KR20150116400A - 요철 검출 장치 - Google Patents

요철 검출 장치 Download PDF

Info

Publication number
KR20150116400A
KR20150116400A KR1020150046773A KR20150046773A KR20150116400A KR 20150116400 A KR20150116400 A KR 20150116400A KR 1020150046773 A KR1020150046773 A KR 1020150046773A KR 20150046773 A KR20150046773 A KR 20150046773A KR 20150116400 A KR20150116400 A KR 20150116400A
Authority
KR
South Korea
Prior art keywords
light
axis direction
lens
workpiece
mask
Prior art date
Application number
KR1020150046773A
Other languages
English (en)
Inventor
게이지 노마루
Original Assignee
가부시기가이샤 디스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시기가이샤 디스코 filed Critical 가부시기가이샤 디스코
Publication of KR20150116400A publication Critical patent/KR20150116400A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/228Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

본 발명은 피가공물에 가공이 실시된 가공 상태를 정확히 검증할 수 있는 검출 장치를 제공하는 것을 목적으로 한다. 요철 검출 장치는, 소정 파장대를 갖는 광을 발광하는 펄스 점등 광원과, 펄스 점등 광원이 발광한 광을 수속하는 제1 수속 렌즈와, 제1 수속 렌즈에 의해 수속된 광을 분기하는 하프 미러와, 하프 미러에 의해 분기한 광을 집광하여 피가공물 유지 수단에 유지된 피가공물에 조사하는 색수차 렌즈와, 피가공물 유지 수단에 유지된 피가공물에서 반사하여 색수차 렌즈 및 하프 미러를 통과한 귀환광을 집광하는 제1 집광 렌즈와, 제1 집광 렌즈의 집광점 위치에 배치되어 집광된 귀환광만을 통과시키는 마스크와, 마스크를 통과한 귀환광을 수속하는 제2 수속 렌즈와, 제2 수속 렌즈에 의해 수속된 귀환광의 파장에 대응하여 분광하는 회절 격자와, 회절 격자에 의해 분광된 귀환광을 집광하는 제2 집광 렌즈와, 제2 집광 렌즈의 집광점 위치에 배치된 촬상 소자와, 촬상 소자에 의해 생성된 화상을 저장하는 메모리를 구비한 제어 수단과, 제어 수단의 메모리에 저장된 화상을 표시하는 출력 수단을 구비하고, 피가공물 유지 수단에 유지된 피가공물의 요철을 검출하는 검출 영역의 폭 방향을 Y축 방향으로 하고, 길이 방향을 X축 방향으로 한 경우, 마스크에는 Y축 방향으로 연장되는 슬릿이 형성되어 있으며, 촬상 소자는, 마스크에 형성된 슬릿을 통과한 귀환광에 기초하여 Y축 방향의 2차원 단면 형상을 생성한다.

Description

요철 검출 장치{UNEVENNESS DETECTION APPARATUS}
본 발명은 웨이퍼 등의 피가공물에 가공된 레이저 가공홈이나 절삭홈 등의 가공홈의 가공 상태나, 연삭 가공된 피가공면의 연삭흔(硏削痕)의 요철 상태를 검출하기 위한 요철 검출 장치에 관한 것이다.
반도체 디바이스 제조 프로세스에 있어서는, 대략 원판 형상인 웨이퍼의 표면에 격자형으로 배열된 분할 예정 라인에 의해 복수의 영역이 구획되고, 이 구획된 영역에 IC, LSI 등의 디바이스를 형성한다. 그리고, 웨이퍼의 이면을 연삭하여 소정의 두께로 형성한 후에, 분할 예정 라인을 따라 절단함으로써 디바이스가 형성된 영역을 분할하여 개개의 디바이스를 제조하고 있다.
웨이퍼의 이면을 연삭하는 연삭 장치는, 웨이퍼를 유지하는 척 테이블과, 이 척 테이블에 유지된 웨이퍼를 연삭하는 연삭 휠을 구비한 연삭 수단과, 웨이퍼의 두께를 계측하는 두께 계측 수단 등을 구비하고 있다(예컨대, 특허문헌 1 참조).
또한, 전술한 웨이퍼의 분할 예정 라인을 따른 분할은, 절삭 장치나 레이저 가공 장치에 의해 행해지고 있다.
절삭 장치는, 웨이퍼를 유지하는 척 테이블과, 이 척 테이블에 유지된 웨이퍼를 절삭하는 절삭 블레이드를 구비한 절삭 수단과, 척 테이블에 유지된 웨이퍼에 형성된 분할 예정 라인을 검출하는 촬상 수단 등을 구비하고 있다(예컨대, 특허문헌 2 참조).
또한, 레이저 가공 장치는, 웨이퍼를 유지하는 척 테이블과, 이 척 테이블에 유지된 웨이퍼에 레이저 광선을 조사하는 레이저 광선 조사 수단과, 척 테이블에 유지된 웨이퍼에 형성된 분할 예정 라인을 검출하는 촬상 수단 등을 구비하고 있다(예컨대, 특허문헌 3 참조).
그리고, 절삭 장치나 레이저 가공 장치에 있어서는, 촬상 수단에 의해 절삭홈이나 레이저 가공홈을 촬상함으로써 절삭홈의 상태나 레이저 가공홈의 상태를 검출하여, 가공 조건을 조정할 수 있다(예컨대, 특허문헌 4 참조).
[특허문헌 1] 일본 특허 공개 제2002-319559호 공보 [특허문헌 2] 일본 특허 공개 평성 제7-45556호 공보 [특허문헌 3] 일본 특허 공개 제2008-12566호 공보 [특허문헌 4] 일본 특허 공개 평성 제5-326700호 공보
그러나, 촬상 수단에 의해 촬상되는 화상은 표면에서의 2차원 화상이며, 표면으로부터 소정 깊이의 2차원 화상, 절삭홈이나 레이저 가공홈의 깊이나 단면 형상의 3차원 화상, 데브리의 상태 등의 3차원 화상을 검출할 수 없어, 가공 상태를 상세히 검증할 수 없다고 하는 문제가 있다.
또한, 연삭 장치에 있어서는 연삭흔의 요철 상태를 검증할 수 없다고 하는 문제가 있다.
본 발명은 상기 사실을 감안하여 이루어진 것으로, 그 주된 기술적 과제는, 피가공물에 가공이 실시된 가공 상태를 정확히 검증할 수 있는 요철 검출 장치를 제공하는 것에 있다.
상기 주된 기술적 과제를 해결하기 위해서, 본 발명에 의하면, 피가공물 유지 수단에 유지된 피가공물의 요철을 검출하는 요철 검출 장치로서,
소정 파장대를 갖는 광을 발광하는 펄스 점등 광원과, 이 펄스 점등 광원이 발광한 광을 수속하는 제1 수속 렌즈와, 이 제1 수속 렌즈에 의해 수속된 광을 분기하는 하프 미러와, 이 하프 미러에 의해 분기한 광을 집광하여 상기 피가공물 유지 수단에 유지된 피가공물에 조사하는 색수차 렌즈와, 상기 피가공물 유지 수단에 유지된 피가공물에서 반사하여 상기 색수차 렌즈 및 상기 하프 미러를 통과한 귀환광을 집광하는 제1 집광 렌즈와, 이 제1 집광 렌즈의 집광점 위치에 배치되어 집광된 귀환광만을 통과시키는 마스크와, 이 마스크를 통과한 귀환광을 수속하는 제2 수속 렌즈와, 이 제2 수속 렌즈에 의해 수속된 귀환광의 파장에 대응하여 분광하는 회절 격자와, 이 회절 격자에 의해 분광된 귀환광을 집광하는 제2 집광 렌즈와, 이 제2 집광 렌즈의 집광점 위치에 배치된 촬상 소자와, 이 촬상 소자에 의해 생성된 화상을 저장하는 메모리를 구비한 제어 수단과, 이 제어 수단의 메모리에 저장된 화상을 표시하는 출력 수단을 구비하고,
상기 피가공물 유지 수단에 유지된 피가공물의 요철을 검출하는 검출 영역의 폭 방향을 Y축 방향으로 하고, 길이 방향을 X축 방향으로 한 경우, 상기 마스크에는 Y축 방향으로 연장되는 슬릿이 형성되어 있으며,
상기 촬상 소자는, 상기 마스크에 형성된 슬릿을 통과한 귀환광에 기초하여 Y축 방향의 2차원 단면 형상을 생성하는 것을 특징으로 하는 요철 검출 장치가 제공된다.
상기 제어 수단은, 피가공물 유지 수단을 X축 방향으로 이동시키면서 Y축 방향의 2차원 단면 형상을 메모리에 저장하고, 상기 메모리에 저장된 Y축 방향의 2차원 단면 형상을 X축 방향으로 배열하여 3차원 형상을 생성한다.
또한, 상기 요철 검출 장치는, 피가공물 유지 수단에 유지된 피가공물에 가공을 실시하는 가공 수단과, 상기 피가공물 유지 수단과 상기 가공 수단을 상대적으로 X축 방향으로 가공 이송하는 가공 이송 수단을 구비하는 가공기에 배치된다.
본 발명의 요철 검출 장치에 의하면, 마스크는 Y축 방향으로 연장되는 슬릿을 갖고 있고, 촬상 소자는, 마스크에 형성된 슬릿을 통과한 귀환광에 기초하여 Y축 방향의 2차원 단면 형상을 생성하기 때문에, 레이저 가공홈이나 절삭홈 등의 요철 상태를 2차원 단면 형상으로 검출할 수 있어, 레이저 가공 조건이나 절삭 조건 등을 조정하여 적정한 가공 조건을 설정할 수 있다.
또한, 가공물 유지 수단을 X축 방향으로 이동시키면서 Y축 방향의 2차원 단면 형상을 메모리에 저장하고, 상기 메모리에 저장된 Y축 방향의 2차원 단면 형상을 X축 방향으로 배열하여 3차원 형상을 생성할 수 있어, 레이저 가공홈이나 절삭홈 등 3차원 형상에 기초하여 레이저 가공 조건이나 절삭 조건 등의 가공 조건을 더욱 정밀도 좋게 조정할 수 있다.
도 1은 요철 검출 장치가 장비된 레이저 가공기의 사시도이다.
도 2는 요철 검출 장치의 주요부 단면도이다.
도 3은 도 2에 도시한 요철 검출 장치를 구성하는 색수차 렌즈의 집광 상태를 도시한 설명도이다.
도 4는 도 1에 도시한 레이저 가공기에 장비되는 요철 검출 장치 및 요철 검출 장치를 Z축 방향으로 이동 가능하게 지지하는 Z축 이동 수단을 분해하여 도시한 사시도이다.
도 5는 요철 검출 장치의 제어 수단을 도시한 블록 구성도이다.
도 6은 피가공물로서의 반도체 웨이퍼가 환형의 프레임에 장착된 다이싱 테이프의 표면에 장착된 상태의 사시도이다.
도 7은 도 1에 도시한 레이저 가공기에 의한 레이저 가공홈 형성 공정의 설명도이다.
도 8은 요철 검출 장치의 촬상 소자에 의해 출력되는 2차원 단면 형상 화상의 설명도이다.
도 9는 도 8에 도시한 Y축 방향의 2차원 단면 형상에 기초하여 생성된 레이저 가공홈의 3차원 형상의 설명도이다.
이하, 요철 검출 장치의 적합한 실시형태에 대해, 첨부 도면을 참조하여 더욱 상세히 설명한다.
도 1에는, 요철 검출 장치가 장비된 가공기로서의 레이저 가공기의 사시도가 도시되어 있다. 도 1에 도시한 레이저 가공기(1)는, 정지(靜止) 베이스(2)와, 이 정지 베이스(2)에 화살표 X로 나타내는 가공 이송 방향(X축 방향)으로 이동 가능하게 배치되어 피가공물을 유지하는 피가공물 유지 기구(3)와, 정지 베이스(2) 상에 배치된 가공 수단인 레이저 광선 조사 수단으로서의 레이저 광선 조사 유닛(4)을 구비하고 있다.
상기 피가공물 유지 기구(3)는, 정지 베이스(2) 상에 화살표 X로 나타내는 X축 방향을 따라 평행하게 배치된 한 쌍의 안내 레일(31, 31)과, 이 안내 레일(31, 31) 상에 X축 방향으로 이동 가능하게 배치된 제1 슬라이딩 블록(32)과, 이 제1 슬라이딩 블록(32) 상에 X축 방향과 직교하는 Y축 방향으로 이동 가능하게 배치된 제2 슬라이딩 블록(33)과, 이 제2 슬라이딩 블록(33) 상에 원통 부재(34)에 의해 지지된 커버 테이블(35)과, 피가공물 유지 수단으로서의 척 테이블(36)을 구비하고 있다. 이 척 테이블(36)은 다공성 재료로 형성된 흡착 척(361)을 구비하고 있고, 흡착 척(361)의 상면인 유지면 상에 피가공물인 예컨대 원판 형상의 반도체 웨이퍼를 도시하지 않은 흡인 수단에 의해 유지하도록 되어 있다. 이와 같이 구성된 척 테이블(36)은, 원통 부재(34) 내에 배치된 도시하지 않은 펄스 모터에 의해 회전시켜진다. 한편, 척 테이블(36)에는, 반도체 웨이퍼 등의 피가공물을 보호 테이프를 통해 지지하는 환형의 프레임을 고정하기 위한 클램프(362)가 배치되어 있다.
상기 제1 슬라이딩 블록(32)은, 그 하면에 상기 한 쌍의 안내 레일(31, 31)과 감합(嵌合)하는 한 쌍의 피안내홈(321, 321)이 형성되어 있고, 그 상면에 Y축 방향을 따라 평행하게 형성된 한 쌍의 안내 레일(322, 322)이 설치되어 있다. 이와 같이 구성된 제1 슬라이딩 블록(32)은, 피안내홈(321, 321)이 한 쌍의 안내 레일(31, 31)에 감합됨으로써, 한 쌍의 안내 레일(31, 31)을 따라 X축 방향으로 이동 가능하게 구성된다. 도시한 실시형태에서의 피가공물 유지 기구(3)는, 제1 슬라이딩 블록(32)을 한 쌍의 안내 레일(31, 31)을 따라 X축 방향으로 이동시키기 위한 X축 이동 수단(37)을 구비하고 있다. X축 이동 수단(37)은, 상기 한 쌍의 안내 레일(31과 31) 사이에 평행하게 배치된 수나사 로드(371)와, 이 수나사 로드(371)를 회전 구동하기 위한 펄스 모터(372) 등의 구동원을 포함하고 있다. 수나사 로드(371)는, 그 일단이 상기 정지 베이스(2)에 고정된 베어링 블록(373)에 회전 가능하게 지지되어 있고, 그 타단이 상기 펄스 모터(372)의 출력축에 전동 연결되어 있다. 한편, 수나사 로드(371)는, 제1 슬라이딩 블록(32)의 중앙부 하면에 돌출되어 설치된 도시하지 않은 암나사 블록에 형성된 관통 암나사 구멍에 나사 결합되어 있다. 따라서, 펄스 모터(372)에 의해 수나사 로드(371)를 정회전 및 역회전 구동함으로써, 제1 슬라이딩 블록(32)은 안내 레일(31, 31)을 따라 X축 방향으로 이동시켜진다.
본 실시형태에서의 레이저 가공기(1)는, 상기 척 테이블(36)의 X축 방향 위치를 검출하기 위한 X축 방향 위치 검출 수단(374)을 구비하고 있다. X축 방향 위치 검출 수단(374)은, 안내 레일(31)을 따라 배치된 리니어 스케일(374a)과, 제1 슬라이딩 블록(32)에 배치되어 제1 슬라이딩 블록(32)과 함께 리니어 스케일(374a)을 따라 이동하는 판독 헤드(374b)로 이루어져 있다. 이 X축 방향 위치 검출 수단(374)의 판독 헤드(374b)는, 본 실시형태에서는 1 ㎛마다 1펄스의 펄스 신호를 후술하는 제어 수단에 보낸다. 그리고 후술하는 제어 수단은, 입력한 펄스 신호를 카운트함으로써, 척 테이블(36)의 X축 방향 위치를 검출한다. 한편, 상기 X축 이동 수단(37)의 구동원으로서 펄스 모터(372)를 이용한 경우에는, 펄스 모터(372)에 구동 신호를 출력하는 후술하는 제어 수단의 구동 펄스를 카운트함으로써, 척 테이블(36)의 X축 방향 위치를 검출할 수도 있다. 또한, 상기 X축 이동 수단(37)의 구동원으로서 서보 모터를 이용한 경우에는, 서보 모터의 회전수를 검출하는 로터리 인코더가 출력하는 펄스 신호를 후술하는 제어 수단에 보내고, 제어 수단이 입력한 펄스 신호를 카운트함으로써, 척 테이블(36)의 X축 방향 위치를 검출할 수도 있다.
상기 제2 슬라이딩 블록(33)은, 그 하면에 상기 제1 슬라이딩 블록(32)의 상면에 설치된 한 쌍의 안내 레일(322, 322)과 감합하는 한 쌍의 피안내홈(331, 331)이 형성되어 있고, 이 피안내홈(331, 331)을 한 쌍의 안내 레일(322, 322)에 감합함으로써, X축 방향과 직교하는 화살표 Y로 나타내는 Y축 방향으로 이동 가능하게 구성된다. 본 실시형태에서의 피가공물 유지 기구(3)는, 제2 슬라이딩 블록(33)을 제1 슬라이딩 블록(32)에 설치된 한 쌍의 안내 레일(322, 322)을 따라 Y축 방향으로 이동시키기 위한 Y축 이동 수단(38)을 구비하고 있다. Y축 이동 수단(38)은, 상기 한 쌍의 안내 레일(322과 322) 사이에 평행하게 배치된 수나사 로드(381)와, 이 수나사 로드(381)를 회전 구동하기 위한 펄스 모터(382) 등의 구동원을 포함하고 있다. 수나사 로드(381)는, 그 일단이 상기 제1 슬라이딩 블록(32)의 상면에 고정된 베어링 블록(383)에 회전 가능하게 지지되어 있고, 그 타단이 상기 펄스 모터(382)의 출력축에 전동 연결되어 있다. 한편, 수나사 로드(381)는, 제2 슬라이딩 블록(33)의 중앙부 하면에 돌출되어 설치된 도시하지 않은 암나사 블록에 형성된 관통 암나사 구멍에 나사 결합되어 있다. 따라서, 펄스 모터(382)에 의해 수나사 로드(381)를 정회전 및 역회전 구동함으로써, 제2 슬라이딩 블록(33)은 안내 레일(322, 322)을 따라 Y축 방향으로 이동시켜진다.
본 실시형태에서의 레이저 가공기(1)는, 상기 제2 슬라이딩 블록(33)의 Y축 방향 위치를 검출하기 위한 Y축 방향 위치 검출 수단(384)을 구비하고 있다. Y축 방향 위치 검출 수단(384)은, 안내 레일(322)을 따라 배치된 리니어 스케일(384a)과, 제2 슬라이딩 블록(33)에 배치되어 제2 슬라이딩 블록(33)과 함께 리니어 스케일(384a)을 따라 이동하는 판독 헤드(384b)로 이루어져 있다. 이 Y축 방향 위치 검출 수단(384)의 판독 헤드(384b)는, 도시한 실시형태에서는 1 ㎛마다 1펄스의 펄스 신호를 후술하는 제어 수단에 보낸다. 그리고 후술하는 제어 수단은, 입력한 펄스 신호를 카운트함으로써, 척 테이블(36)의 Y축 방향 위치를 검출한다. 한편, 상기 Y축 이동 수단(38)의 구동원으로서 펄스 모터(382)를 이용한 경우에는, 펄스 모터(382)에 구동 신호를 출력하는 후술하는 제어 수단의 구동 펄스를 카운트함으로써, 척 테이블(36)의 Y축 방향 위치를 검출할 수도 있다. 또한, 상기 Y축 이동 수단(38)의 구동원으로서 서보 모터를 이용한 경우에는, 서보 모터의 회전수를 검출하는 로터리 인코더가 출력하는 펄스 신호를 후술하는 제어 수단에 보내고, 제어 수단이 입력한 펄스 신호를 카운트함으로써, 척 테이블(36)의 Y축 방향 위치를 검출할 수도 있다.
상기 레이저 광선 조사 유닛(4)은, 상기 정지 베이스(2) 상에 배치된 지지 부재(41)와, 이 지지 부재(41)에 의해 지지되어 실질상 수평으로 연장되는 기체(機體) 케이싱(42)과, 이 기체 케이싱(42)에 배치된 레이저 광선 조사 수단(5)과, 레이저 가공해야 할 가공 영역을 검출하는 촬상 수단(6)을 구비하고 있다. 레이저 광선 조사 수단(5)은, 기체 케이싱(42) 내에 배치되며 도시하지 않은 펄스 레이저 광선 발진기나 반복 주파수 설정 수단을 구비한 펄스 레이저 광선 발진 수단 및 이 펄스 레이저 광선 발진 수단으로부터 발진된 펄스 레이저 광선을 집광하여 척 테이블(36)에 유지된 피가공물에 조사하는 가공 헤드(51)를 구비하고 있다.
상기 촬상 수단(6)은, 기체 케이싱(42)에 가공 헤드(51)로부터 X축 방향의 동일선상에 소정 거리를 두고 배치되어 있다. 이 촬상 수단(6)은, 가시광선에 의해 촬상하는 통상의 촬상 소자(CCD) 외에, 피가공물에 적외선을 조사하는 적외선 조명 수단과, 이 적외선 조명 수단에 의해 조사된 적외선을 포착하는 광학계와, 이 광학계에 의해 포착된 적외선에 대응한 전기 신호를 출력하는 촬상 소자(적외선 CCD) 등으로 구성되어 있으며, 촬상한 화상 신호를 후술하는 제어 수단에 보낸다.
본 실시형태에서의 레이저 가공기(1)에는, 척 테이블(36)에 유지된 피가공물에 가공이 실시된 가공 상태를 검출하기 위한 요철 검출 장치(7)가 배치되어 있다. 요철 검출 장치(7)는, 기체 케이싱(42)에 배치된 Z축 이동 수단(9)에 의해 Z축 방향으로 이동 가능하게 지지되어 있다. 요철 검출 장치(7)는, 도 2에 도시한 바와 같이 Z축 이동 수단(9)에 지지되는 장치 하우징(71)에 배치되며 소정 파장대(예컨대 400 ㎚∼800 ㎚)를 갖는 주파수가 예컨대 10 ㎑인 펄스 점등 광원(72)과, 이 펄스 점등 광원(72)이 발광한 광을 수속하는 제1 수속 렌즈(73)와, 이 제1 수속 렌즈(73)에 의해 수속된 광을 분기하는 하프 미러(74)와, 이 하프 미러(74)에 의해 분기한 광을 집광하여 척 테이블(36)에 유지된 피가공물(W)에 조사하는 색수차 렌즈(75)로 이루어지는 검출광 조사 수단(70)을 구비하고 있다. 한편, 상기 펄스 점등 광원(72)으로서는, 크세논 플래시 램프나 펄스 점등 백색 LED 등을 이용할 수 있다. 또한, 상기 색수차 렌즈(75)는, 도 3에 도시한 바와 같이 입광된 광의 파장에 따라 집광점 위치가 상이하도록 기능하며, 예컨대 파장이 400 ㎚인 광은 P1에 집광하고, 파장이 600 ㎚인 광은 P2에 집광하며, 파장이 800 ㎚인 광은 P3에 집광하도록 되어 있다. 한편, 집광점 P1로부터 P3까지의 거리는 예컨대 100 ㎛로 설정되어 있다.
도 2로 되돌아가서 설명을 계속하면, 본 실시형태에서의 요철 검출 장치(7)는, 상기 검출광 조사 수단(70)을 구성하는 제1 수속 렌즈(73)를 통해 검출광이 조사되고, 하프 미러(74)에 의해 반사되어 색수차 렌즈(75)로 유도된 검출광이 척 테이블(36)에 유지된 피가공물(W)에서 반사되어 색수차 렌즈(75) 및 하프 미러(74)를 통과한 귀환광을 집광하는 제1 집광 렌즈(76)와, 이 제1 집광 렌즈(76)의 집광점 위치에 배치되어 집광된 귀환광만을 통과시키는 마스크(77)와, 이 마스크(77)를 통과한 귀환광을 수속하는 제2 수속 렌즈(78)와, 이 제2 수속 렌즈(78)에 의해 수속된 귀환광의 파장에 대응하여 분광하는 회절 격자(79)와, 이 회절 격자(79)에 의해 분광된 귀환광을 집광하는 제2 집광 렌즈(80)와, 제2 집광 렌즈(80)의 집광점 위치에 배치된 촬상 소자(81)를 구비하고 있다. 한편, 상기 마스크(77)에는, Y축 방향으로 연장되는 슬릿(771)이 형성되어 있다. 이 슬릿(771)은, 도시한 실시형태에서는 폭(Y축 방향과 직교하는 X축 방향)이 0.5 ㎜, 길이(Y축 방향)가 10 ㎜로 설정되어 있다.
다음으로, 상기 요철 검출 장치(7)를 Z축 방향으로 이동 가능하게 지지하는 Z축 이동 수단(9)에 대해, 도 4를 참조하여 설명한다. Z축 이동 수단(9)은, 상기 요철 검출 장치(7)의 장치 하우징(71)을 화살표 Z로 나타내는 Z축 방향[척 테이블(36)의 유지면에 수직인 방향]으로 이동 가능하게 지지하는 지지 케이스(91)와, 이 지지 케이스(91)에 지지된 장치 하우징(71)을 화살표 Z로 나타내는 Z축 방향으로 이동시키는 작동 수단(92)으로 이루어져 있다. 지지 케이스(91)는, 상벽(911)과 바닥벽(912)과 양 측벽(913, 914) 및 후벽(도시하지 않음)으로 이루어지고, 양 측벽(913, 914)이 앞측으로 돌출하여 안내 레일(913a, 913b)을 구성하고 있다. 상기 작동 수단(92)은, 지지 케이스(91)의 양 측벽(913, 914) 사이에 평행하게 배치되며 상벽(911)과 바닥벽(912)에 회전 가능하게 축 지지된 수나사 로드(921)와, 상벽(911)에 배치되며 수나사 로드(921)와 전동 연결된 펄스 모터(922) 등의 구동원을 포함하고 있다. 이와 같이 구성된 작동 수단(92)의 수나사 로드(921)에 상기 장치 하우징(71)의 후벽에 배치된 암나사 블록(711)에 형성된 관통 암나사 구멍(711a)이 나사 결합된다. 따라서, 펄스 모터(922)에 의해 수나사 로드(921)를 정회전 및 역회전 구동함으로써, 암나사 블록(711)이 장착되어 있는 장치 하우징(71)은 안내 레일(913a, 913b)을 따라 Z축 방향으로 이동시켜진다.
본 실시형태에서의 Z축 이동 수단(9)은, 요철 검출 장치(7)의 Z축 방향 위치를 검출하기 위한 Z축 방향 위치 검출 수단(90)을 구비하고 있다. Z축 방향 위치 검출 수단(90)은, 상기 안내 레일(913a)에 배치된 리니어 스케일(90a)과, 상기 요철 검출 장치(7)의 장치 하우징(71)에 부착되며 장치 하우징(71)과 함께 리니어 스케일(90a)을 따라 이동하는 판독 헤드(90b)로 이루어져 있다. 이와 같이 구성된 Z축 방향 위치 검출 수단(90)의 판독 헤드(90b)는, 도시한 실시형태에서는 1 ㎛마다 1펄스의 펄스 신호를 후술하는 제어 수단에 보낸다.
본 실시형태에서의 요철 검출 장치(7)는, 상기 촬상 소자(81)로부터 출력되는 화상 신호에 기초하여 화상 정보를 생성하는 도 5에 도시한 제어 수단(10)을 구비하고 있다. 한편, 제어 수단(10)은, 요철 검출 장치(7)의 구성 수단 이외에 레이저 가공기(1)의 각 구성 수단도 제어하도록 되어 있다. 제어 수단(10)은 컴퓨터에 의해 구성되어 있고, 제어 프로그램에 따라 연산 처리하는 중앙 처리 장치(CPU)(101)와, 제어 프로그램 등을 저장하는 리드 온리 메모리(ROM)(102)와, 연산 결과 등을 저장하는 기록 및 판독 가능한 랜덤 액세스 메모리(RAM)(103)와, 입력 인터페이스(104) 및 출력 인터페이스(105)를 구비하고 있다. 제어 수단(10)의 입력 인터페이스(104)에는, 상기 X축 방향 위치 검출 수단(374), Y축 방향 위치 검출 수단(384), 촬상 수단(6), 촬상 소자(81), Z축 방향 위치 검출 수단(90)의 판독 헤드(90b) 등으로부터의 검출 신호가 입력된다. 그리고, 제어 수단(10)의 출력 인터페이스(105)로부터는, 상기 X축 이동 수단(37)의 펄스 모터(372), Y축 이동 수단(38)의 펄스 모터(382), 레이저 광선 조사 수단(5), 상기 Z축 이동 수단(9)의 펄스 모터(922), 펄스 점등 광원(72), 표시 수단이나 프린터 등의 출력 수단(100) 등에 제어 신호를 출력한다. 한편, 상기 랜덤 액세스 메모리(RAM)(103)는, 상기 촬상 소자(81)에 의해 생성된 화상 등을 저장하는 기억 영역을 구비하고 있다.
본 실시형태에서의 레이저 가공기(1)는 이상과 같이 구성되어 있고, 이하 그 작용에 대해 설명한다. 도 6에는, 전술한 레이저 가공기(1)에 의해 가공되는 피가공물로서의 반도체 웨이퍼(20)가 환형의 프레임(F)에 장착된 다이싱 테이프(T)의 표면에 장착된 상태의 사시도가 도시되어 있다. 도 6에 도시한 반도체 웨이퍼(20)는, 실리콘 웨이퍼로 이루어져 있고, 표면(20a)에 복수의 분할 예정 라인(201)이 격자형으로 형성되어 있으며, 상기 복수의 분할 예정 라인(201)에 의해 구획된 복수의 영역에 IC, LSI 등의 디바이스(202)가 형성되어 있다.
전술한 레이저 가공기(1)를 이용해서, 상기 반도체 웨이퍼(20)의 분할 예정 라인(201)을 따라 레이저 광선을 조사하여, 반도체 웨이퍼(20)의 내부에 분할 예정 라인(201)을 따라 레이저 가공홈을 형성하는 레이저 가공의 실시형태에 대해 설명한다.
먼저 전술한 도 1에 도시한 레이저 가공기(1)의 척 테이블(36) 상에 반도체 웨이퍼(20)가 접착된 다이싱 테이프(T)측을 배치하고, 상기 척 테이블(36) 상에 다이싱 테이프(T)를 통해 반도체 웨이퍼(20)를 흡인 유지한다. 따라서, 척 테이블(36) 상에 다이싱 테이프(T)를 통해 흡인 유지된 반도체 웨이퍼(20)는, 표면(20a)이 상측이 된다. 한편, 다이싱 테이프(T)가 장착된 환형의 프레임(F)은, 척 테이블(36)에 배치된 클램프(362)에 의해 고정된다. 이렇게 해서 반도체 웨이퍼(20)를 흡인 유지한 척 테이블(36)은, X축 이동 수단(37)에 의해 촬상 수단(6)의 바로 아래에 위치하게 된다.
상기한 바와 같이 하여 척 테이블(36)이 촬상 수단(6)의 바로 아래에 위치하게 되면, 촬상 수단(6) 및 제어 수단(10)에 의해 반도체 웨이퍼(20)의 레이저 가공해야 할 가공 영역을 검출하는 얼라인먼트 작업을 실행한다. 즉, 촬상 수단(6) 및 제어 수단(10)은, 반도체 웨이퍼(20)의 소정 방향으로 형성되어 있는 분할 예정 라인(201)과 레이저 광선 조사 수단(5)의 가공 헤드(51)와의 위치 맞춤을 행하기 위한 패턴 매칭 등의 화상 처리를 실행하여, 얼라인먼트를 수행한다. 또한, 반도체 웨이퍼(20)에 형성되어 있는 소정 방향과 직교하는 방향으로 형성되어 있는 분할 예정 라인(201)에 대해서도, 마찬가지로 얼라인먼트가 수행된다.
전술한 바와 같이 얼라인먼트가 행해졌다면, 제어 수단(10)은 척 테이블(36)을 이동시켜 도 7의 (a)에 도시한 바와 같이 소정의 분할 예정 라인(201)의 일단[도 7의 (a)에 있어서 좌단]을 레이저 광선 조사 수단(5)의 가공 헤드(51)의 바로 아래에 위치시킨다. 그리고, 가공 헤드(51)로부터 조사되는 펄스 레이저 광선의 집광점(P)을 반도체 웨이퍼(20)의 표면(20a)(상면) 부근에 맞춘다. 다음으로, 제어 수단(10)은 레이저 광선 조사 수단(5)의 가공 헤드(51)로부터 반도체 웨이퍼(20)에 대해 흡수성을 갖는 파장의 펄스 레이저 광선을 조사하면서 X축 이동 수단(37)을 작동하여 척 테이블(36)을 도 7의 (a)에 있어서 화살표 X1로 나타내는 방향으로 소정의 가공 이송 속도로 이동시킨다. 그리고, 분할 예정 라인(201)의 타단[도 7의 (b)에 있어서 우단]이 가공 헤드(51)의 바로 아래 위치에 도달했다면, 레이저 광선 조사 수단(5)에 의한 펄스 레이저 광선의 조사를 정지하고, 척 테이블(36)의 이동을 정지한다. 이 결과, 도 7의 (b) 및 도 7의 (c)에 도시한 바와 같이 반도체 웨이퍼(20)에는, 분할 예정 라인(201)을 따라 레이저 가공홈(210)이 형성된다(레이저 가공홈 형성 공정).
한편, 상기 레이저 가공홈 형성 공정은, 예컨대 이하의 가공 조건으로 행해진다.
파장 : 355 ㎚
반복 주파수 : 50 ㎑
평균 출력 : 5 W
집광 스폿 : φ10 ㎛
가공 이송 속도 : 200 ㎜/초
다음으로, 전술한 레이저 가공홈 형성 공정을 실시함으로써 형성된 레이저 가공홈(210)이 어떠한 상태로 가공되어 있는지를 확인하기 위한 레이저 가공홈 확인 공정을 실시한다. 레이저 가공홈 확인 공정은, X축 이동 수단(37)을 작동하여 상기 레이저 가공홈 형성 공정이 실시된 반도체 웨이퍼(20)가 유지되어 있는 척 테이블(36)을 요철 검출 장치(7)의 하측으로 이동시키고, 반도체 웨이퍼(20)에 형성된 레이저 가공홈(210)을 색수차 렌즈(75)의 바로 아래에 위치시킨다. 다음으로, Z축 이동 수단(9)을 작동하여 요철 검출 장치(7)를 대기 위치로부터 하강시켜 소정의 검출 위치에 위치시킨다.
다음으로, 요철 검출 장치(7)의 검출광 조사 수단(70)을 구성하는 펄스 점등 광원(72)을 작동하여 소정 파장대(예컨대 400 ㎚∼800 ㎚)를 갖는 광을 발광한다. 펄스 점등 광원(72)이 발광한 광은, 제1 수속 렌즈(73), 하프 미러(74), 색수차 렌즈(75)를 통해 반도체 웨이퍼(20)에 형성된 레이저 가공홈(210)을 향해 조사된다. 이렇게 해서 반도체 웨이퍼(20)에 형성된 레이저 가공홈(210)을 향해 조사된 광은, 반도체 웨이퍼(20)의 표면 및 레이저 가공홈(210)의 벽면에서 반사되고, 귀환광이 색수차 렌즈(75), 하프 미러(74), 제1 집광 렌즈(76), 마스크(77)의 슬릿(771), 제2 수속 렌즈(78)를 통해 회절 격자(79)로 유도된다. 회절 격자(79)로 유도된 귀환광은, 파장에 대응하여 분광되고 제2 집광 렌즈(80)를 통해 촬상 소자(81)에 도달한다. 촬상 소자(81)는, 파장에 대응하여 분광된 광의 광 강도에 기초하여 도 8에 도시한 바와 같이 Y축 방향[레이저 가공홈(210)의 폭 방향]과 Z축 방향[레이저 가공홈(210)의 깊이 방향]의 2차원 단면 형상을 생성하여 제어 수단(10)에 출력한다. 이 작업을 실시할 때에 제어 수단(10)은, X축 이동 수단(37)을 작동하여, 도 8에 도시한 바와 같이 X축 방향 위치마다(X1, X2, X3‥‥) Y축 방향[레이저 가공홈(210)의 폭 방향]과 Z축 방향[레이저 가공홈(210)의 깊이 방향]의 관계를 구하고, 랜덤 액세스 메모리(RAM)(103)에 저장하며, 출력 수단(100)에 출력하여, 모니터 등의 표시 수단에 표시시키거나 프린터에 의해 프린트 아웃시킨다. 이렇게 해서 레이저 가공홈(210)의 2차원 단면 형상을 출력 수단(100)으로서의 모니터 등의 표시 수단에 표시시키거나 프린터에 의해 프린트 아웃시킴으로써, 레이저 가공홈(210)의 가공 상태를 검증할 수 있다.
다음으로, 제어 수단(10)은 랜덤 액세스 메모리(RAM)(103)에 저장된 X축 방향 위치마다(X1, X2, X3‥‥)의 Y축 방향[레이저 가공홈(210)의 폭 방향]과 Z축 방향[레이저 가공홈(210)의 깊이 방향]의 2차원 단면 형상을 X축 방향으로 배열하고, 도 9에 도시한 바와 같이 3차원 형상을 작성하여 랜덤 액세스 메모리(RAM)(103)에 저장하며, 출력 수단(100)에 출력하여, 모니터 등의 표시 수단에 표시시키거나 프린터에 의해 프린트 아웃시킨다. 이렇게 해서 레이저 가공홈(210)의 3차원 형상을 취득함으로써, 가공 상태를 상세히 검증할 수 있기 때문에, 가공 조건을 조정하여 적정한 가공 조건을 설정할 수 있다.
이상, 본 발명을 도시한 실시형태에 기초하여 설명하였으나, 본 발명은 전술한 실시형태에만 한정되는 것은 아니며, 본 발명의 취지의 범위에서 여러 가지 변형은 가능하다. 예컨대, 전술한 실시형태에서는, 본 발명을 레이저 가공기에 적용한 예를 나타내었으나, 본 발명은 절삭 가공기에 적용하여 절삭홈의 깊이나 단면 형상을 검증하거나, 연삭 가공기에 적용하여 연삭흔의 요철 상태를 검증할 수 있다.
2: 정지 베이스 3: 피가공물 유지 기구
36: 척 테이블 37: X축 이동 수단
38: Y축 이동 수단 4: 레이저 광선 조사 유닛
5: 레이저 광선 조사 수단 51: 가공 헤드
6: 촬상 수단 7: 요철 검출 장치
70: 검출광 조사 수단 72: 펄스 점등 광원
73: 제1 수속 렌즈 74: 하프 미러
75: 색수차 렌즈 76: 제1 집광 렌즈
77: 마스크 78: 제2 수속 렌즈
79: 회절 격자 80: 제2 집광 렌즈
81: 촬상 소자 9: Z축 이동 수단
10: 제어 수단 20: 반도체 웨이퍼

Claims (3)

  1. 피가공물 유지 수단에 유지된 피가공물의 요철을 검출하는 요철 검출 장치로서,
    미리 정해진 파장대를 갖는 광을 발광하는 펄스 점등 광원과,
    상기 펄스 점등 광원이 발광한 광을 수속하는 제1 수속 렌즈와,
    상기 제1 수속 렌즈에 의해 수속된 광을 분기하는 하프 미러와,
    상기 하프 미러에 의해 분기한 광을 집광하여 상기 피가공물 유지 수단에 유지된 피가공물에 조사하는 색수차 렌즈와,
    상기 피가공물 유지 수단에 유지된 피가공물에서 반사하여 상기 색수차 렌즈 및 상기 하프 미러를 통과한 귀환광을 집광하는 제1 집광 렌즈와,
    상기 제1 집광 렌즈의 집광점 위치에 배치되어 집광된 귀환광만을 통과시키는 마스크와,
    상기 마스크를 통과한 귀환광을 수속하는 제2 수속 렌즈와,
    상기 제2 수속 렌즈에 의해 수속된 귀환광의 파장에 대응하여 분광하는 회절 격자와,
    상기 회절 격자에 의해 분광된 귀환광을 집광하는 제2 집광 렌즈와,
    상기 제2 집광 렌즈의 집광점 위치에 배치된 촬상 소자와,
    상기 촬상 소자에 의해 생성된 화상을 저장하는 메모리를 구비한 제어 수단과,
    상기 제어 수단의 메모리에 저장된 화상을 표시하는 출력 수단을 구비하고,
    상기 피가공물 유지 수단에 유지된 피가공물의 요철을 검출하는 검출 영역의 폭 방향을 Y축 방향으로 하고, 길이 방향을 X축 방향으로 한 경우, 상기 마스크는 Y축 방향으로 연장되는 슬릿을 가지며,
    상기 촬상 소자는, 상기 마스크에 형성된 슬릿을 통과한 귀환광에 기초하여 Y축 방향의 2차원 단면 형상을 생성하는 것을 특징으로 하는 요철 검출 장치.
  2. 제1항에 있어서, 상기 제어 수단은, 상기 피가공물 유지 수단을 X축 방향으로 이동시키면서 Y축 방향의 2차원 단면 형상을 메모리에 저장하고, 상기 메모리에 저장된 Y축 방향의 2차원 단면 형상을 X축 방향으로 배열하여 3차원 형상을 생성하는 요철 검출 장치.
  3. 제1항 또는 제2항에 있어서, 상기 피가공물 유지 수단에 유지된 피가공물에 가공을 실시하는 가공 수단과, 상기 피가공물 유지 수단과 상기 가공 수단을 상대적으로 X축 방향으로 가공 이송하는 가공 이송 수단을 구비하는 가공기에 배치되는 요철 검출 장치.
KR1020150046773A 2014-04-07 2015-04-02 요철 검출 장치 KR20150116400A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014078504A JP2015200537A (ja) 2014-04-07 2014-04-07 凹凸検出装置
JPJP-P-2014-078504 2014-04-07

Publications (1)

Publication Number Publication Date
KR20150116400A true KR20150116400A (ko) 2015-10-15

Family

ID=54210204

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150046773A KR20150116400A (ko) 2014-04-07 2015-04-02 요철 검출 장치

Country Status (5)

Country Link
US (1) US9470516B2 (ko)
JP (1) JP2015200537A (ko)
KR (1) KR20150116400A (ko)
CN (1) CN104972229B (ko)
TW (1) TWI637143B (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106583273A (zh) * 2015-10-19 2017-04-26 昆山金群力精密组件有限公司 全自动ccd检测排除设备
JP2018077148A (ja) * 2016-11-10 2018-05-17 株式会社ディスコ 検査方法
DE102017102762B4 (de) * 2017-02-13 2023-06-15 Precitec Gmbh & Co. Kg Verfahren zum Erkennen von Fügepositionen von Werkstücken und Laserbearbeitungskopf mit einer Vorrichtung zur Durchführung dieses Verfahrens
JP6866217B2 (ja) * 2017-04-21 2021-04-28 株式会社ディスコ 切削装置
CN109465696A (zh) * 2018-11-20 2019-03-15 国网浙江省电力有限公司紧水滩水力发电厂 一种智能碳刷研磨装置
JP7339086B2 (ja) * 2019-09-11 2023-09-05 株式会社ディスコ 計測装置
CN111561884B (zh) * 2020-04-28 2021-01-19 昆山市建设工程质量检测中心 一种用于预制混凝土叠合板表面粗糙度检测的方法
CN111366084B (zh) * 2020-04-28 2021-06-25 上海工程技术大学 基于信息融合的零件尺寸检测平台及检测方法、融合方法
JP7310717B2 (ja) * 2020-05-27 2023-07-19 株式会社島津製作所 表面分析装置
JP2022038528A (ja) * 2020-08-27 2022-03-10 株式会社ディスコ 加工装置
JP2022148506A (ja) * 2021-03-24 2022-10-06 株式会社ディスコ レーザー加工装置
CN113175875B (zh) * 2021-06-02 2023-01-24 厦门大学 一种基于线激光挤压成型凸模刃口磨损测量装置与方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH671828A5 (ko) * 1987-06-26 1989-09-29 Battelle Memorial Institute
JP2628256B2 (ja) 1992-05-15 1997-07-09 株式会社ディスコ カーフチェックに基づく自動ダイシングシステム
JP3076179B2 (ja) 1993-07-26 2000-08-14 株式会社ディスコ ダイシング装置
JP2002319559A (ja) * 2001-04-23 2002-10-31 Disco Abrasive Syst Ltd 研削装置
JP2005099430A (ja) * 2003-09-25 2005-04-14 Olympus Corp 光学的観察装置、走査型顕微鏡及び経内視鏡的観察装置
CN101078691A (zh) * 2006-05-23 2007-11-28 山崎马扎克公司 激光加工机的聚光透镜的污垢检测方法及装置
JP4977411B2 (ja) * 2006-07-06 2012-07-18 株式会社ディスコ レーザー加工装置
JP2008170366A (ja) * 2007-01-15 2008-07-24 Disco Abrasive Syst Ltd チャックテーブルに保持された被加工物の計測装置およびレーザー加工機
US7961348B2 (en) * 2007-01-17 2011-06-14 Kabushiki Kaisha Toshiba Image scanning apparatus and shading correction method
JP2008268387A (ja) * 2007-04-18 2008-11-06 Nidec Tosok Corp 共焦点顕微鏡
CN201408286Y (zh) * 2009-05-12 2010-02-17 苏州德龙激光有限公司 一种新型应用于led激光切割设备的同轴影像系统
JP2011237272A (ja) * 2010-05-10 2011-11-24 Seiko Epson Corp 光距離計及び距離測定方法
US9140546B2 (en) * 2010-07-30 2015-09-22 Kla-Tencor Corporation Apparatus and method for three dimensional inspection of wafer saw marks
CN103128450B (zh) * 2013-02-19 2015-08-19 深圳市海目星激光科技有限公司 一种紫外激光加工装置

Also Published As

Publication number Publication date
JP2015200537A (ja) 2015-11-12
US20150287179A1 (en) 2015-10-08
CN104972229B (zh) 2018-01-23
CN104972229A (zh) 2015-10-14
TW201538927A (zh) 2015-10-16
TWI637143B (zh) 2018-10-01
US9470516B2 (en) 2016-10-18

Similar Documents

Publication Publication Date Title
KR20150116400A (ko) 요철 검출 장치
KR102148915B1 (ko) 가공 장치
TWI768091B (zh) 高度檢測裝置及雷射加工裝置
JP6148075B2 (ja) レーザー加工装置
JP4885762B2 (ja) チャックテーブルに保持された被加工物の計測装置およびレーザー加工機
KR102256561B1 (ko) 높이 위치 검출 장치
JP6305013B2 (ja) 加工装置
KR102226222B1 (ko) 레이저 가공 장치
JP2008170366A (ja) チャックテーブルに保持された被加工物の計測装置およびレーザー加工機
KR20160065766A (ko) 레이저 가공 장치
KR20140122181A (ko) 레이저 가공 장치
JP2011122894A (ja) チャックテーブルに保持された被加工物の計測装置およびレーザー加工機
KR20160026715A (ko) 레이저 가공 장치
KR101886357B1 (ko) 레이저 광선의 스폿 형상 검출 방법 및 스폿 형상 검출 장치
KR20180119124A (ko) 레이저 가공 방법
JP2011033383A (ja) チャックテーブルに保持された被加工物の計測装置およびレーザー加工機
KR20150057997A (ko) 검출 장치
JP2013022614A (ja) レーザー加工装置
JP2011196785A (ja) チャックテーブルに保持された被加工物の計測装置およびレーザー加工機
JP2010271071A (ja) チャックテーブルに保持された被加工物の計測装置およびレーザー加工機

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application