 11은 도 8의 마스킹 제어부(211)에 관한 동작 타이밍도이다.
예를 들어, 도 9에서와 같이, 마스킹 제어부(211)의 플립플롭(212)은 좌측 상부 뱅크선택신호 BAL_BK01<0>가 토글링되어 입력되는 경우 이를 플립플롭시켜 검출신호 BK01_A를 하이 레벨로 출력한다. 그리고, 마스킹 제어부(211)의 플립플롭(213)은 좌측 하부 뱅크선택신호 BAL_BK01<1>가 토글링되어 입력되는 경우 이를 플립플롭시켜 검출신호 BK01_B를 하이 레벨로 출력한다.
그리고, 조합부(214)는 검출신호 BK01_A와 검출신호 BK01_B가 모두 하이 레벨인 경우 마스킹 신호 BK_RSC를 하이 레벨로 출력한다. 즉, 퓨즈를 모두 사용하지 않았을 경우 마스킹 신호 BK_RSC를 하이 레벨로 출력하여 미사용된 퓨즈가 있다는 정보를 럽처 제어부(300)에 출력한다.
그리고, 도 10에서와 같이, 마스킹 제어부(211)의 플립플롭(212)에 좌측 상부 뱅크선택신호 BAL_BK01<0>가 입력되는 않는다. 이러한 경우 검출신호 BK01_A가 로우 레벨로 출력한다. 그리고, 마스킹 제어부(211)의 플립플롭(213)은 좌측 하부 뱅크선택신호 BAL_BK01<1>가 토글링되어 입력되는 경우 이를 플립플롭시켜 검출신호 BK01_B를 하이 레벨로 출력한다.
그리고, 조합부(214)는 로우 레벨의 검출신호 BK01_A와 하이 레벨의 검출신호 BK01_B가 입력될 경우 마스킹 신호 BK_RSC를 로우 레벨로 출력한다. 즉, 상부 영역 UP1와 하부영역 DN1의 퓨즈, 즉, 상부 매트들 MAT0, MAT1의 퓨즈를 모두 사용한 경우 마스킹 신호 BK_RSC를 로우 레벨로 출력하여 퓨즈가 모두 사용되었다는 정보를 럽처 제어부(300)에 출력한다.
마스킹 신호 BK_RSC가 로우 레벨로 출력되는 경우 럽처 제어부(300)는 퓨즈가 모두 사용되었다고 판단한다. 이에 따라, 럽처 제어부(300)는 퓨즈가 모두 사용된 경우 쓸 수 있는 퓨즈가 남아있지 않으므로 럽처 동작이 중복되어 이루어지지 않도록 럽처 마스킹 동작을 수행하게 된다.
또한, 도 11에서와 같이, 마스킹 제어부(211)의 플립플롭(212)은 좌측 상부 뱅크선택신호 BAL_BK01<0>가 한 번만 토글링되어 입력되는 경우 이를 플립플롭시켜 검출신호 BK01_A를 하이 레벨로 출력한다. 그리고, 마스킹 제어부(211)의 플립플롭(213)은 좌측 하부 뱅크선택신호 BAL_BK01<1>가 한 번만 토글링되어 입력되는 경우 이를 플립플롭시켜 검출신호 BK01_B를 하이 레벨로 출력한다.
그리고, 조합부(214)는 검출신호 BK01_A와 검출신호 BK01_B가 모두 하이 레벨인 경우 마스킹 신호 BK_RSC를 하이 레벨로 출력한다. 즉, 상부 영역 UP1와 하부영역 DN1의 퓨즈, 즉, 상부 매트들 MAT0, MAT1의 퓨즈를 각각 한 개씩 사용한 경우 마스킹 신호 BK_RSC를 하이 레벨로 출력하여 럽처 마스킹 동작이 수행되지 않도록 한다.
본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있으므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (20)

  1. 리페어 정보를 표시하는 퓨즈를 포함하고 상기 퓨즈를 특정 개수 단위로 공유하는 다수의 뱅크 그룹; 및
    상기 다수의 뱅크 그룹 중 상기 퓨즈가 사용 가능한지의 여부를 판단하는 리소스 검출부를 포함하는 것을 특징으로 하는 포스트 패키지 리페어 장치.
  2. 제 1항에 있어서, 상기 리소스 검출부는 부트업 동작시 사용되지 않은 퓨즈를 스캔하여 리소스로 출력하는 것을 특징으로 하는 포스트 패키지 리페어 장치.
  3. 제 1항에 있어서, 상기 퓨즈의 배치 순서에 따라 상기 다수의 뱅크 그룹 중 특정 뱅크가 구별되는 것을 특징으로 하는 포스트 패키지 리페어 장치.
  4. 제 1항에 있어서, 상기 리소스 검출부는
    상기 다수의 뱅크 그룹 중 제 1뱅크는 제 1라인과 제 2라인에 배치된 퓨즈의 사용 여부를 판단하고, 상기 제 1뱅크와 인접한 제 2뱅크는 제 3라인과 제 4라인에 배치된 퓨즈의 사용 여부를 판단하는 것을 특징으로 하는 포스트 패키지 리페어 장치.
  5. 제 1항에 있어서, 상기 리소스 검출부는
    상기 다수의 뱅크 그룹에서 각 뱅크를 특정 매트 단위로 구분하여 상기 퓨즈의 리소스 여부를 판단하는 것을 특징으로 하는 포스트 패키지 리페어 장치.
  6. 패일 어드레스를 저장하기 위한 퓨즈 어레이를 포함하는 ARE 어레이부;
    포스트 패키지 리페어 동작시 상기 퓨즈 어레이를 스캔하여 퓨즈 리소스 정보를 출력하는 부트업 제어부;
    상기 퓨즈 리소스 정보를 저장하고 상기 퓨즈의 사용 가능 여부를 나타내는 리소스 신호를 출력하는 리소스 검출부; 및
    상기 리소스 검출부로부터의 리소스 신호에 대응하여 상기 ARE 어레이부의 럽처 동작을 제어하는 럽처 제어부를 포함하는 것을 특징으로 하는 포스트 패키지 리페어 장치.
  7. 제 6항에 있어서, 상기 부트업 제어부는
    모드 레지스터 세트를 이용하여 미리 저장된 퓨즈 리소스 정보를 1 비트 정보로 출력하는 것을 특징으로 하는 포스트 패키지 리페어 장치.
  8. 제 6항에 있어서, 상기 리소스 검출부는 시스템으로부터 인가되는 출력제어신호에 대응하여 상기 리소스 신호를 상기 시스템에 출력하는 것을 특징으로 하는 포스트 패키지 리페어 장치.
  9. 제 6항에 있어서, 상기 리소스 검출부는
    퓨즈 어드레스, 채널선택신호, 매트 선택신호, 뱅크그룹 선택신호 및 뱅크선택신호에 따라 해당 영역의 리소스 정보를 검출하고, 시스템으로부터 인가되는 출력제어신호에 대응하여 럽처 제어신호를 럽처 제어부에 출력하고, 리소스 신호를 상기 시스템에 출력하는 것을 특징으로 하는 포스트 패키지 리페어 장치.
  10. 제 6항에 있어서,
    리페어 정보를 표시하는 퓨즈를 포함하고 상기 퓨즈를 특정 개수 단위로 공유하는 다수의 뱅크 그룹을 포함하고, 상기 뱅크선택신호를 입력받아 상기 뱅크 그룹 중 좌측 뱅크 또는 우측 뱅크를 선택하는 것을 특징으로 하는 포스트 패키지 리페어 장치.
  11. 제 10항에 있어서, 상기 리소스 검출부는
    채널선택신호, 매트 선택신호, 뱅크그룹 선택신호 및 뱅크선택신호에 따라 퓨즈 어드레스를 래치하여 럽처 제어신호, 상기 리소스 신호 및 각 채널의 선택 정보를 포함하는 선택신호를 출력하는 복수의 리소스 제어부;
    상기 선택신호를 저장하고, 출력제어신호에 응답하여 저장된 신호를 선택적으로 출력하는 복수의 출력부; 및
    상기 복수의 출력부의 출력을 래치하여 럽처 제어신호를 출력하는 래치부를 포함하는 것을 특징으로 하는 포스트 패키지 리페어 장치.
  12. 제 11항에 있어서, 상기 출력부는
    상기 출력제어신호에 응답하여 각 채널별로 저장된 신호를 출력하는 것을 특징으로 하는 포스트 패키지 리페어 장치.
  13. 제 11항에 있어서, 상기 래치부는
    리셋신호에 대응하여 저장된 리소스 검출 정보를 리셋시키는 것을 특징으로 하는 포스트 패키지 리페어 장치.
  14. 제 11항에 있어서, 상기 리소스 제어부는
    미 사용된 퓨즈가 없는 경우 럽처 동작이 중복 수행되는 것을 방지하는 마스킹 신호를 상기 럽처 제어부에 출력하는 마스킹 제어부를 더 포함하는 것을 특징으로 하는 포스트 패키지 리페어 장치.
  15. 제 14항에 있어서, 상기 마스킹 제어부는
    상기 뱅크선택신호를 플립플롭시키는 복수의 플립플롭; 및
    상기 복수의 플립플롭의 출력을 조합하여 상기 마스킹 신호를 출력하는 조합부를 포함하는 것을 특징으로 하는 포스트 패키지 리페어 장치.
  16. 제 11항에 있어서, 상기 복수의 리소스 제어부는 채널의 개수와 동일하게 구비되는 것을 특징으로 하는 포스트 패키지 리페어 장치.
  17. 제 11항에 있어서, 상기 복수의 리소스 제어부는
    채널별, 뱅크 그룹별, 좌우 뱅크별, 매트별 영역을 구분하여 상기 리소스 신호를 출력하는 것을 특징으로 하는 포스트 패키지 리페어 장치.
  18. 제 17항에 있어서,
    두 개의 뱅크가 하나의 뱅크 그룹으로 구분되어 퓨즈라인이 공유되며,
    상기 뱅크 그룹 중 제 1뱅크는 제 1퓨즈라인과 제 2퓨즈라인의 사용 여부를 판단하고, 상기 제 1뱅크와 인접한 제 2뱅크는 제 3퓨즈라인과 제 4퓨즈라인에 배치된 퓨즈의 사용 여부를 판단하는 것을 특징으로 하는 포스트 패키지 리페어 장치.
  19. 제 17항에 있어서,
    두 개의 뱅크가 하나의 뱅크 그룹으로 구분되어 상기 매트 선택신호에 대응하여 상부 영역과 하부 영역이 매트 단위로 구분되는 것을 특징으로 하는 포스트 패키지 리페어 장치.
  20. 제 11항에 있어서, 상기 복수의 리소스 제어부는 리셋신호에 의해 저장된 신호를 리셋시키는 것을 특징으로 하는 포스트 패키지 리페어 장치.
KR1020140183247A 2014-12-18 2014-12-18 포스트 패키지 리페어 장치 KR20160074211A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020140183247A KR20160074211A (ko) 2014-12-18 2014-12-18 포스트 패키지 리페어 장치
US14/684,608 US9401227B2 (en) 2014-12-18 2015-04-13 Post package repair device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140183247A KR20160074211A (ko) 2014-12-18 2014-12-18 포스트 패키지 리페어 장치

Publications (1)

Publication Number Publication Date
KR20160074211A true KR20160074211A (ko) 2016-06-28

Family

ID=56130229

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140183247A KR20160074211A (ko) 2014-12-18 2014-12-18 포스트 패키지 리페어 장치

Country Status (2)

Country Link
US (1) US9401227B2 (ko)
KR (1) KR20160074211A (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190035237A (ko) * 2017-09-26 2019-04-03 삼성전자주식회사 반도체 메모리 장치, 반도체 메모리 장치의 동작 방법 및 메모리 시스템
US10381104B2 (en) 2017-08-09 2019-08-13 SK Hynix Inc. Semiconductor device
US10403387B2 (en) 2017-05-12 2019-09-03 SK Hynix Inc. Repair circuit used in a memory device for performing error correction code operation and redundancy repair operation
US10535418B2 (en) 2017-04-21 2020-01-14 SK Hynix Inc. Memory device including repair circuit and operation method thereof
KR20200101830A (ko) * 2019-02-19 2020-08-28 윈본드 일렉트로닉스 코포레이션 전자 퓨즈 회로 및 그 동작 방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9213491B2 (en) * 2014-03-31 2015-12-15 Intel Corporation Disabling a command associated with a memory device
KR20160091688A (ko) * 2015-01-26 2016-08-03 에스케이하이닉스 주식회사 포스트 패키지 리페어 장치
KR102412610B1 (ko) * 2015-12-24 2022-06-23 삼성전자주식회사 포스트 패키지 리페어 동작을 수행하는 메모리 장치
KR102470840B1 (ko) * 2016-03-17 2022-11-29 에스케이하이닉스 주식회사 반도체장치 및 반도체시스템
KR20180082875A (ko) * 2017-01-11 2018-07-19 에스케이하이닉스 주식회사 이퓨즈 회로
KR20190017424A (ko) * 2017-08-11 2019-02-20 에스케이하이닉스 주식회사 리페어 장치 및 이를 포함하는 반도체 메모리 장치
US20210311818A1 (en) * 2018-12-11 2021-10-07 Intel Corporation Runtime post package repair for dynamic random access memory
KR20230046740A (ko) * 2021-09-30 2023-04-06 에스케이하이닉스 주식회사 메모리 및 메모리의 동작 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6898143B2 (en) * 2003-08-26 2005-05-24 Lsi Logic Corporation Sharing fuse blocks between memories in hard-BISR
KR20070082815A (ko) 2006-02-18 2007-08-22 삼성전자주식회사 포스트 패키지 리페어 회로를 구비하는 반도체 메모리 장치및 포스트 패키지 리페어 방법
US9165679B2 (en) 2012-09-18 2015-10-20 Samsung Electronics Co., Ltd. Post package repairing method, method of preventing multiple activation of spare word lines, and semiconductor memory device including fuse programming circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10535418B2 (en) 2017-04-21 2020-01-14 SK Hynix Inc. Memory device including repair circuit and operation method thereof
US10403387B2 (en) 2017-05-12 2019-09-03 SK Hynix Inc. Repair circuit used in a memory device for performing error correction code operation and redundancy repair operation
US10381104B2 (en) 2017-08-09 2019-08-13 SK Hynix Inc. Semiconductor device
KR20190035237A (ko) * 2017-09-26 2019-04-03 삼성전자주식회사 반도체 메모리 장치, 반도체 메모리 장치의 동작 방법 및 메모리 시스템
KR20200101830A (ko) * 2019-02-19 2020-08-28 윈본드 일렉트로닉스 코포레이션 전자 퓨즈 회로 및 그 동작 방법

Also Published As

Publication number Publication date
US9401227B2 (en) 2016-07-26
US20160180969A1 (en) 2016-06-23

Similar Documents

Publication Publication Date Title
KR20160074211A (ko) 포스트 패키지 리페어 장치
US10734062B2 (en) Semiconductor device with array configuration including upper segment, lower segment classified according to refresh units, repair controllers for controlling repair operation of upper segment and lower segment
KR20160091688A (ko) 포스트 패키지 리페어 장치
US9190175B2 (en) Self-repair device
KR20160148347A (ko) 셀프 리페어 장치 및 방법
KR102399014B1 (ko) 공유 에러 검출 및 정정 메모리
KR20160138617A (ko) 스마트 셀프 리페어 장치 및 방법
US6826098B2 (en) Semiconductor memory having multiple redundant columns with offset segmentation boundaries
US7085972B2 (en) System for testing a group of functionally independent memories and for replacing failing memory words
US8913451B2 (en) Memory device and test method thereof
KR20170088600A (ko) 스마트 셀프 리페어 장치
US8867288B2 (en) Memory device and test method thereof
JP4257353B2 (ja) 半導体記憶装置
US20210375379A1 (en) Redundancy analysis circuit and memory system including the same
KR20180038211A (ko) 퓨즈 회로, 리페어 제어 회로 및 이를 포함하는 반도체 장치
KR20070082815A (ko) 포스트 패키지 리페어 회로를 구비하는 반도체 메모리 장치및 포스트 패키지 리페어 방법
KR20180022140A (ko) 메모리 장치 및 이를 포함하는 시스템
KR20170022655A (ko) 반도체 장치
TWI777867B (zh) 記憶體電路、用於記憶體電路的自我修復的系統及方法
KR20170030766A (ko) 퓨즈 테스트 모드 검출 장치
TW201715522A (zh) 記憶體裝置
KR20180088553A (ko) 리페어 정보 처리 회로 및 이를 포함하는 반도체 장치
KR20140145780A (ko) 반도체 집적회로

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination