KR20150126283A - 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자 - Google Patents

유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자 Download PDF

Info

Publication number
KR20150126283A
KR20150126283A KR1020150057081A KR20150057081A KR20150126283A KR 20150126283 A KR20150126283 A KR 20150126283A KR 1020150057081 A KR1020150057081 A KR 1020150057081A KR 20150057081 A KR20150057081 A KR 20150057081A KR 20150126283 A KR20150126283 A KR 20150126283A
Authority
KR
South Korea
Prior art keywords
substituted
unsubstituted
compound
mmol
formula
Prior art date
Application number
KR1020150057081A
Other languages
English (en)
Other versions
KR102372950B1 (ko
Inventor
강희룡
강현주
임영묵
이미자
김남균
김빛나리
홍진리
문두현
이수현
Original Assignee
롬엔드하스전자재료코리아유한회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롬엔드하스전자재료코리아유한회사 filed Critical 롬엔드하스전자재료코리아유한회사
Priority to CN201580021260.XA priority Critical patent/CN106232601B/zh
Priority to EP15786646.8A priority patent/EP3137467B1/en
Priority to US15/306,123 priority patent/US9859507B2/en
Priority to JP2016564077A priority patent/JP6571109B2/ja
Priority to PCT/KR2015/004436 priority patent/WO2015167300A1/en
Priority to TW104114031A priority patent/TWI551601B/zh
Publication of KR20150126283A publication Critical patent/KR20150126283A/ko
Application granted granted Critical
Publication of KR102372950B1 publication Critical patent/KR102372950B1/ko

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • H01L51/50
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

본 발명은 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자에 관한 것이다. 본 발명의 유기 전계 발광 화합물을 이용하면, 구동 전압이 낮고, 전류 효율 및 전력 효율과 같은 발광 효율이 우수하면서도, 순도 높은 색구현 및 구동 수명이 개선된 유기 전계 발광 소자를 제공할 수 있다.

Description

유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자{Organic Electroluminescent Compounds and Organic Electroluminescent Device Comprising the Same}
본 발명은 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자에 관한 것이다.
표시 소자 중, 전기 발광 소자(electroluminescent device: EL device)는 자체 발광형 표시 소자로서 시야각이 넓고 콘트라스트가 우수할 뿐만 아니라 응답속도가 빠르다는 장점을 가지고 있다. 1987년 이스트만 코닥(Eastman Kodak)사는 발광층 형성용 재료로서 저분자인 방향족 디아민과 알루미늄 착물을 이용하고 있는 유기 EL 소자를 처음으로 개발하였다[Appl. Phys. Lett. 51, 913, 1987].
유기 전계 발광 소자에서 발광 효율을 결정하는 가장 중요한 요인은 발광 재료이다. 발광 재료로는 현재까지 형광 재료가 널리 사용되고 있으나, 전계 발광의 메커니즘상 형광 발광 재료에 비해 인광 발광 재료가 이론적으로 4배까지 발광 효율을 개선시킬 수 있다는 점에서 인광 발광 재료의 개발 연구가 널리 수행되고 있다. 현재까지 이리듐(III) 착물 계열이 인광 발광 재료로 널리 알려져 있으며, 각 RGB 별로는 비스(2-(2'-벤조티에닐)-피리디네이토-N,C-3')이리듐(아세틸아세토네이트) [(acac)Ir(btp)2], 트리스(2-페닐피리딘)이리듐 [Ir(ppy)3] 및 비스(4,6-디플루오로페닐피리디네이토-N,C2)피콜리네이토이리듐 (Firpic) 등의 재료가 알려져 있다.
종래 기술에서, 인광용 호스트 재료로는 4,4'-N,N'-디카바졸-비페닐(CBP)이 가장 널리 알려져 있었다. 최근에는, 일본의 파이오니어 등이 정공 차단층의 재료로 사용되던 바토큐프로인(Bathocuproine, BCP) 및 알루미늄(III)비스(2-메틸-8-퀴놀리네이트)(4-페닐페놀레이트)(Balq) 등을 호스트 재료로 이용해 고성능의 유기 전계 발광 소자를 개발한 바 있다.
그러나 기존의 재료들은 발광 특성 측면에서는 유리한 면이 있으나, 다음과 같은 단점이 있다: (1) 유리 전이 온도가 낮고 열적 안정성이 낮아서, 진공 하에서 고온 증착 공정을 거칠 때, 물질이 변한다. (2) 유기 전계 발광 소자에서 전력효율 = [(π/전압)×전류효율]의 관계에 있으므로 전력 효율은 전압에 반비례하는데, 인광용 호스트 재료를 사용한 유기 전계 발광 소자는 형광 재료를 사용한 유기 전계 발광 소자에 비해 전류 효율(cd/A)은 높으나, 구동 전압 역시 상당히 높기 때문에 전력 효율(lm/w) 면에서 큰 이점이 없다. (3) 또한, 유기 전계 발광 소자에 사용할 경우, 작동 수명 측면에서도 만족스럽지 못하며, 발광 효율도 여전히 개선이 요구된다.
한국 공개특허공보 제10-2012-0095997호는 가교된 트리아릴아민 구조에서 하나 이상의 탄소 원자가 질소 원자로 대체된 화합물을 개시한다. 그러나, 질소 원자를 포함하는 부분이 퀴놀린 또는 퀴녹살린에 해당하는 화합물은 개시하지 못한다.
한국 공개특허공보 제10-2012-0095997호 (2012.08.29 공개)
본 발명의 목적은, 첫째로 구동 수명이 길고, 구동전압이 낮고, 전류효율 및 전력효율과 같은 발광 효율 및 순도 높은 색 구현이 우수한 유기 전계 발광 소자를 제조할 수 있는 유기 전계 발광 화합물을 제공하는 것이며, 둘째로 상기 유기 전계 발광 화합물을 포함하는 유기 전계 발광 소자를 제공하는 것이다.
상기의 기술적 과제를 해결하기 위해 예의 연구한 결과, 본 발명자들은 하기 화학식 1로 표시되는 유기 전계 발광 화합물이 상술한 목적을 달성함을 발견하여 본 발명을 완성하였다.
[화학식 1]
Figure pat00001
상기 화학식 1에서,
상기 X 및 Y 는 각각 독립적으로, -CR12- 또는 -N- 이고, 단, X와 Y 모두가 -CR12-인 것은 아니고,
R1 내지 R12은 각각 독립적으로 수소, 중수소, 할로겐, 시아노, 치환 또는 비치환 (C1-C30)알킬, 치환 또는 비치환 (C6-C30)아릴, 치환 또는 비치환 (3-30 원)헤테로아릴, 치환 또는 비치환 (C3-C30)시클로알킬, 치환 또는 비치환 (C1-C30)알콕시, 치환 또는 비치환 트리(C1-C30)알킬실릴, 치환 또는 비치환 디(C1-C30)알킬(C6-C30)아릴실릴, 치환 또는 비치환 (C1-C30)알킬디(C6-C30)아릴실릴, 치환 또는 비치환 트리(C6-C30)아릴실릴, 치환 또는 비치환 모노- 또는 디-(C1-C30)알킬아미노, 치환 또는 비치환 모노- 또는 디-(C6-C30)아릴아미노, 또는 치환 또는 비치환 (C1-C30)알킬(C6-C30)아릴아미노이거나; 인접한 치환체와 서로 연결되어 치환 또는 비치환의 (3-30원) 단일환 또는 다환의 지환족 또는 방향족 고리를 형성할 수 있고, 이 때 상기 형성된 지환족 또는 방향족 고리의 탄소 원자는 질소, 산소 및 황으로부터 선택되는 하나 이상의 헤테로원자로 대체될 수 있고;
상기 헤테로아릴은 B, N, O, S, P(=O), Si 및 P로부터 선택된 하나 이상의 헤테로원자를 포함한다.
본 발명에 따른 유기 전계 발광 화합물은 구동 전압이 낮고, 전류 효율 및 전력 효율과 같은 발광 효율이 우수하면서도, 순도 높은 색 구현 및 구동 수명이 개선된 유기 전계 발광 소자를 제공할 수 있다.
이하에서 본 발명을 더욱 상세히 설명하나, 이는 설명을 위한 것으로 본 발명의 범위를 제한하는 방법으로 해석되어서는 안 된다.
본 발명은 상기 화학식 1로 표시되는 유기 전계 발광 화합물, 상기 유기 전계 발광 화합물을 포함하는 유기 전계 발광 재료 및 상기 화합물을 포함하는 유기 전계 발광 소자에 관한 것이다.
본 발명의 상기 화학식 1로 표시되는 유기 전계 발광 화합물에 대해 보다 구체적으로 설명하면 다음과 같다.
본 발명에 기재되어 있는 "알킬"의 구체적인 예로서, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸 및 tert-부틸 등이 있다. 본원에서 "시클로알킬"의 예로서, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실 등이 있다. 본원에서 "(3-7원) 헤테로시클로알킬"은 환 골격 원자수가 3 내지 7개이고, B, N, O, S, P(=O), Si 및 P로 이루어진 군에서 선택된 하나 이상의 헤테로원자, 바람직하게는 O, S 및 N에서 선택되는 하나 이상의 헤테로원자를 포함하는 시클로알킬을 의미하고, 예를 들어, 테트라히드로푸란, 피롤리딘, 티올란, 테트라히드로피란 등이 있다. 본원에서 "아릴(렌)"은 방향족 탄화수소에서 유래된 단일환 또는 융합환계 라디칼을 의미하고, 하나의 원자를 통해 2개의 고리가 연결된 스피로 화합물도 포함한다. 상기 아릴의 예로서 페닐, 비페닐, 터페닐, 나프틸, 비나프틸, 페닐나프틸, 나프틸페닐, 플루오레닐, 페닐플루오레닐, 벤조플루오레닐, 디벤조플루오레닐, 페난트레닐, 페닐페난트레닐, 안트라세닐, 인데닐, 트리페닐레닐, 피레닐, 테트라세닐, 페릴레닐, 크라이세닐, 나프타세닐, 플루오란테닐, 스피로비플루오레닐 등이 있다. 본원에서 "(3-30원) 헤테로아릴(렌)"은 환 골격 원자수가 3 내지 30개이고, B, N, O, S, P(=O), Si 및 P로 이루어진 군에서 선택된 하나 이상의 헤테로원자를 포함하는 아릴기를 의미한다. 헤테로아릴(렌)에서 상기 헤테로원자는 바람직하게는 0, S, 및 N에서 선택될 수 있고, 헤테로원자수는 바람직하게는 1 내지 4개이다. 또한, 상기 헤테로아릴(렌)은 단일 환계이거나 하나 이상의 벤젠환과 축합된 융합환계일 수 있으며, 부분적으로 포화될 수도 있다. 또한, 본원에서 상기 헤테로아릴(렌)은 하나 이상의 헤테로아릴 또는 아릴기가 단일 결합에 의해 헤테로아릴기와 연결된 형태도 포함한다. 상기 헤테로아릴의 예로서, 푸릴, 티오펜일, 피롤릴, 이미다졸릴, 피라졸릴, 티아졸릴, 티아디아졸릴, 이소티아졸릴, 이속사졸릴, 옥사졸릴, 옥사디아졸릴, 트리아진일, 테트라진일, 트리아졸릴, 테트라졸릴, 푸라잔일, 피리딜, 피라진일, 피리미딘일, 피리다진일 등의 단일 환계 헤테로아릴, 벤조푸란일, 벤조티오펜일, 이소벤조푸란일, 디벤조푸란일, 디벤조티오펜일, 벤조이미다졸릴, 벤조티아졸릴, 벤조이소티아졸릴, 벤조이속사졸릴, 벤조옥사졸릴, 이소인돌릴, 인돌릴, 인다졸릴, 벤조티아디아졸릴, 퀴놀릴, 이소퀴놀릴, 신놀리닐, 퀴나졸리닐, 퀴녹살리닐, 카바졸릴, 카바졸릴, 페녹사진일, 페난트리딘일, 벤조디옥솔릴, 디하이드로아크리디닐 등의 융합 환계 헤테로아릴 등이 있다. 본원에서 "할로겐"은 F, Cl, Br 및 I 원자를 포함한다.
본 발명에 기재되어 있는 "치환 또는 비치환"이라는 기재에서 '치환'은 어떤 작용기에서 수소 원자가 다른 원자 또는 다른 작용기 (즉, 치환체)로 대체되는 것을 뜻한다. 본 발명에서, 상기 R1 내지 R12, 하기 La, Lb, Lc, Ld, R13 내지 R15, R31 내지 R37, R21 내지 R27, L4, M, Y1, Y2, R41 내지 R43, L, R100 내지 R127, 및 R201 내지 R211에서, 치환 알킬, 치환 아릴(렌), 치환 헤테로아릴(렌), 치환 시클로알킬, 치환 알콕시, 치환 트리알킬실릴, 치환 디알킬아릴실릴, 치환 알킬디아릴실릴, 치환 트리아릴실릴, 치환 모노- 또는 디-알킬아미노, 치환 모노- 또는 디-아릴아미노, 치환 알킬아릴아미노, 및 치환 단일환 또는 다환의 지환족 또는 방향족 고리의 치환체는, 각각 독립적으로 중수소, 할로겐, 시아노, 카르복실, 니트로, 히드록시, (C1-C30)알킬, 할로(C1-C30)알킬, (C1-C30)알콕시, (C1-C30)알킬티오, (C3-C30)시클로알킬, (3-7원)헤테로시클로알킬, (C6-C30)아릴옥시, (C6-C30)아릴티오, (C6-C30)아릴이나 디(C6-C30)아릴아미노로 치환되거나 비치환된 (3-30원)헤테로아릴, (3-30원)헤테로아릴이나 디(C6-C30)아릴아미노로 치환되거나 비치환된 (C6-C30)아릴, 트리(C1-C30)알킬실릴, 트리(C6-C30)아릴실릴, 디(C1-C30)알킬(C6-C30)아릴실릴, (C1-C30)알킬디(C6-C30)아릴실릴, 아미노, 모노 또는 디(C1-C30)알킬아미노, 모노 또는 디(C6-C30)아릴아미노, (C1-C30)알킬(C6-C30)아릴아미노, (C1-C30)알킬카보닐, (C1-C30)알콕시카보닐, (C6-C30)아릴카보닐, 디(C6-C30)아릴보로닐, 디(C1-C30)알킬보로닐, (C1-C30)알킬(C6-C30)아릴보로닐, (C6-C30)아르(C1-C30)알킬 및 (C1-C30)알킬(C6-C30)아릴로 이루어진 군으로부터 선택되는 1종 이상이고; 각각 독립적으로 (C1-C10)알킬, (5-18원)헤테로아릴, (C6-C18)아릴로 치환된 (5-18원)헤테로아릴, 디(C6-C12)아릴아미노로 치환된 (5-18원)헤테로아릴, (C6-C18)아릴, (5-18원)헤테로아릴로 치환된 (C6-C18)아릴, 디(C6-C12)아릴아미노로 치환된 (C6-C18)아릴, 디(C6-C12)아릴아미노, 및 (C1-C10)알킬(C5-C18)아릴로 이루어진 군으로부터 선택되는 1종 이상인 것이 바람직하다.
구체적으로는, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 4 중 어느 하나로 표시되는 화합물일 수 있다.
[화학식 2] [화학식 3] [화학식 4]
Figure pat00002
Figure pat00003
Figure pat00004
상기 화학식 2 내지 4에서,
R1 내지 R12 는 상기 화학식 1에서 정의된 바와 동일하다.
본원에서, 구체적으로는, 상기 R1 내지 R12는 각각 독립적으로, 수소, 치환 또는 비치환 (C1-C20)알킬, 치환 또는 비치환 (C6-C20)아릴, 치환 또는 비치환 (5-30 원)헤테로아릴, 또는 치환 또는 비치환된 디(C6-C20)아릴아미노이거나, 인접한 치환체와 연결되어 치환 또는 비치환 (5-15원) 단일환 또는 다환의 방향족 고리를 형성할 수 있다.
더 구체적으로는, 상기 R1 내지 R12는 각각 독립적으로, 수소, 치환 또는 비치환 (C1-C20)알킬, 또는 하기 화학식 5-1 내지 5-9 중 어느 하나이거나, 인접한 치환체와 연결되어 치환 또는 비치환의 벤젠 고리 또는 치환 또는 비치환의 나프탈렌 고리를 형성할 수 있다.
[화학식 5-1] [화학식 5-2] [화학식 5-3]
Figure pat00005
Figure pat00006
Figure pat00007
[화학식 5-4] [화학식 5-5]
Figure pat00008
Figure pat00009
[화학식 5-6] [화학식 5-7]
Figure pat00010
Figure pat00011
[화학식 5-8] [화학식 5-9]
Figure pat00012
Figure pat00013
상기 화학식 5-1 내지 5-9에서,
La, Lb, Lc, 및 Ld는 각각 독립적으로 단일 결합, 치환 또는 비치환 (C6-C30)아릴렌, 또는 치환 또는 비치환 (3-30원)헤테로아릴렌이고;
Z는 -S-, -O-, -NR13-, 또는 -CR14R15-이고;
R13 내지 R15는 각각 독립적으로 수소, 치환 또는 비치환 (C1-C30)알킬, 치환 또는 비치환 (C6-C30)아릴, 치환 또는 비치환 (3-30원)헤테로아릴, 치환 또는 비치환 (C3-C30)시클로알킬, 또는 치환 또는 비치환 (3-7원)헤테로시클로알킬이고;
R31 내지 R37은 각각 독립적으로 수소, 중수소, 할로겐, 시아노, 치환 또는 비치환 (C1-C30)알킬, 치환 또는 비치환 (C3-C30)시클로알킬, 치환 또는 비치환 (C3-C30)시클로알케닐, 치환 또는 비치환 (3-7원)헤테로시클로알킬, 치환 또는 비치환 (C6-C30)아릴, 치환 또는 비치환 (3-30원)헤테로아릴, 치환 또는 비치환 트리(C1-C30)알킬실릴, 치환 또는 비치환 트리(C6-C30)아릴실릴, 치환 또는 비치환 디(C1-C30)알킬(C6-C30)아릴실릴, 치환 또는 비치환 (C1-C30)알킬디(C6-C30)아릴실릴, 모노 또는 디(C1-C30)알킬아미노, 모노 또는 디(C6-C30)아릴아미노, 또는 (C1-C30)알킬(C6-C30)아릴아미노이거나; 인접한 치환기와 연결되어, 치환 또는 비치환된 (3-30원)의 단일환 또는 다환의 지환족 또는 방향족 고리를 형성할 수 있고, 상기 형성된 지환족 또는 방향족 고리의 탄소 원자는 질소, 산소 및 황으로부터 선택되는 하나 이상의 헤테로원자로 대체될 수 있고;
상기 헤테로아릴(렌) 및 헤테로시클로알킬은 각각 독립적으로 B, N, O, S, P(=O), Si 및 P로 부터 선택된 하나 이상의 헤테로원자를 포함하고;
a는 1 내지 3의 정수이고; b 내지 d 및 f는 1 내지 4의 정수이고; e는 1 내지 5의 정수이고; 상기 a 내지 f가 2 이상의 정수일 경우, 각각의 R31 내지 R36은 서로 동일하거나 상이할 수 있다.
구체적으로, 상기 La 내지 Ld는 각각 독립적으로 단일 결합, 또는 치환 또는 비치환 (C6-C18)아릴렌이고, 더 구체적으로는 단일 결합, 또는 치환 또는 비치환 페닐렌일 수 있다.
구체적으로, 상기 Z는 -NR13-일 수 있다.
구체적으로, 상기 R13 내지 R15는 각각 독립적으로 수소, 치환 또는 비치환 (C1-C10)알킬, 또는 치환 또는 비치환 (C5-C18)아릴일 수 있다.
구체적으로, 상기 R31 내지 R36은 각각 독립적으로, 수소, 치환 또는 비치환 (C1-C10)알킬, 치환 또는 비치환 (C6-C18)아릴, 또는 치환 또는 비치환 (5-18원)헤테로아릴이거나, 인접한 치환체와 연결되어 치환 또는 비치환 (5-18원) 단일환 또는 다환의 지환족 또는 방향족 고리를 형성할 수 있고, 상기 형성된 지환족 또는 방향족 고리의 탄소 원자는 질소, 산소 및 황으로부터 선택되는 1 내지 3개의 헤테로원자로 대체될 수 있고; 더 구체적으로는, 각각 독립적으로, 수소, 치환 또는 비치환 페닐, 치환 또는 비치환 카바졸릴, 치환 또는 비치환 디벤조푸란일, 또는 치환 또는 비치환 디벤조티오펜일이거나, 인접한 치환체와 연결되어 치환 또는 비치환 벤젠 고리 또는 하기 화학식 6-1 내지 6-7 중 어느 하나를 형성할 수 있다.
[화학식 6-1] [화학식 6-2] [화학식 6-3] [화학식 6-4]
Figure pat00014
Figure pat00015
Figure pat00016
Figure pat00017
[화학식 6-5] [화학식 6-6] [화학식 6-7]
Figure pat00018
Figure pat00019
Figure pat00020
상기 화학식 6-1 내지 6-7에서, *은 연결 자리를 나타낸다.
구체적으로, 상기 R37은 수소 또는 치환 또는 비치환 (C6-C18)아릴일 수 있고; 더 구체적으로는 수소 또는 치환 또는 비치환 페닐일 수 있다.
본 발명의 일 구현예에 따르면, 상기 R1 내지 R7 중 적어도 하나는 상기 화학식 5-6 내지 5-8 중 어느 하나이고, 여기서, 상기 화학식 5-6의 Z는 -NR13-일 수 있다.
본 발명의 유기 전계 발광 화합물은 보다 구체적으로 하기의 화합물로서 예시될 수 있으나, 이들에 한정되는 것은 아니다.
Figure pat00021
Figure pat00022
Figure pat00023
Figure pat00024
Figure pat00025
Figure pat00026
Figure pat00027
Figure pat00028
Figure pat00029
Figure pat00030
Figure pat00031
Figure pat00032
Figure pat00033
Figure pat00034
Figure pat00035
Figure pat00036
Figure pat00037
Figure pat00038
Figure pat00039
Figure pat00040
Figure pat00041
Figure pat00042
Figure pat00043
Figure pat00044
Figure pat00045
Figure pat00046
Figure pat00047
Figure pat00048
Figure pat00049
Figure pat00050
Figure pat00051
Figure pat00052
Figure pat00053
Figure pat00054
Figure pat00055
Figure pat00056
Figure pat00057
본 발명에 따른 유기 전계 발광 화합물은 당업자에게 공지된 합성 방법으로 제조할 수 있으며, 예를 들면 하기 반응식 1에 나타난 바와 같이 제조할 수 있다.
[반응식 1]
Figure pat00058
상기 반응식 1에서, R1, X, 및 Y는 상기 화학식 1에서 정의한 바와 동일하다.
또한, 본 발명은 화학식 1의 유기 전계 발광 화합물을 포함하는 유기 전계 발광 재료 및 상기 재료를 포함하는 유기 전계 발광 소자를 제공한다.
상기 유기 전계 발광 재료는 본 발명의 유기 전계 발광 화합물 단독으로 이루어질 수 있고, 유기 전계 발광 재료에 포함되는 통상의 물질들을 추가로 포함할 수도 있다.
상기 유기 전계 발광 재료는 바람직하게는 호스트 재료, 더 바람직하게는 인광 호스트 재료, 더더욱 바람직하게는, 인광 적색 호스트 재료일 수 있다. 상기 유기 전계 발광 재료가 호스트 재료로 사용될 경우, 화학식 1의 화합물에 추가하여, 후술하는 제2 호스트 재료를 더 포함할 수 있다.
본 발명에 따른 유기 전계 발광 소자는 제1전극; 제2전극; 및 상기 제1전극 및 제2전극 사이에 개재되는 1층 이상의 유기물층을 갖고, 상기 유기물층은 상기 화학식 1의 화합물 하나 이상을 포함할 수 있다.
상기 제1전극과 제2전극 중 하나는 애노드이고 다른 하나는 캐소드일 수 있다.  상기 유기물층은 발광층을 포함할 수 있다. 또한, 상기 유기물층은 상기 발광층에 추가하여, 정공주입층, 정공전달층, 전자전달층, 전자주입층, 계면층(interlayer), 정공차단층, 전자차단층, 및 전자 버퍼층에서 선택되는 1층 이상을 더 포함할 수 있다.
본 발명의 화학식 1의 화합물은 상기 발광층에 포함될 수 있다. 발광층에 사용될 경우, 본 발명의 화학식 1의 화합물은 호스트 재료, 바람직하게는 인광 호스트 재료, 더 바람직하게는 인광 적색 호스트 재료로서 포함될 수 있다. 바람직하게는 상기 발광층은 하나 이상의 도펀트를 추가로 더 포함할 수 있으며, 필요한 경우, 본 발명의 화학식 1의 화합물 이외의 다른 화합물을 제2 호스트 재료로 추가로 포함할 수 있다. 상기 발광층의 호스트 화합물과 도판트 화합물의 합계량에 대해 도판트 화합물의 도핑 농도는 20 중량% 미만인 것이 바람직하다. 상기 발광층 중에서 상기 제1 호스트 화합물과 상기 제 2호스트 화합물의 중량비는 1:99 내지 99:1의 범위, 구체적으로는 30:70 내지 70:30의 범위인 것이 구동 전압, 발광 효율 및 수명의 측면에서 바람직하다.
상기 제2 호스트 재료는 공지된 인광 호스트라면 어느 것이든 사용 가능하나, 하기 화학식 7 내지 화학식 11로 표시되는 화합물로 구성된 군으로부터 선택되는 것이 발광 효율 면에서 특히 바람직하다.
[화학식 7] [화학식 8]
Figure pat00059
Figure pat00060
[화학식 9] [화학식 10]
Figure pat00061
Figure pat00062
[화학식 11]
Figure pat00063
상기 화학식 7 내지 11에서,
Cz는 하기 구조이며,
Figure pat00064
A는 -O- 또는 -S-이고,
R21 내지 R24은 각각 독립적으로 수소, 중수소, 할로겐, 치환 또는 비치환된 (C1-C30)알킬, 치환 또는 비치환된 (C6-C30)아릴, 치환 또는 비치환된 (5-30원) 헤테로아릴 또는 R25R26R27Si- 이며, R25 내지 R27는 각각 독립적으로 치환 또는 비치환된 (C1-C30)알킬, 또는 치환 또는 비치환된 (C6-C30)아릴이고; L4은 단일결합, 치환 또는 비치환된 (C6-C30)아릴렌, 또는 치환 또는 비치환된 (5-30원) 헤테로아릴렌이고; M은 치환 또는 비치환된 (C6-C30)아릴, 또는 치환 또는 비치환된 (5-30원) 헤테로아릴이며; Y1 및 Y2는 각각 독립적으로 -O-, -S-, -N(R41)-, 또는 -C(R42)(R43)-이고, Y1과 Y2가 동시에 존재하지는 않으며; R41 내지 R43은 각각 독립적으로 치환 또는 비치환된 (C1-C30)알킬, 치환 또는 비치환된 (C6-C30)아릴, 또는 치환 또는 비치환된 (5-30원)헤테로아릴이고, R42 및 R43 은 동일하거나 상이할 수 있으며; h 및 i는 각각 독립적으로 1 내지 3의 정수이고, j, k, l 및 m 은 각각 독립적으로 0 내지 4의 정수이며, h, i, j, k, l 또는 m이 2 이상의 정수인 경우 각각의 (Cz-L4), 각각의 (Cz), 각각의 R21, 각각의 R22, 각각의 R23 또는 각각의 R24는 동일하거나 상이할 수 있다.
구체적으로 상기 제2호스트 재료의 바람직한 예는 다음과 같다.
Figure pat00065
Figure pat00066
Figure pat00067
Figure pat00068
Figure pat00069
Figure pat00070
Figure pat00071
Figure pat00072
Figure pat00073
Figure pat00074
Figure pat00075
Figure pat00076
Figure pat00077
[여기서, TPS는 트리페닐실릴(triphenylsilyl)이다]
상기 도판트로는 하나 이상의 인광 도판트가 바람직하다. 본 발명의 유기 전계 발광 소자에 적용되는 인광 도판트 재료는 특별히 제한되지는 않으나, 이리듐(Ir), 오스뮴(Os), 구리(Cu) 및 백금(Pt)으로부터 선택되는 금속 원자의 착체 화합물이 바람직하고, 이리듐(Ir), 오스뮴(Os), 구리(Cu) 및 백금(Pt)으로부터 선택되는 금속 원자의 오르토 메탈화 착체 화합물이 더욱 바람직하며, 오르토 메탈화 이리듐 착체 화합물이 더더욱 바람직하다.
본 발명의 유기 전계 발광 소자에 포함되는 도판트로 하기 화학식 12 내지 14로 표시되는 화합물을 사용할 수 있다.
[화학식 12] [화학식 13] [화학식 14]
Figure pat00078
Figure pat00079
Figure pat00080
상기 화학식 12 내지 14에서, L은 하기 구조에서 선택되고;
Figure pat00081
R100은 수소, 치환 또는 비치환된 (C1-C30)알킬, 또는 치환 또는 비치환된 (C3-C30)시클로알킬이며; R101 내지 R109 및 R111 내지 R123은 각각 독립적으로 수소, 중수소, 할로겐, 할로겐으로 치환 또는 비치환된 (C1-C30)알킬, 치환 또는 비치환된 (C3-C30)시클로알킬, 시아노, 또는 치환 또는 비치환된 (C1-C30)알콕시이고; R106 내지 R109는 인접 치환기가 서로 연결되어 치환 또는 비치환된 융합고리를 형성할 수 있는데, 예를 들어 치환 또는 비치환된 플루오렌, 치환 또는 비치환된 디벤조티오펜, 또는 치환 또는 비치환된 디벤조푸란 형성이 가능하며; R120 내지 R123는 인접 치환기가 서로 연결되어 치환 또는 비치환된 융합고리를 형성하는데, 예를 들어 치환 또는 비치환된 퀴놀린 형성이 가능하며; R124 내지 R127은 각각 독립적으로 수소, 중수소, 할로겐, 치환 또는 비치환(C1-C30)알킬, 또는 치환 또는 비치환 (C1-C30)아릴이며; R124 내지 R127가 아릴기인 경우 인접기가 서로 연결되어 치환 또는 비치환된 융합고리를 형성할 수 있는데, 예를 들어 치환 또는 비치환된 플루오렌, 치환 또는 비치환된 디벤조푸란, 또는 치환 또는 비치환된 디벤조티오펜 형성이 가능하며; R201 내지 R211은 각각 독립적으로 수소, 중수소, 할로겐, 또는 할로겐으로 치환 또는 비치환된 (C1-C30)알킬, 치환 또는 비치환된 (C3-C30)시클로알킬, 또는 치환 또는 비치환된 (C6-C30)아릴이며, R208 내지 R211은 인접기와 연결되어 치환 또는 비치환된 융합고리를 형성할 수 있는데, 예를 들어 치환 또는 비치환된 플루오렌, 치환 또는 비치환된 디벤조티오펜, 또는 치환 또는 비치환된 디벤조푸란 형성이 가능하며; r 및 s는 각각 독립적으로 1 내지 3의 정수이며, r 또는 s가 각각 2이상의 정수인 경우 각각의 R100은 서로 동일하거나 상이할 수 있고; n은 1 내지 3의 정수이다.
상기 도판트 재료의 구체적인 예로는 다음과 같다.
Figure pat00082
Figure pat00083
Figure pat00084
Figure pat00085
Figure pat00086
Figure pat00087
Figure pat00088
Figure pat00089
Figure pat00090
Figure pat00091
Figure pat00092
Figure pat00093
Figure pat00094
Figure pat00095
Figure pat00096
Figure pat00097
Figure pat00098
Figure pat00099
Figure pat00100
Figure pat00101
Figure pat00102
Figure pat00103
Figure pat00104
Figure pat00105
Figure pat00106
Figure pat00107
Figure pat00108
Figure pat00109
Figure pat00110
본 발명은 추가의 양태로 유기 전계 발광 소자 제조용 재료를 제공한다. 상기 재료는 본 발명의 화합물을 포함한다. 또한, 상기 재료는 본 발명의 화합물에 추가하여, 유기 전계 발광 소자 제조용 재료에 포함되는 통상의 물질들을 추가로 포함할 수도 있다. 상기 재료는 바람직하게는 유기 전계 발광 소자 제조용 호스트 재료, 더 바람직하게는 유기 전계 발광 소자 제조용 인광 호스트 재료, 더더욱 바람직하게는 유기 전계 발광 소자용 인광 적색 호스트 재료일 수 있다. 본 발명의 화합물이 호스트 재료로 포함될 경우 상기 재료는 제2 호스트 재료를 추가로 포함할 수 있으며, 이때 제1호스트 재료와 제2호스트 재료의 중량비는 1:99 내지 99:1 범위이다. 상기 제2 호스트 재료의 예로는 전술한 화학식 7 내지 화학식 11로 표시되는 화합물로 구성된 군으로부터 선택되는 것을 들 수 있다. 상기 재료는 조성물 또는 혼합물일 수 있다.
또한, 본 발명의 유기 전계 발광 소자는 제1전극; 제2전극; 및 상기 제1전극과 제2전극 사이에 개재되는 1층 이상의 유기물층을 가지며, 상기 유기물층은 본 발명의 유기 전계 발광 소자용 재료를 포함할 수 있다.
본 발명의 유기 전계 발광 소자는 유기물층이 화학식 1의 유기 전계 발광 화합물을 포함하고, 이와 동시에 아릴아민계 화합물 또는 스티릴아릴아민계 화합물로 이루어진 군으로부터 선택된 하나 이상의 화합물을 포함할 수 있다.
또한, 본 발명의 유기 전계 발광 소자에 있어서, 유기물층에 상기 화학식 1의 화합물 이외에 1족, 2족, 4주기, 5주기 전이금속, 란탄 계열 금속 및 d-전이 원소의 유기 금속으로 이루어진 군으로부터 선택되는 하나 이상의 금속 또는 착체 화합물을 더 포함할 수도 있고, 나아가 상기 유기물층은 추가로 포함되는 하나 이상의 발광층 및 전하생성층을 더 포함할 수 있다.
또한, 본 발명의 상기 유기 전계 발광 소자는 본 발명의 화합물 이외에 당업계에 알려진 청색, 적색 또는 녹색 발광 화합물을 포함하는 발광층 하나 이상을 더 포함함으로써 백색 발광을 할 수 있다. 또한, 필요에 따라, 황색 또는 오렌지색 발광층을 더 포함할 수도 있다.
본 발명의 유기 전계 발광 소자에 있어서, 한 쌍의 전극의 적어도 한쪽의 내측 표면에, 칼코제나이드(chalcogenide)층, 할로겐화 금속층 및 금속 산화물층으로부터 선택되는 1층(이하, 이들을 "표면층"이라고 지칭함) 이상을 배치하는 것이 바람직하다. 구체적으로는, 발광 매체층 측의 양극 표면에 규소 및 알루미늄의 금속의 칼코제나이드(산화물을 포함한다)층을, 또한 발광매체층 측의 음극 표면에 할로겐화 금속층 또는 금속 산화물층을 배치하는 것이 바람직하다. 이것에 의해 구동의 안정화를 얻을 수 있다. 상기 칼코제나이드의 바람직한 예로는 SiOX(1≤X≤2), AlOX(1≤X≤1.5), SiON 또는 SiAlON 등이 있고, 할로겐화 금속의 바람직한 예로는 LiF, MgF2, CaF2, 불화 희토류 금속 등이 있으며, 금속 산화물의 바람직한 예로는 Cs2O, Li2O, MgO, SrO, BaO, CaO 등이 있다.
또한, 본 발명의 유기 전계 발광 소자에 있어서, 한 쌍의 전극의 적어도 한쪽의 표면에 전자 전달 화합물과 환원성 도판트의 혼합 영역 또는 정공 전달 화합물과 산화성 도판트의 혼합 영역을 배치하는 것도 바람직하다. 이러한 방식에 의해 전자 전달 화합물이 음이온으로 환원되므로 혼합 영역으로부터 발광 매체에 전자를 주입 및 전달하기 용이해진다. 또한, 정공 전달 화합물은 산화되어 양이온으로 되므로 혼합 영역으로부터 발광 매체에 정공을 주입 및 전달하기 용이해진다. 바람직한 산화성 도판트로서는 각종 루이스산 및 억셉터(acceptor) 화합물을 들 수 있고, 바람직한 환원성 도판트로는 알칼리 금속, 알칼리 금속 화합물, 알칼리 토류 금속, 희토류 금속 및 이들의 혼합물을 들 수 있다. 또한 환원성 도판트층을 전하생성층으로 사용하여 두 개 이상의 발광층을 가진 백색 유기 전계 발광 소자를 제조할 수 있다.
본 발명의 유기 전계 발광 소자의 각층의 형성은 진공증착, 스퍼터링, 플라즈마, 이온플레이팅 등의 건식 성막법이나 잉크 젯 프린팅(ink jet printing), 노즐 프린팅(nozzle printing), 슬롯 코팅(slot coating), 스핀 코팅, 침지 코팅(dip coating), 플로우 코팅 등의 습식 성막법 중의 어느 하나의 방법을 적용할 수 있다.
습식 성막법의 경우, 각 층을 형성하는 재료를 에탄올, 클로로포름, 테트라하이드로푸란, 디옥산 등의 적절한 용매에 용해 또는 분산시켜 박막을 형성하는데, 그 용매는 각 층을 형성하는 재료가 용해 또는 분산될 수 있고, 성막성에 문제가 없는 것이라면 어느 것이어도 된다.
이하에서, 본 발명의 상세한 이해를 위하여 본 발명의 대표 화합물을 들어 본 발명에 따른 유기 전계 발광 화합물, 이의 제조방법 및 소자의 특성을 설명한다.
[ 실시예 1] 화합물 A-14의 제조
Figure pat00111
1) 화합물 1-1의 합성
플라스크에 3-브로모-9H-카바졸 (60g, 243.80 mmol), (9-페닐-9H-카바졸-3-일)보론산 (84g, 292.56mmol), 테트라키스(트리페닐포스핀)팔라듐 (Pd(PPh3)4)(14g, 12.19 mmol)을 2M Na2CO3 (500mL), 톨루엔 (1000mL), 에탄올 (500mL)으로 녹인 후 120℃에서 5시간 동안 환류시킨다. 반응이 끝나면 에틸 아세테이트로 유기층을 추출하고 황산마그네슘을 이용하여 잔여 수분을 제거한 뒤 건조시키고 칼럼 크로마토그래피로 분리하여 화합물 1-1 (73g, 수율: 73 %)을 얻었다.
2) 화합물 1-2의 합성
화합물 A (2,3-디클로로퀴녹살린) (20g, 100.48 mmol), 화합물 1-1 (34g, 83.73 mmol)을 디메틸포름아미드(DMF) (500mL)에 녹이고 NaH (5g, 125.59 mmol, 미네랄 오일 중에서 60%)을 넣었다. 1 시간 동안 상온에서 교반하고 메탄올과 증류수를 넣었다. 생성된 고체를 감압 여과하고 컬럼 크로마토그래피로 분리하여 화합물 1-2 (26g, 수율: 54%)을 얻었다.
3) 화합물 A- 14 의 합성
화합물 1-2 (2g, 3.5 mmol), 팔라듐(II) 아세테이트(Pd(OAc)2)(0.1g, 0.35 mmol), 리간드(트리시클로헥실 포스포늄 테트라플루오로보레이트) (128mg, 0.35 mmol), Cs2CO3 (3.4g, 10.5 mmol), 디메틸아세트아미드(DMA) (20mL)를 혼합하여 1시간 환류 교반하였다. 상온으로 냉각하고 증류수를 넣었다. 메틸렌 클로라이드(MC)로 추출하고 황산마그네슘으로 건조하였다. 감압 증류하고 컬럼 크로마토그래피로 분리하여 화합물 A-14 (0.9g, 수율: 50 %)을 얻었다.
Figure pat00112
[ 실시예 2] 화합물 A- 39 의 제조
Figure pat00113
1) 화합물 2-1의 합성
플라스크에 9H-카바졸 (20g, 119.6 mmol), 3-브로모-9H-카바졸 (35.3g, 143.5 mmol), 구리(I) 요오다이드 (59.8g, 59.8 mmol), 세슘 카보네이트 (97.4g, 229 mmol), 에틸렌디아민 (7.18g, 119.6 mmol), 톨루엔 (600mL)을 넣고 12시간 환류 교반시킨다. 상온으로 냉각시키고 에틸 아세테이트로 추출하고, 정제수로 세척하였다. 무수 MgSO4로 건조하고, 감압증류하여 얻어진 잔사를 컬럼 크로마토그래피로 분리하여 화합물 2-1 (31.6g, 79.6%)를 얻었다.
2) 화합물 2-2의 합성
플라스크에 화합물 2-1 (15.1g, 45.4 mmol), 소듐 하이드리드 (60%) (2.2g, 54.5 mmol), 1,2-디클로로퀴녹살린 (10.8g, 54.5 mmol), DMF (200 mL)를 투입하고, 상온에서 1시간 교반하였다. 메탄올 및 정제수를 투입하여 고체를 생성하였다. 고체를 여과하고, 감압 건조하여 화합물 2-2 (21g, 94 %)을 얻었다.
3) 화합물 A-39의 합성
플라스크에 화합물 2-2 (20g, 40.4 mmol), 팔라듐 아세테이트 (907mg, 4.04 mmol), 트리시클로헥실 포스포늄 테트라플루오로보레이트 (1.5g, 4.04 mmol), 세슘 카보네이트 (39.5g, 121.2 mmol), 디메틸아세트아미드 (DMA) (200 mL)를 넣고, 2시간 동안 가열 환류시켰다. 상온으로 냉각시키고, 메탄올과 정제수를 투입하여 고체를 생성시켰다. 고체를 여과하고, 감압건조한다. 컬럼크로마토그래피로 분리하여 화합물 A-39 (6g, 32.4 %)을 얻었다.
Figure pat00114
[ 실시예 3] 화합물 A-40 및 A- 119 의 제조
Figure pat00115
1) 화합물 1-1-1의 합성
플라스크에 2-브로모-4-플루오로-1-니트로벤젠 (50g, 227.3 mmol), 페닐보론산 (30.5g, 250.0 mmol), Pd(PPh3)4 (13.1g, 11.37 mmol), 2M K2CO3 (200mL), 톨루엔 (600mL), 에탄올 (200mL)을 주입한 후, 120℃에서 5시간 동안 환류시킨다. 반응이 끝나면 에틸 아세테이트로 유기층을 추출하고 황산마그네슘을 이용하여 잔여 수분을 제거한 뒤 건조시키고 컬럼 크로마토그래피로 분리하여 화합물 1-1-1 (46.4g, 수율: 94 %)을 얻었다.
2) 화합물 1-1-2의 합성
화합물 1-1-1 (5-플루오로-2-니트로-1,1'-비페닐) (20g, 92.1 mmol), 7H-벤조[c]카바졸 (20g, 92.0 mmol)을 DMF (500mL)에 녹이고 NaH (4.42g, 110.5 mmol, 미네랄 오일 중에서 60%)을 넣었다. 150℃에서 1시간 교반하고 메탄올과 증류수를 넣었다. 생성된 고체를 감압 여과하고 컬럼 크로마토그래피로 분리하여 화합물 1-1-2 (32.5g, 수율: 85%)을 얻었다.
3) 화합물 1-1의 합성
화합물 1-1-2 (7-(6-니트로-[1,1'-비페닐]-3-일)-7H-벤조[c]카바졸) (20g, 48.26 mmol), 트리페닐포스핀 (31.6g, 120.6 mmol), 1,2-디클로로벤젠(DCB) (250mL)을 넣고, 200℃에서 5시간 교반하였다. DCB를 증류한 잔사를 컬럼 크로마토그래피로 분리하여 화합물 1-1 (9.0g, 수율: 48.8%)을 얻었다.
4) 화합물 1-2의 합성
화합물 1-1 (7-(9H-카바졸-3-일)-7H-벤조[c]카바졸) (9.0g, 23.53 mmol), 화합물 A (2,3-디클로로퀴녹살린) (5.15g, 25.88 mmol)을 DMF (100mL)에 녹이고 NaH (1.2g, 28.24 mmol, 미네랄 오일 중에서 60%)을 넣었다. 150℃에서 1시간 교반하고 메탄올과 증류수를 넣었다. 생성된 고체를 감압 여과하고 컬럼 크로마토그래피로 분리하여 화합물 1-2 (12.0g, 수율: 93.5%)을 얻었다.
3) 화합물 A- 40 의 합성
플라스크에 화합물 1-2 (12g, 22.02 mmol), Pd(OAc)2 (742mg, 3.3 mmol), 리간드 (트리시클로헥실 포스포늄 테트라플루오로보레이트) (1.22mg, 3.3 mmol), Cs2CO3 (21.5g, 66.06 mmol), o-자일렌 (100mL)를 넣고 1시간 환류 교반하였다. 상온으로 냉각하고 증류수를 넣었다. 에틸 아세테이트(EA)로 추출하고 황산마그네슘으로 건조하였다. 감압 증류하고 컬럼 크로마토그래피로 분리하여 화합물 A-40 (4.3g, 수율: 38.4 %)을 얻었다.
Figure pat00116
3) 화합물 A-119의 합성
플라스크에 화합물 1-2 (12g, 22.02 mmol), Pd(OAc)2 (742mg, 3.3 mmol), 리간드 (트리시클로헥실 포스포늄 테트라플루오로보레이트) (1.22mg, 3.3 mmol), Cs2CO3 (21.5g, 66.06 mmol), o-자일렌 (100mL)를 넣고, 1시간 환류 교반하였다. 상온으로 냉각하고 증류수를 넣었다. EA로 추출하고 황산마그네슘으로 건조하였다. 감압 증류하고 컬럼 크로마토그래피로 분리하여 화합물 A-119 (1.9g, 17.0 %)을 얻었다.
Figure pat00117
[ 실시예 4] 화합물 A- 1 의 제조
Figure pat00118
1) 화합물 1-1의 합성
플라스크에 10-브로모-7H-벤조[c]카바졸 (26g, 87.79 mmol), 요오도벤젠(12mL, 105.35mmol), CuI (8.4g, 43.89 mmol), 에틸렌디아민(EDA) (3mL, 43.89 mmol), Cs2CO3 (85g, 263.37 mmol)을 톨루엔 (500mL)으로 녹인 후 120℃에서 5시간 동안 환류시켰다. 반응이 끝나면 에틸 아세테이트로 유기층을 추출하고 황산마그네슘을 이용하여 잔여 수분을 제거한 뒤 건조시키고 컬럼 크로마토그래피로 분리하여 화합물 1-1 (18g, 70%)을 얻었다.
2) 화합물 1-2의 합성
화합물 1-1 (18g, 60.68 mmol), 화합물 A (19g, 66.75 mmol), Pd(PPh3)4 (3.3g, 3.03 mmol)을 2M Na2CO3 (300mL), 톨루엔 (600mL), 에탄올 (300mL)으로 녹인 후 120℃에서 5시간 동안 환류시켰다. 반응이 끝나면 에틸 아세테이트로 유기층을 추출하고 황산마그네슘을 이용하여 잔여 수분을 제거한 뒤 건조시키고 컬럼 크로마토그래피로 분리하여 화합물 1-2 (17g, 63%)을 얻었다.
3) 화합물 1-3의 합성
화합물 B (2,3-디클로로퀴녹살린) (19g, 94.12 mmol), 화합물 1-2 (36g, 78.51 mmol)을 DMF (500mL)에 녹이고 NaH (4.7g, 117.76 mmol, 미네랄 오일 중에서 60%)을 넣었다. 1시간 동안 상온에서 교반하고 메탄올과 증류수를 넣었다. 생성된 고체를 감압 여과하고 컬럼 크로마토그래피로 분리하여 화합물 1-3 (44.6g, 92%)을 얻었다.
4) 화합물 A-1의 합성
플라스크에 화합물 1-3 (44.6g, 71.08 mmol), Pd(OAc)2 (1.6g, 7.18 mmol), 리간드 (트리시클로헥실 포스포늄 테트라플루오로보레이트) (2.6g, 7.18 mmol), Cs2CO3 (70g, 215.4 mmol), 자일렌 (360mL)를 넣고 1시간 환류 교반하였다. 상온으로 냉각하고 증류수를 넣었다. MC로 추출하고 황산마그네슘으로 건조하였다. 감압 증류하고 컬럼 크로마토그래피로 분리하여 화합물 A-1 (14.6g, 36%)을 얻었다.
Figure pat00119
[ 실시예 5] 화합물 A-16의 제조
Figure pat00120
1) 화합물 1-1의 합성
플라스크에 3-브로모-9H-카바졸 (14g, 56.99 mmol), (9-페닐-9H-카바졸-2-일)보론산 (18g, 62.69mmol), Pd(PPh3)4 (3.2g, 2.85 mmol)을 2M Na2CO3 (150mL), 톨루엔 (300mL), 에탄올 (150mL)으로 녹인 후 120℃에서 5시간 동안 환류시킨다. 반응이 끝나면 에틸 아세테이트로 유기층을 추출하고 황산마그네슘을 이용하여 잔여 수분을 제거한 뒤 건조시키고 칼럼 크로마토그래피로 분리하여 화합물 1-1 (21.3g, 수율: 93 %)을 얻었다.
2) 화합물 1-2의 합성
화합물 A (2,3-디클로로퀴녹살린) (12g, 62.57 mmol), 화합물 1-1 (21.3g, 52.14 mmol)을 DMF (300mL)에 녹이고 NaH (1.8g, 78.21 mmol, 미네랄 오일 중에서 60%)을 넣었다. 1시간 상온에서 교반하고 메탄올과 증류수를 넣었다. 생성된 고체를 감압 여과하고 컬럼 크로마토그래피로 분리하여 화합물 1-2 (21g, 수율: 72%)을 얻었다.
3) 화합물 A-16의 합성
플라스크에 화합물 1-2 (21g, 36.77 mmol), Pd(OAc)2 (0.8g, 3.677 mmol), 리간드 (트리시클로헥실 포스피늄 테트라플루오로보레이트) (1.4g, 3.677 mmol), Cs2CO3 (36g, 110.3 mmol), 자일렌 (200mL)를 넣고, 1시간 환류 교반하였다. 상온으로 냉각하고 증류수를 넣었다. MC로 추출하고 황산마그네슘으로 건조하였다. 감압 증류하고 컬럼 크로마토그래피로 분리하여 화합물 A-16 (4.2g, 수율: 22 %)을 얻었다.
Figure pat00121
[ 실시예 6] 화합물 A- 280 의 제조
Figure pat00122
1) 화합물 1-1의 합성
반응용기에 화합물 A (25.7g, 80.46 mmol)을 디메틸포름아미드에 녹인다. N-브로모숙신아미드 (14.3g, 80.46 mmol)를 디메틸포름아미드에 녹인 후, 반응 혼합물에 넣어준다. 4시간 동안 교반한 후 증류수로 씻어주고 에틸 아세테이트로 추출한 뒤 유기층을 황산마그네슘으로 건조시킨 후 회전 증발기로 용매를 제거한 후 컬럼 크로마토그래피로 정제하여 화합물 1-1 (12.6g, 수율: 39%)를 얻었다.
2) 화합물 1-2의 합성
반응용기에 화합물 1-1 (12.6g, 31.63 mmol), 화합물 B (11.1g, 37.96 mmol), 테트라키스(트리페닐포스핀)팔라듐 (1.1g, 0.95 mmol), 탄산칼륨 (11g, 79.08 mmol), 톨루엔 (160mL), 에탄올 (40mL)을 넣고, 증류수 (40mL)를 첨가한 후 120℃로 4시간 교반하였다. 반응이 끝나면 증류수로 씻어주고 에틸 아세테이트로 추출한 뒤 유기층을 황산마그네슘으로 건조시킨 후 회전 증발기로 용매를 제거한 후 컬럼 크로마토그래피로 정제하여 화합물 1-2 (11g, 수율: 72%)를 얻었다.
3) 화합물 1-4의 합성
반응용기에 화합물 1-2 (11g, 22.70 mmol)을 DMF (110mL)으로 녹인 후, 0℃에서 수소화나트륨 (1.4g, 34.05 mmol)을 천천히 적가한다. 30분 동안 교반 후 2,3-디클로로퀴녹살린 (5.4g, 27.24 mmol) 을 적가한다. 3시간 동안 상온에서 교반하고 메탄올과 증류수를 넣었다. 생성된 고체를 감압 여과하고 컬럼 크로마토그래피로 분리하여 화합물 1-3 (8.3g, 수율: 56 %)을 얻었다.
4) 화합물 A-280의 합성
화합물 1-3 (8.3g, 12.83 mmol), 초산팔라듐 (0.4g, 1.92 mmol), PCy3HBF4 (0.7g, 1.92 mmol), 탄산세슘 (12.5g, 38.49 mmol)에, 자일렌 64mL을 넣은 후 180℃에서 5시간 동안 환류시킨다. 반응이 끝나면 증류수로 씻어주고 에틸 아세테이트로 추출한 뒤 유기층을 황산마그네슘으로 건조시킨 후 회전 증발기로 용매를 제거한 후 컬럼 크로마토그래피로 정제하여 화합물 A-280 (1.8g, 수율: 23%)를 얻었다.
Figure pat00123
[ 실시예 7] 화합물 A-278의 제조
Figure pat00124
1) 화합물 2-1의 합성
플라스크에 2-브로모-9H-카바졸 (50g, 203.1 mmol), 페닐보론산 (30g, 243.8 mmol), Pd(PPh3)4 (12g, 10.15 mmol)을 2M Na2CO3 (500mL), 톨루엔 (1000mL), 에탄올 (500mL)로 녹인 후 120℃에서 5시간 동안 환류시킨다. 반응이 끝나면 에틸 아세테이트로 유기층을 추출하고 황산마그네슘을 이용하여 잔여 수분을 제거한 뒤 건조시키고 칼럼 크로마토그래피로 분리하여 화합물 2-1 (48.3g, 수율: 97%)을 얻었다.
2) 화합물 2-2의 합성
화합물 2-1 (20g, 82.20 mmol)을 DMF (830mL)에 녹이고 0℃ 유지 후, N-브로모숙신이미드(NBS) (14g, 82.20 mmol)을 DMF (100mL)에 녹인 것을 넣고, 상온에서 4시간 동안 환류시킨다. 반응이 끝나면 에틸 아세테이트로 유기층을 추출하고 황산마그네슘을 이용하여 잔여 수분을 제거한 뒤 건조시키고 칼럼 크로마토그래피로 분리하여 화합물 2-2 (20g, 수율: 77%)을 얻었다.
3) 화합물 2-3의 합성
화합물 2-3 (20g, 62.07 mmol), (9-페닐-9H-카바졸-3-일)보론산 (19g, 68.28 mmol), Pd(PPh3)4 (3.6g, 3.103 mmol)을 2M Na2CO3 (160mL), 톨루엔 (320mL), 에탄올 (160mL)로 녹인 후 120℃에서 5시간 동안 환류시킨다. 반응이 끝나면 에틸 아세테이트로 유기층을 추출하고 황산마그네슘으로 잔여 수분을 제거한 뒤 건조시키고 칼럼 크로마토그래피로 분리하여 화합물 2-4 (18.5g, 수율: 60%)을 얻었다.
4) 화합물 2-4의 합성
화합물 A (2,3-디클로로퀴녹살린) (10g, 45.81 mmol), 화합물 2-3 (18.5g, 38.18 mmol)을 DMF (200mL)에 녹이고 NaH (2.3g, 57.27 mmol, 미네랄 오일 중에서 60%)을 넣었다. 1시간 상온에서 교반하고 메탄올과 증류수를 넣었다. 생성된 고체를 감압 여과하고 컬럼 크로마토그래피로 분리하여 화합물 2-4 (15.8g, 수율: 66%)을 얻었다.
5) 화합물 A-278의 합성
플라스크에 화합물 2-4 (15.8g, 24.41 mmol), Pd(OAc)2 (0.5g, 2.441 mmol), 리간드 (트리시클로헥실 포스피늄 테트라플루오로보레이트) (0.9g, 2.441 mmol), Cs2CO3 (23.8g, 73.23 mmol), 자일렌 (125mL)를 넣고 1시간 환류 교반하였다. 상온으로 냉각하고 증류수를 넣었다. MC로 추출하고 황산마그네슘으로 건조하였다. 감압 증류하고 컬럼 크로마토그래피로 분리하여 화합물 A-278 (1.6g, 수율 11%)을 얻었다.
Figure pat00125
[ 실시예 8] 화합물 A-78의 제조
Figure pat00126
1) 화합물 3-1의 합성
플라스크에 10-브로모-7H-벤조[c]카바졸 (26g, 87.79 mmol), 아이오도벤젠(12mL, 105.35), CuI (8.4g, 43.89 mmol), EDA (3mL, 43.89 mmol), Cs2CO3 (85g, 263.37 mmol)을 톨루엔 (500mL)으로 녹인 후 120℃에서 5시간 동안 환류시킨다. 반응이 끝나면 에틸 아세테이트로 유기층을 추출하고 황산마그네슘을 이용하여 잔여 수분을 제거한 뒤 건조시키고 칼럼 크로마토그래피로 분리하여 화합물 3-1 (18g, 수율: 70%)을 얻었다.
2) 화합물 3-2의 합성
화합물 3-1 (18g, 60.68 mmol), 화합물 A (19g, 66.75 mmol), Pd(PPh3)4 (3.3g, 3.03 mmol)을 2M Na2CO3 (300mL), 톨루엔 (600mL), 에탄올 (300mL)으로 녹인 후 120℃에서 5시간 동안 환류시킨다. 반응이 끝나면 에틸 아세테이트로 유기층을 추출하고 황산마그네슘을 이용하여 잔여 수분을 제거한 뒤 건조시키고 칼럼 크로마토그래피로 분리하여 화합물 3-2 (17g, 수율: 63%)을 얻었다.
3) 화합물 3-3의 합성
화합물 B (2,3-디클로로퀴녹살린) (19g, 94.12 mmol), 화합물 3-2 (36g, 78.51 mmol)을 DMF (500mL)에 녹이고 NaH (4.7g, 117.76 mmol, 미네랄 오일 중에서 60%)을 넣었다. 1시간 상온에서 교반하고 메탄올과 증류수를 넣었다. 생성된 고체를 감압 여과하고 컬럼 크로마토그래피로 분리하여 화합물 3-3 (44.6g, 수율: 92%)을 얻었다.
4) 화합물 A-78의 합성
플라스크에 화합물 3-3 (44.6g, 71.08 mmol), Pd(OAc)2 (1.6g, 7.18 mmol), 리간드 (트리시클로헥실 포스피늄 테트라플루오로보레이트) (2.6g, 7.18 mmol), Cs2CO3 (70g, 215.4 mmol), 자일렌 (360mL)를 넣고 1시간 환류 교반하였다. 상온으로 냉각하고 증류수를 넣었다. MC로 추출하고 황산마그네슘으로 건조하였다. 감압 증류하고 컬럼 크로마토그래피로 분리하여 화합물 A-78 (2.5g, 수율 6%)을 얻었다.
Figure pat00127
[ 실시예 9] 화합물 A-159의 제조
Figure pat00128
1) 화합물 A의 합성
7H-벤조[c]카바졸 (50g, 230mmol), DMF (200mL)를 플라스크에 넣고 교반한다. N-브로모숙신이미드 (42g, 230mmol)을 DMF (50mL)에 녹여서 플라스크에 넣고, 상온에서 12시간 교반한다. 증류수와 MC로 추출하여 유기층을 황산마그네슘으로 건조하고, 감압 증류하였다. 잔사를 컬럼 크로마토그래피로 분리하여 화합물 A (10-브로모-7H-벤조[c]카바졸) (16g, 수율 23.5%)을 얻었다.
2) 화합물 B의 합성
플라스크에 화합물 A (10-브로모-7H-벤조[c]카바졸) (16g, 54mmol), (9-페닐-9H-카바졸-3-일)보론산 (17g, 59.4mmol), Pd(PPh3)4 (3.1g, 2.7mmol), K2CO3 (25.7g, 108mmol), 증류수 (50mL), 톨루엔 (250mL), 에탄올(EtOH) (50mL)를 넣고 12시간 환류 교반하였다. 상온으로 냉각하고 EA와 증류수로 추출하고 황산마그네슘으로 건조하였다. 감압 증류하고 컬럼 크로마토그래피로 분리하여 화합물 B (10-(9-페닐-9H-카바졸-3-일)-7H-벤조[c]카바졸) (22g, 수율 88.7%)을 얻었다.
3) 화합물 1-1의 합성
플라스크에 화합물 B (10-(9-페닐-9H-카바졸-3-일)-7H-벤조[c]카바졸) (22g, 48mmol), 소듐 하이드라이드(60%) (2.3g, 57.6mmol), 2,3-디클로로퀴녹살린 (10.5g, 52.8 mmol), DMF (250 mL)을 투입하고, 상온에서 1시간 교반한다. 메탄올, 정제수를 투입하여 고체를 생성한다. 고체를 여과하고, 감압 건조하여 화합물 1-1 (22.4g, 수율 75.1%)을 얻었다.
4) 화합물 A-159의 합성
화합물 1-1 (22.4g, 36mmol), Pd(OAc)2 (1.22g, 5.4mmol), 트리시클로헥실 포스피늄 테트라플루오로보레이트 (2g, 5.4mmol), Cs2CO3 (35.3g, 108mmol), o-자일렌 (200mL)를 넣고 3시간 환류 교반하였다. 상온으로 냉각하고 EA와 증류수로 추출하고 황산마그네슘으로 건조하였다. 감압 증류하고 컬럼 크로마토그래피로 분리하여 화합물 A-159 (5.8g, 수율 28%)을 얻었다.
Figure pat00129
[ 실시예 10] 화합물 A-289의 제조
Figure pat00130
1) 화합물 1-1의 합성
반응용기에 화합물 A (15g, 52.2 mmol), 4-브로모-1-아이오도벤젠 (17.8g, 62.7 mmol), 테트라키스(트리페닐포스핀)팔라듐 (1.8g, 1.6 mmol), 탄산나트륨 (14g, 130.5 mmol), 톨루엔 (260mL), 에탄올 (60mL)을 넣고, 증류수 (60mL)를 첨가한 후 120℃로 4시간 교반하였다. 반응이 끝나면 증류수로 씻어주고 에틸 아세테이트로 추출한 뒤 유기층을 황산마그네슘으로 건조시킨 후 회전 증발기로 용매를 제거한 후 컬럼 크로마토그래피로 정제하여 화합물 1-1 (11.3g, 수율: 53%)를 얻었다.
2) 화합물 1-2의 합성
반응용기에 화합물 1-1 (11.3g, 28.42 mmol), 화합물 B (10.0g, 34.11 mmol), 테트라키스(트리페닐포스핀)팔라듐 (0.6g, 0.55 mmol), 탄산칼륨 (6.3g, 45.90 mmol), 톨루엔 (100mL), 에탄올 (25mL)을 넣고, 증류수 (25mL)를 첨가한 후 120℃로 4시간 교반하였다. 반응이 끝나면 증류수로 씻어주고 에틸 아세테이트로 추출한 뒤 유기층을 황산마그네슘으로 건조시킨 후 회전 증발기로 용매를 제거한 후 컬럼 크로마토그래피로 정제하여 화합물 1-2 (8g, 수율: 58%)를 얻었다.
3) 화합물 1-3의 합성
반응용기에 화합물 1-2 (5.3g, 10.94 mmol)을 DMF (55mL)으로 녹인 후, 0℃에서 수소화나트륨 (0.7g, 16.41 mmol)을 천천히 적가한다. 30분 동안 교반 후 2,3-디클로로퀴녹살린 (2.6g, 13.12 mmol)을 적가한다. 3시간 동안 상온에서 교반하고 메탄올과 증류수를 넣었다. 생성된 고체를 감압 여과하고 컬럼 크로마토그래피로 분리하여 화합물 1-3 (5.5g, 수율: 79%)을 얻었다.
4) 화합물 A-289의 합성
화합물 1-3 (5.5g, 8.50 mmol), 초산팔라듐 (0.3g, 1.28 mmol), 트리시클로헥실포스핀 테트라플루오로보레이트(PCy3HBF4)(0.5g, 1.28 mmol), 탄산세슘 (8.3g, 25.50 mmol)에, 자일렌 (43mL)을 넣은 후 180℃에서 5시간 동안 환류시킨다. 반응이 끝나면 증류수로 씻어주고 에틸 아세테이트로 추출한 뒤 유기층을 황산마그네슘으로 건조시킨 후 회전 증발기로 용매를 제거한 후 컬럼 크로마토그래피로 정제하여 화합물 A-289 (1g, 수율: 20%)를 얻었다.
Figure pat00131
[ 실시예 11] 화합물 A-91의 제조
Figure pat00132
1) 화합물 4-1의 합성
화합물 A (2,3-디클로로퀴녹살린) (20g, 100.48 mmol), 화합물 B (34g, 83.73 mmol)을 DMF (500mL)에 녹이고 NaH (5g, 125.59 mmol, 미네랄 오일 중에서 60%)을 넣었다. 1시간 상온에서 교반하고 메탄올과 증류수를 넣었다. 생성된 고체를 감압 여과하고 컬럼 크로마토그래피로 분리하여 화합물 4-1 (45g, 수율: 95%)을 얻었다.
2) 화합물 A-91의 합성
플라스크에 화합물 4-1 (25g, 43.77 mmol), Pd(OAc)2 (1g, 4.377 mmol), 리간드(트리시클로헥실 포스피늄 테트라플루오로보레이트) (1.6g, 4.377 mmol), Cs2CO3 (42g, 131.3 mmol), 자일렌 (220mL)를 넣고 1시간 환류 교반하였다. 상온으로 냉각하고 증류수를 넣었다. MC로 추출하고 황산마그네슘으로 건조하였다. 감압 증류하고 컬럼 크로마토그래피로 분리하여 화합물 A-91 (2.4g, 수율: 10%)을 얻었다.
Figure pat00133
[ 실시예 12] 화합물 A-287의 제조
Figure pat00134
1) 화합물 3의 합성
플라스크에 화합물 1 (9-페닐-9H,9'H-3,3'-비카바졸) (15g, 36.72 mmol), 화합물 2 (2-클로로퀴놀린) (6.6g, 40.39mmol), CuI (13.9g, 73.44mmol), 트랜스-1,2-디아미노시클로헥산 (2.7mL, 22.03mmol), Cs2CO3 (35.8g, 110.16mmol)을 o-DCB (250mL)으로 녹인 후 200℃에서 8시간 동안 환류시킨다. 반응이 끝나면 MC로 감압 여과한 뒤 칼럼 크로마토그래피로 분리한다. 메탄올을 넣어 생성된 고체를 감압여과하여 화합물 3 (12.5g, 수율: 64%)을 얻었다.
2) 화합물 A-287의 합성
화합물 3 (9-페닐-9'-(퀴놀린-2-일)-9H,9'H-3,3'-비카바졸) (10.5g, 19.6mmol), Pd(OAc)2 (0.44g, 1.96mmol), K2CO3 (0.54g, 3.92mmol)에 피발산 (40mL)을 넣은 후 170℃에서 24시간 동안 환류시킨다. 반응 완료 후 NaHCO3 로 중화시켜 MC로 추출한 후 MgSO4로 건조한다. 칼럼 크로마토그래피로 분리한 후 메탄올을 넣어 생성된 고체를 감압여과하여 화합물 A-287 (0.6g, 수율: 6%)을 얻었다.
Figure pat00135
[ 실시예 13] 화합물 A-92의 제조
Figure pat00136
1) 화합물 3의 합성
플라스크에 화합물 1 (2-브로모-9H-카바졸) (20g, 69.70 mmol), 화합물 2 ((9-페닐-9H-카바졸-3-일)보론산) (17.2g, 69.70 mmol), Pd(PPh3)4 (2.4g, 2.10 mmol), Na2CO3 (18.5g, 174.30 mmol)을 톨루엔, 에탄올, H2O으로 녹인 후 120℃에서 하루 동안 환류시킨다. 반응이 끝나면 에틸 아세테이트로 유기층을 추출하고 건조한 뒤 칼럼 크로마토그래피로 분리하여 화합물 3 (12.8g, 수율: 45 %)을 얻었다.
2) 화합물 5의 합성
화합물 3 (9'-페닐-9H,9'H-2,3'-비카바졸) (11.8g, 28.90 mmol), 화합물 4 (7.5g, 37.60 mmol)을 DMF (200mL)에 녹이고 NaH (1.8g, 43.4 mmol, 미네랄 오일 중에서 60%)을 넣었다. 2.5시간 동안 상온에서 교반하고 메탄올을 넣었다. 생성된 고체를 감압 여과하고 컬럼 크로마토그래피로 분리하여 화합물 5 (9.7g, 수율: 59%)을 얻었다.
3) 화합물 A-92의 합성
플라스크에 화합물 5 (8.4g, 14.70 mmol), Pd(OAc)2 (330mg, 1.47 mmol), 리간드(트리시클로헥실 포스피늄 테트라플루오로보레이트) (541mg, 0.35 mmol), Cs2CO3 (14.4g, 44.10 mmol), 자일렌 (74mL)를 넣고, 1.5 시간 동안 환류 교반하였다. 상온으로 냉각하고 증류수를 넣었다. 반응이 끝나면 에틸 아세테이트로 유기층을 추출하고 건조한 뒤 칼럼 크로마토그래피로 분리하여 화합물 A-92 (6.5g, 수율: 60.2 %)을 얻었다.
Figure pat00137
[ 실시예 14] 화합물 A-286의 제조
Figure pat00138
1) 화합물 3의 합성
플라스크에 화합물 1 (9-페닐-9H,9'H-3,3'-비카바졸) (15g, 36.72 mmol), 화합물 2 (2-클로로퀴놀린) (6.6g, 40.39mmol), CuI (13.9g, 73.44mmol), 트랜스-1,2-디아미노시클로헥산 (2.7mL, 22.03mmol), Cs2CO3 (35.8g, 110.16mmol)을 o-DCB (250mL)으로 녹인 후 200℃에서 8시간 동안 환류시킨다. 반응이 끝나면 MC로 감압 여과한 뒤 칼럼 크로마토그래피로 분리한다. 메탄올을 넣어 생성된 고체를 감압 여과하여 화합물 3 (12.5g, 수율: 64%)을 얻었다.
2) 화합물 A-286의 합성
화합물 3 (9-페닐-9'-(퀴놀린-2-일)-9H,9'H-3,3'-비카바졸) (10.5g, 19.6mmol), Pd(OAc)2 (0.44g, 1.96mmol), K2CO3 (0.54g, 3.92mmol)에 피발산 (40mL)을 넣은 후 170℃에서 24시간 동안 환류시킨다. 반응 완료 후 NaHCO3 로 중화시켜 MC로 추출한 후 MgSO4로 건조한다. 칼럼 크로마토그래피로 분리한 후 메탄올을 넣어 생성된 고체를 감압 여과하여 화합물 A-286 (1.2g, 수율: 12%)을 얻었다.
Figure pat00139
[소자 실시예 1] 본 발명에 따른 화합물을 이용한 OLED 소자 제작
본 발명의 유기 전계 발광 화합물을 이용하여 OLED 소자를 제조하였다. 우선, OLED용 글래스(지오마텍사 제조)로부터 얻어진 투명전극 ITO 박막(10Ω/□)을, 트리클로로에틸렌, 아세톤, 에탄올 및 증류수를 순차적으로 사용하여 초음파 세척을 실시한 후, 이소프로판올에 넣어 보관한 후 사용하였다. 다음으로 진공 증착 장비의 기판 홀더에 ITO기판을 장착한 후, 진공 증착장비 내의 셀에 N4,N4'-디페닐-N4,N4'-비스(9-페닐-9H-카바졸-3-일)-[1,1'-비페닐]-4,4'-디아민을 넣고 챔버 내의 진공도가 10-6 torr에 도달할 때까지 배기시킨 후, 셀에 전류를 인가하여 증발시켜 ITO 기판 위에 80nm 두께의 제1 정공 주입층을 증착하였다. 이어서, 진공 증착 장비 내의 다른 셀에 디피라지노[2,3-f:2',3'-h]퀴녹살린-2,3,6,7,10,11-헥사카보니트릴을 넣고, 셀에 전류를 인가하여 증발시켜 제1 정공 주입층 위에 5nm두께의 제2 정공 주입층을 증착하였다. 이어서, 진공 증착 장비 내의 다른 셀에 N-([1,1'-비페닐]-4-일)-9,9-디메틸-N-(4-(9-페닐-9H-카바졸-3-일)페닐)-9H-플루오렌-2-아민을 넣고, 셀에 전류를 인가하여 증발시켜 제2 정공 주입층위에 10nm두께의 제1 정공 전달층을 증착하였다. 진공 증착 장비 내의 다른 셀에 N,N-디([1,1'-비페닐]-4-일)-4'-(9H-카바졸-9-일)-[1,1'-비페닐]-4-아민을 넣고, 셀에 전류를 인가하여 증발시켜 제1 정공 전달층 위에 60nm 두께의 제2 정공 전달층을 증착하였다. 정공 주입층, 정공 전달층을 형성시킨 후, 그 위에 발광층을 다음과 같이 증착시켰다. 호스트로서 화합물 A-14을 넣고, 또 다른 셀에는 도판트로서 화합물 D-96을 넣은 후, 두 물질을 다른 속도로 증발시켜 각각 3중량%의 양으로 도핑함으로써 상기 정공전달층 위에 40nm 두께의 발광층을 증착하였다. 이어서, 또다른 셀 두 군데에 2,4-비스(9,9-디메틸-9H-플루오렌-2-일)-6-(나프탈렌-2-일)-1,3,5-트리아진과 리튬 퀴놀레이트를 1:1의 속도로 증발시켜 발광층 위에 30nm 두께의 전자전달층을 증착하였다. 이어서, 전자주입층으로 리튬 퀴놀레이트를 2nm 두께로 증착한 후, 다른 진공 증착장비를 이용하여 Al 음극을 80nm의 두께로 증착하여 OLED 소자를 제조하였다.
그 결과, 3.4의 전압에서 26.4cd/A의 효율이 나왔으며, 1000cd/m2의 적색발광이 확인되었다. 5000nit의 휘도에서 발광이 90%로 떨어지는데 걸린 시간은 390시간 이상이었다.
[소자 실시예 2] 본 발명에 따른 화합물을 이용한 OLED 소자 제작
발광재료로서 호스트에 화합물 A-40을 사용한것 외에는 실시예 1과 동일한 방법으로 OLED소자를 제작하였다. 그 결과, 4.1V의 전압에서 27cd/A의 발광효율을 보였으며, 1000cd/m2의 적색발광이 확인되었다. 5000nit의 휘도에서 발광이 90%로 떨어지는데 걸린 시간은 60시간 이상이었다.
[소자 실시예 3] 본 발명에 따른 화합물을 이용한 OLED 소자 제작
발광재료로서 호스트에 화합물 A-39을 사용한것 외에는 실시예 1과 동일한 방법으로 OLED소자를 제작하였다. 그 결과, 4.4V의 전압에서 27.6cd/A의 발광효율을 보였으며, 1000cd/m2의 적색발광이 확인되었다. 5000nit의 휘도에서 발광이 90%로 떨어지는데 걸린 시간은 110시간 이상이었다.
[소자 실시예 4] 본 발명에 따른 화합물을 이용한 OLED 소자 제작
발광재료로서 호스트에 화합물 A-1을 사용한것 외에는 실시예 1과 동일한 방법으로 OLED소자를 제작하였다. 그 결과, 3.8 V의 전압에서 26.2cd/A의 발광효율을 보였으며, 1000cd/m2의 적색발광이 확인되었다. 5000nit의 휘도에서 발광이 90%로 떨어지는데 걸린 시간은 100시간 이상이었다.
[소자 실시예 5] 본 발명에 따른 화합물을 이용한 OLED 소자 제작
발광재료로서 호스트에 화합물 A-119을 사용한것 외에는 실시예 1과 동일한 방법으로 OLED소자를 제작하였다. 그 결과, 4.9 V의 전압에서 26.5cd/A의 발광효율을 보였으며, 1000cd/m2의 적색발광이 확인되었다. 5000nit의 휘도에서 발광이 90%로 떨어지는데 걸린 시간은 50시간 이상이었다.
[소자 실시예 6] 본 발명에 따른 화합물을 이용한 OLED 소자 제작
발광재료로서 호스트에 화합물 A-16을 사용한것 외에는 실시예 1과 동일한 방법으로 OLED소자를 제작하였다. 그 결과, 3.4V의 전압에서 19.5cd/A의 발광효율을 보였으며, 1000cd/m2의 적색발광이 확인되었다. 5000nit의 휘도에서 발광이 90%로 떨어지는데 걸린 시간은 70시간 이상이었다.
[소자 실시예 7] 본 발명에 따른 화합물을 이용한 OLED 소자 제작
발광재료로서 호스트에 화합물 A-286을 사용한것 외에는 실시예 1과 동일한 방법으로 OLED소자를 제작하였다. 그 결과, 3.9V의 전압에서 28.4cd/A의 발광효율을 보였으며, 1000cd/m2의 적색발광이 확인되었다. 5000nit의 휘도에서 발광이 90%로 떨어지는데 걸린 시간은 10시간 이상이었다.
[소자 실시예 8] 본 발명에 따른 화합물을 이용한 OLED 소자제작
발광재료로서 호스트에 화합물 A-278을 사용한것 외에는 실시예 1과 동일한 방법으로 OLED소자를 제작하였다. 그 결과, 3.4V의 전압에서 24.7cd/A의 발광효율을 보였으며, 1000cd/m2의 적색발광이 확인되었다. 5000nit의 휘도에서 발광이 90%로 떨어지는데 걸린 시간은 140시간 이상이었다.
[소자 실시예 9] 본 발명에 따른 화합물을 이용한 OLED 소자제작
발광재료로서 호스트에 화합물 A-78을 사용한것 외에는 실시예 1과 동일한 방법으로 OLED소자를 제작하였다. 그 결과, 3.7V의 전압에서 26.6cd/A의 발광효율을 보였으며, 1000cd/m2의 적색발광이 확인되었다. 5000nit의 휘도에서 발광이 90%로 떨어지는데 걸린 시간은 110시간 이상이었다.
[소자 실시예 10] 본 발명에 따른 화합물을 이용한 OLED 소자제작
발광재료로서 호스트에 화합물 A-159을 사용한것 외에는 실시예 1과 동일한 방법으로 OLED소자를 제작하였다. 그 결과, 3.5V의 전압에서 23.8cd/A의 발광효율을 보였으며, 1000cd/m2의 적색발광이 확인되었다. 5000nit의 휘도에서 발광이 90%로 떨어지는데 걸린 시간은 180시간 이상이었다.
[소자 실시예 11] 본 발명에 따른 화합물을 이용한 OLED 소자 제작
발광재료로서 호스트에 화합물 A-289을 사용한 것 외에는 실시예 1과 동일한 방법으로 OLED소자를 제작하였다. 그 결과, 3.6V의 전압에서 26.0cd/A의 발광효율을 보였으며, 1000cd/m2의 적색발광이 확인되었다. 5000nit의 휘도에서 발광이 90%로 떨어지는데 걸린 시간은 200시간 이상이었다.
[소자 실시예 12] 본 발명에 따른 화합물을 이용한 OLED 소자 제작
발광재료로서 호스트에 화합물 A-91을 사용한것 외에는 실시예 1과 동일한 방법으로 OLED소자를 제작하였다. 그 결과, 3.4V의 전압에서 27.3cd/A의 발광효율을 보였으며, 1000cd/m2의 적색발광이 확인되었다. 5000nit의 휘도에서 발광이 90%로 떨어지는데 걸린 시간은 380시간 이상이었다.
[소자 실시예 13] 본 발명에 따른 화합물을 이용한 OLED 소자 제작
발광재료로서 호스트에 화합물 A-287을 사용한것 외에는 실시예 1과 동일한 방법으로 OLED소자를 제작하였다. 그 결과, 4.5V의 전압에서 26.0cd/A의 발광효율을 보였으며, 1000cd/m2의 적색발광이 확인되었다. 5000nit의 휘도에서 발광이 90%로 떨어지는데 걸린 시간은 10시간 이상이었다.
[소자 실시예 14] 본 발명에 따른 화합물을 이용한 OLED 소자 제작
제2 정공 전달층을 N-(4-(9,9-디페닐-9H,9'H-[2,9'-비플루오렌]-9'-일)페닐)-9,9-디메틸-N-페닐-9H-플루오렌-2-아민을 사용하고, 발광 재료로서 호스트에 화합물 A-92을 사용한것 외에는 실시예 1과 동일한 방법으로 OLED소자를 제작하였다. 그 결과, 3.4V의 전압에서 27.5cd/A의 발광효율을 보였으며, 1000cd/m2의 적색발광이 확인되었다. 5000nit의 휘도에서 발광이 90%로 떨어지는데 걸린 시간은 90시간 이상이었다.
[ 비교예 1] 종래의 유기 전계 발광 화합물을 이용한 OLED 소자 제조
발광 재료로서 호스트에는 4,4'-N,N'-디카바졸-비페닐을 사용한 것 외에는 실시예1과 동일한 방법으로 OLED소자를 제작하였다. 그 결과, 10.3 V의 전압에서17cd/A의 발광효율을 보였으며, 1000cd/m2의 적색 발광이 확인되었다. 5000nit의 휘도에서 발광이 90%로 떨어지는데 걸린 시간이 1시간 미만이었다.
본 발명에 따른 유기 전계 발광 화합물은 선행문헌 중 어디에도 개시된 바가 없는 구조의 화합물일 뿐만 아니라, 가교된 트리아릴아민 구조의 화합물에 관한 선행문헌들에 기재된 합성법에 의해서는 합성될 수 없는 화합물이다. 본 발명에 따른 유기 전계 발광 화합물은 구동 전압이 낮고, 전류 효율 및 전력 효율과 같은 발광 효율이 우수하면서도 구동 수명이 개선된 유기 전계 발광 소자를 제공할 수 있다. 특히, 인돌로[3,2,1-jk]카바졸과 같은 종래 기술의 화합물의 경우, 인광 호스트, 특히 인광 적색 호스트로 사용하기 적당한 HOMO 레벨, LUMO 레벨, Triplet을 가지지 않은 반면, 본 발명의 화합물은 인광 적색 호스트에 사용하기에 적합한 HOMO, LUMO 레벨 및 triplet을 갖는다. 이에 따라, 본 발명의 화합물은 상기 소자 실시예에서 보는 바와 같이, 인광 적색 호스트로서 사용하였을 때, 낮은 구동전압, 우수한 발광 효율, 및 순도 높은 색구현이 가능하다.

Claims (8)

  1. 하기 화학식 1로 표시되는 유기 전계 발광 화합물:
    [화학식 1]
    Figure pat00140

    상기 화학식 1에서,
    상기 X 및 Y 는 각각 독립적으로, -CR12- 또는 -N- 이고, 단, X와 Y 모두가 -CR12-인 것은 아니고,
    R1 내지 R12은 각각 독립적으로 수소, 중수소, 할로겐, 시아노, 치환 또는 비치환 (C1-C30)알킬, 치환 또는 비치환 (C6-C30)아릴, 치환 또는 비치환 (3-30 원)헤테로아릴, 치환 또는 비치환 (C3-C30)시클로알킬, 치환 또는 비치환 (C1-C30)알콕시, 치환 또는 비치환 트리(C1-C30)알킬실릴, 치환 또는 비치환 디(C1-C30)알킬(C6-C30)아릴실릴, 치환 또는 비치환 (C1-C30)알킬디(C6-C30)아릴실릴, 치환 또는 비치환 트리(C6-C30)아릴실릴, 치환 또는 비치환 모노- 또는 디-(C1-C30)알킬아미노, 치환 또는 비치환 모노- 또는 디-(C6-C30)아릴아미노, 또는 치환 또는 비치환 (C1-C30)알킬(C6-C30)아릴아미노이거나; 인접한 치환체와 서로 연결되어 치환 또는 비치환의 (3-30 원) 단일환 또는 다환의 지환족 또는 방향족 고리를 형성할 수 있고, 이 때 상기 형성된 지환족 또는 방향족 고리의 탄소 원자는 질소, 산소 및 황으로부터 선택되는 하나 이상의 헤테로원자로 대체될 수 있고;
    상기 헤테로아릴은 B, N, O, S, P(=O), Si 및 P로부터 선택된 하나 이상의 헤테로원자를 포함한다.
  2. 제1항에 있어서, 상기 R1 내지 R12에서, 치환 알킬, 치환 아릴, 치환 헤테로아릴, 치환 시클로알킬, 치환 알콕시, 치환 트리알킬실릴, 치환 디알킬아릴실릴, 치환 알킬디아릴실릴, 치환 트리아릴실릴, 치환 모노- 또는 디-알킬아미노, 치환 모노- 또는 디-아릴아미노, 치환 알킬아릴아미노, 및 치환 단일환 또는 다환의 지환족 또는 방향족 고리의 치환체는, 각각 독립적으로 중수소, 할로겐, 시아노, 카르복실, 니트로, 히드록시, (C1-C30)알킬, 할로(C1-C30)알킬, (C1-C30)알콕시, (C1-C30)알킬티오, (C3-C30)시클로알킬, (3-7원)헤테로시클로알킬, (C6-C30)아릴옥시, (C6-C30)아릴티오, (C6-C30)아릴이나 디(C6-C30)아릴아미노로 치환되거나 비치환된 (3-30원)헤테로아릴, (3-30원)헤테로아릴이나 디(C6-C30)아릴아미노로 치환되거나 비치환된 (C6-C30)아릴, 트리(C1-C30)알킬실릴, 트리(C6-C30)아릴실릴, 디(C1-C30)알킬(C6-C30)아릴실릴, (C1-C30)알킬디(C6-C30)아릴실릴, 아미노, 모노 또는 디(C1-C30)알킬아미노, 모노 또는 디(C6-C30)아릴아미노, (C1-C30)알킬(C6-C30)아릴아미노, (C1-C30)알킬카보닐, (C1-C30)알콕시카보닐, (C6-C30)아릴카보닐, 디(C6-C30)아릴보로닐, 디(C1-C30)알킬보로닐, (C1-C30)알킬(C6-C30)아릴보로닐, (C6-C30)아르(C1-C30)알킬 및 (C1-C30)알킬(C6-C30)아릴로 이루어진 군으로부터 선택되는 1종 이상인, 유기 전계 발광 화합물.
  3. 제1항에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 4 중 어느 하나로 표시되는 화합물인, 유기 전계 발광 화합물.
    [화학식 2] [화학식 3] [화학식 4]
    Figure pat00141
    Figure pat00142
    Figure pat00143

    상기 화학식 2 내지 4에서,
    R1 내지 R12 는 제1항에서 정의된 바와 동일하다.
  4. 제1항에 있어서, 상기 R1 내지 R12는 각각 독립적으로, 수소, 치환 또는 비치환 (C1-C20)알킬, 치환 또는 비치환 (C6-C20)아릴, 치환 또는 비치환 (5-30 원)헤테로아릴, 또는 치환 또는 비치환된 디(C6-C20)아릴아미노이거나, 인접한 치환체와 연결되어 치환 또는 비치환 (5-15원) 단일환 또는 다환의 방향족 고리를 형성하는, 유기 전계 발광 화합물.
  5. 제4항에 있어서, 상기 R1 내지 R12는 각각 독립적으로, 수소, 치환 또는 비치환 (C1-C20)알킬, 또는 하기 화학식 5-1 내지 5-9 중 어느 하나이거나, 인접한 치환체와 연결되어 치환 또는 비치환의 벤젠 고리 또는 치환 또는 비치환의 나프탈렌 고리를 형성하는, 유기 전계 발광 화합물.
    [화학식 5-1] [화학식 5-2] [화학식 5-3]
    Figure pat00144
    Figure pat00145
    Figure pat00146

    [화학식 5-4] [화학식 5-5]
    Figure pat00147
    Figure pat00148

    [화학식 5-6] [화학식 5-7]
    Figure pat00149
    Figure pat00150

    [화학식 5-8] [화학식 5-9]
    Figure pat00151
    Figure pat00152

    상기 화학식 5-1 내지 5-9에서,
    La, Lb, Lc, 및 Ld는 각각 독립적으로 단일 결합, 치환 또는 비치환 (C6-C30)아릴렌, 또는 치환 또는 비치환 (3-30원)헤테로아릴렌이고;
    Z는 -S-, -O-, -NR13-, 또는 -CR14R15-이고;
    R13 내지 R15는 각각 독립적으로 수소, 치환 또는 비치환 (C1-C30)알킬, 치환 또는 비치환 (C6-C30)아릴, 치환 또는 비치환 (3-30원)헤테로아릴, 치환 또는 비치환 (C3-C30)시클로알킬, 또는 치환 또는 비치환 (3-7원)헤테로시클로알킬이고;
    R31 내지 R37은 각각 독립적으로 수소, 중수소, 할로겐, 시아노, 치환 또는 비치환 (C1-C30)알킬, 치환 또는 비치환 (C3-C30)시클로알킬, 치환 또는 비치환 (C3-C30)시클로알케닐, 치환 또는 비치환 (3-7원)헤테로시클로알킬, 치환 또는 비치환 (C6-C30)아릴, 치환 또는 비치환 (3-30원)헤테로아릴, 치환 또는 비치환 트리(C1-C30)알킬실릴, 치환 또는 비치환 트리(C6-C30)아릴실릴, 치환 또는 비치환 디(C1-C30)알킬(C6-C30)아릴실릴, 치환 또는 비치환 (C1-C30)알킬디(C6-C30)아릴실릴, 모노 또는 디(C1-C30)알킬아미노, 모노 또는 디(C6-C30)아릴아미노, 또는 (C1-C30)알킬(C6-C30)아릴아미노이거나; 인접한 치환기와 연결되어, 치환 또는 비치환된 (3-30원)의 단일환 또는 다환의 지환족 또는 방향족 고리를 형성할 수 있고, 상기 형성된 지환족 또는 방향족 고리의 탄소 원자는 질소, 산소 및 황으로부터 선택되는 하나 이상의 헤테로원자로 대체될 수 있고;
    상기 헤테로아릴(렌) 및 헤테로시클로알킬은 각각 독립적으로 B, N, O, S, P(=O), Si 및 P로 부터 선택된 하나 이상의 헤테로원자를 포함하고;
    a는 1 내지 3의 정수이고; b 내지 d 및 f는 1 내지 4의 정수이고; e는 1 내지 5의 정수이고; 상기 a 내지 f가 2 이상의 정수일 경우, 각각의 R31 내지 R36은 서로 동일하거나 상이할 수 있고,
    *는 연결 자리를 나타낸다.
  6. 제5항에 있어서, 상기 R1 내지 R7 중 적어도 하나는 상기 화학식 5-6 내지 5-8 중 어느 하나이고, 여기서, 상기 화학식 5-6의 Z는 -NR13-인 유기 전계 발광 화합물.
  7. 제1항에 있어서, 상기 화합물이 하기 화합물로부터 선택되는 유기 전계 발광 화합물.
    Figure pat00153

    Figure pat00154

    Figure pat00155

    Figure pat00156

    Figure pat00157

    Figure pat00158

    Figure pat00159

    Figure pat00160

    Figure pat00161

    Figure pat00162

    Figure pat00163

    Figure pat00164

    Figure pat00165

    Figure pat00166

    Figure pat00167

    Figure pat00168

    Figure pat00169

    Figure pat00170

    Figure pat00171

    Figure pat00172

    Figure pat00173

    Figure pat00174

    Figure pat00175

    Figure pat00176

    Figure pat00177

    Figure pat00178

    Figure pat00179

    Figure pat00180

    Figure pat00181

    Figure pat00182

    Figure pat00183

    Figure pat00184

    Figure pat00185

    Figure pat00186

    Figure pat00187

    Figure pat00188

    Figure pat00189
  8. 제1항에 기재된 화합물을 포함하는 유기 전계 발광 소자.
KR1020150057081A 2014-05-02 2015-04-23 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자 KR102372950B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580021260.XA CN106232601B (zh) 2014-05-02 2015-04-30 有机电致发光化合物和包含所述化合物的有机电致发光装置
EP15786646.8A EP3137467B1 (en) 2014-05-02 2015-04-30 Organic electroluminescent compound and organic electroluminescent device comprising the same
US15/306,123 US9859507B2 (en) 2014-05-02 2015-04-30 Organic electroluminescent compound and organic electroluminescent device comprising the same
JP2016564077A JP6571109B2 (ja) 2014-05-02 2015-04-30 有機電界発光化合物及びそれを含む有機電界発光デバイス
PCT/KR2015/004436 WO2015167300A1 (en) 2014-05-02 2015-04-30 Organic electroluminescent compound and organic electroluminescent device comprising the same
TW104114031A TWI551601B (zh) 2014-05-02 2015-05-01 有機電場發光化合物及包含該化合物之有機電場發光裝置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140053261 2014-05-02
KR1020140053261 2014-05-02
KR20140117823 2014-09-04
KR1020140117823 2014-09-04

Publications (2)

Publication Number Publication Date
KR20150126283A true KR20150126283A (ko) 2015-11-11
KR102372950B1 KR102372950B1 (ko) 2022-03-14

Family

ID=54605738

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150057081A KR102372950B1 (ko) 2014-05-02 2015-04-23 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자

Country Status (6)

Country Link
US (1) US9859507B2 (ko)
EP (1) EP3137467B1 (ko)
JP (1) JP6571109B2 (ko)
KR (1) KR102372950B1 (ko)
CN (1) CN106232601B (ko)
TW (1) TWI551601B (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116625A1 (en) * 2015-12-30 2017-07-06 Solvay Usa Inc. Spirobifluorene derivatives having nitrogen-containing heteroaryl rings and their use in organic electronics
KR20180032527A (ko) * 2015-08-04 2018-03-30 베이징 이터널 머터리얼 테크놀로지 씨오., 엘티디 화합물 및 유기 전계 발광 소자
WO2019022435A1 (ko) * 2017-07-25 2019-01-31 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20200008607A (ko) * 2017-05-22 2020-01-28 메르크 파텐트 게엠베하 전자 디바이스를 위한 헥사시클릭 헤테로방향족 화합물
CN111433209A (zh) * 2017-11-14 2020-07-17 德山新勒克斯有限公司 有机电气元件用化合物、利用其的有机电气元件及其电子装置
WO2021101293A1 (ko) * 2019-11-22 2021-05-27 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR20230048290A (ko) * 2014-05-27 2023-04-11 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101884173B1 (ko) * 2014-05-23 2018-08-02 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20150136452A (ko) * 2014-05-27 2015-12-07 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102508566B1 (ko) * 2014-07-10 2023-03-13 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101595697B1 (ko) * 2014-10-14 2016-02-26 주식회사 엘지화학 함질소 다환 화합물 및 이를 이용하는 유기 발광 소자
JPWO2017038728A1 (ja) * 2015-08-28 2018-06-14 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
US20220127285A1 (en) * 2019-01-16 2022-04-28 Merck Patent Gmbh Materials for organic electroluminescent devices
CN112110920B (zh) * 2019-06-19 2023-06-09 北京鼎材科技有限公司 一种有机电致发光化合物及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120095997A (ko) 2009-11-18 2012-08-29 메르크 파텐트 게엠베하 Oled 용 질소-함유 축합 헤테로시클릭 화합물
KR20130104451A (ko) * 2012-03-14 2013-09-25 덕산하이메탈(주) 인돌로퀴녹살린 유도체를 포함하는 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
JP2014073965A (ja) * 2012-10-02 2014-04-24 Canon Inc 新規ベンゾインドロカルバゾール化合物、これを有する有機発光素子、表示装置、画像情報処理装置、照明装置、画像形成装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101506919B1 (ko) 2008-10-31 2015-03-30 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전자 소자
KR101477614B1 (ko) * 2010-09-17 2014-12-31 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
JP6046950B2 (ja) * 2011-09-02 2016-12-21 高砂香料工業株式会社 N−(ヘテロ)アリールアゾール類の製造方法
KR20130127563A (ko) * 2012-05-02 2013-11-25 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20140082486A (ko) 2012-12-24 2014-07-02 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101427620B1 (ko) 2013-05-14 2014-08-07 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120095997A (ko) 2009-11-18 2012-08-29 메르크 파텐트 게엠베하 Oled 용 질소-함유 축합 헤테로시클릭 화합물
KR20130104451A (ko) * 2012-03-14 2013-09-25 덕산하이메탈(주) 인돌로퀴녹살린 유도체를 포함하는 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
JP2014073965A (ja) * 2012-10-02 2014-04-24 Canon Inc 新規ベンゾインドロカルバゾール化合物、これを有する有機発光素子、表示装置、画像情報処理装置、照明装置、画像形成装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230048290A (ko) * 2014-05-27 2023-04-11 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20180032527A (ko) * 2015-08-04 2018-03-30 베이징 이터널 머터리얼 테크놀로지 씨오., 엘티디 화합물 및 유기 전계 발광 소자
WO2017116625A1 (en) * 2015-12-30 2017-07-06 Solvay Usa Inc. Spirobifluorene derivatives having nitrogen-containing heteroaryl rings and their use in organic electronics
KR20200008607A (ko) * 2017-05-22 2020-01-28 메르크 파텐트 게엠베하 전자 디바이스를 위한 헥사시클릭 헤테로방향족 화합물
WO2019022435A1 (ko) * 2017-07-25 2019-01-31 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20190011463A (ko) * 2017-07-25 2019-02-07 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN111433209A (zh) * 2017-11-14 2020-07-17 德山新勒克斯有限公司 有机电气元件用化合物、利用其的有机电气元件及其电子装置
WO2021101293A1 (ko) * 2019-11-22 2021-05-27 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자

Also Published As

Publication number Publication date
KR102372950B1 (ko) 2022-03-14
EP3137467B1 (en) 2018-12-26
CN106232601B (zh) 2019-02-26
JP2017515809A (ja) 2017-06-15
US9859507B2 (en) 2018-01-02
EP3137467A4 (en) 2017-10-25
TW201609729A (zh) 2016-03-16
US20170047528A1 (en) 2017-02-16
JP6571109B2 (ja) 2019-09-04
CN106232601A (zh) 2016-12-14
EP3137467A1 (en) 2017-03-08
TWI551601B (zh) 2016-10-01

Similar Documents

Publication Publication Date Title
KR102129236B1 (ko) 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101712808B1 (ko) 유기 전계 발광 화합물, 및 이를 포함하는 복수종의 호스트 재료 및 유기 전계 발광 소자
KR102372950B1 (ko) 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
CN110078742B (zh) 新颖有机电致发光化合物、和包含其的多组分主体材料与有机电致发光装置
EP3201200B1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
KR20170066241A (ko) 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20150124902A (ko) 복수종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
KR102430648B1 (ko) 정공 전달 재료 및 이를 포함하는 유기 전계 발광 소자
KR102397506B1 (ko) 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20160018406A (ko) 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20140035737A (ko) 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102419711B1 (ko) 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102552768B1 (ko) 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20170067643A (ko) 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102516317B1 (ko) 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20140082486A (ko) 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20160037107A (ko) 유기 전계 발광 화합물, 및 이를 포함하는 유기 전계 발광 재료 및 유기 전계 발광 소자
KR20170031019A (ko) 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102432976B1 (ko) 복수종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
KR20170070826A (ko) 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
CN106459074B (zh) 有机电致发光化合物和包含所述化合物的有机电致发光装置
KR20160001635A (ko) 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20190138378A (ko) 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102626972B1 (ko) 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20190053792A (ko) 유기 전계 발광 화합물, 이를 포함하는 유기 전계 발광 재료, 및 유기 전계 발광 소자

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant