KR20150070979A - 전기화학소자용 분리막 - Google Patents
전기화학소자용 분리막 Download PDFInfo
- Publication number
- KR20150070979A KR20150070979A KR1020140182526A KR20140182526A KR20150070979A KR 20150070979 A KR20150070979 A KR 20150070979A KR 1020140182526 A KR1020140182526 A KR 1020140182526A KR 20140182526 A KR20140182526 A KR 20140182526A KR 20150070979 A KR20150070979 A KR 20150070979A
- Authority
- KR
- South Korea
- Prior art keywords
- porous
- separator
- film
- electrochemical device
- polymer film
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/14—Layered products comprising a layer of synthetic resin next to a particulate layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/443—Particulate material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/451—Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/454—Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/463—Separators, membranes or diaphragms characterised by their shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/494—Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D123/00—Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
- C09D123/02—Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
- C09D123/04—Homopolymers or copolymers of ethene
- C09D123/06—Polyethene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0085—Immobilising or gelification of electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
- H01M50/406—Moulding; Embossing; Cutting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
다공성 고분자 필름; 및 무기물 입자 및 유기물 입자 중 1종 이상의 입자와, 바인더 고분자를 포함하면서 상기 다공성 고분자 필름의 일면 또는 양면에 형성되어 있는 다공성 코팅층을 구비하고, 상기 다공성 고분자 필름이 필름의 표면과 평행하게 배열된 복수의 피브릴이 층 형태로 적층된 구조를 가지고, 상기 피브릴이 서로 결착되어 130 내지 200㎛ 크기의 라멜라 구조를 갖고, 상기 다공성 고분자 필름의 굴곡도가 1.60 내지 1.90인 전기화학소자용 분리막 및 이를 구비한 전기화학소자가 제시된다.
Description
본 발명은 전기화학소자용 분리막에 관한 것으로, 보다 구체적으로는 보다 향상된 Hi-pot 특성, 기계적 성능 및 열적 성능을 나타내며, 낮은 굴곡도(tortuosity) 값을 가지며 전기화학소자의 사이클 특성 향상에 일조할 수 있는 전기화학소자용 분리막에 관한 것이다.
이차전지용 분리막의 전지조립 공정에는 고압전류를 가하여 분리막 핀홀(pin-hole) 검출, 분리막 두께 불균일 검출, 분순물 검출 등의 목적으로 hipot 테스트를 실시하고 있다.
본원 명세서에서 사용되는 'hipot' 용어는 'high-potential' 용어의 축약어로 당업계에서 널리 알려져 있는 용어로, 전기화학소자와 같은 전기제품에서 전기 절연성을 증명하는데 사용되는 일종의 전기적 안전도 시험 수단을 의미하는 것으로 이해한다. hipot 테스트를 위해서는 일반적으로 절연파괴 테스트(dielectric breakdown test), 내전압 테스트(dielectric withstanding voltage test), 절연저항 테스트(insulation resistance test) 등이 수행되며, 절연파괴 테스트에서 절연파괴 전압은 예컨대, dielectric fail 발생시의 파괴전압을 측정함으로써 수행될 수 있다.
hipot 테스트를 만족시키는 조건은 최근 이차전지에서 요구되는 조건, 즉, 고용량을 위한 분리막 두께의 박막화, 고율 특성을 위한 분리막 porosity 증가, 열특성 개선을 위한 유기물 입자/무기물 입자의 로딩 및 그 로딩량의 증가, 양극 활물질의 변화 요구와 트레이드오프(trade-off) 관계를 갖는다.
보다 구체적으로,
먼저, 분리막 두께와 hipot 특성 간의 상관관계를 살펴보면 하기와 같다.
방전개시전압은 하기 수학식으로 표시되는 Paschen의 법칙을 따르는 것으로 알려져 있다:
V (방전개시전압) ∝ P (기체압력) x D (전극간 거리)
즉, 분리막 두께가 박막화될수록 전극간 거리에 비례하여 방전개시전압이 증가한다.
이어서, 분리막 다공도와 hipot 특성 간의 상관관계를 살펴보면 하기와 같다.
hipot 테스트시 누설전류(leakage current)의 매개체는 기체이며, 분리막은 이를 막는 배리어(barrier) 역할을 한다. 따라서, 분리막의 다공도(porosity)가 높아질수록 기체 분율은 증가하지만, 배리어(barrier)가 얇아지게 된다.
또한, 분리막 중의 다공성 코팅층 구성과 hipot 특성의 상관관계를 살펴보면 하기와 같다.
이물이 없다는 가정하에 hipot 테스트시 분리막은 유전장벽으로 작용한다. 즉, 분리막의 유전율이 낮을수록 유전장벽이 높아지기 때문에 방전개시전압은 높아진다. 필름 형태를 갖는 분리막, 예컨대, 폴리올레핀계 필름으로 제조된 분리막은 동일한 유전율을 갖지만, 폴리올레핀계 필름과 같은 다공성 기재 상에 다공성 코팅층이 형성된 분리막의 경우에는 다공성 코팅층의 존재로 인해 상이한 유전율을 갖게 된다. 예컨대, 폴리에틸렌 필름의 유전율은 2.25인 반면, 알루미나의 유전율은 9 이상이다. 따라서, 동일 두께의 분리막이라고 할지라도 다공성 기재의 필름의 적어도 일면에 다공성 코팅층을 포함하는지 여부에 따라 절연파괴전압이 달라질 수 있으며, 또한, 다공성 코팅층에 포함된 유기물 입자/무기물 입자의 밀도에 따라서도 절연파괴전압이 달라질 수 있다.
또한, 최근 소형 및 중대형전지 시장에서 고용량/고출력전지의 수요가 점차 늘어나고 있으며 고용량/고출력전지 설계에 맞는 박막형 분리막은 전기저항이 낮아야 하며 안전성이 유지되어야 한다.
이러한 박막형 분리막은 열적/기계적 특성이 취약하므로 안전성 강화목적으로 유/무기내열 코팅을 하여 복합분리막을 제조되고 있다. 하지만, 유/무기 내열 코팅층은 리튬이온의 흐름을 막는 저항층이므로 사이클 특성에 좋지 않은 영향을 미친다. 습식 다공성 분리막 표면은 열고정 과정에서 고온열풍에 가장 먼저 노출되고 열량흡수가 많기 때문에 열고정 온도가 높을수록 표면에서의 피브릴 모폴러지(morphology)의 변화가 매우 심하다. 이러한 분리막 기공의 2차원, 3차원상 모폴러지 변화는 개방형 기공(open pore) 구조에서 폐쇄형 기공 (closed pore) 구조로 바뀌게 됨으로 인해 사이클 특성에서 리튬이온 전달능력에 가장 큰 영향을 미친다.
따라서 현재의 불리한 Hi-pot조건을 만족할만한 기술력/경쟁력 있으며, 다공성 분리막의 표면 모폴러지의 개선과 유/무기 코팅 후에도 저항이 크지 않는 습식 복합분리막 제조가 이뤄져야 하며, 이를 통해 고출력 전지의 사이클특성을 향상 시켜야 할 필요성이 있다.
본 발명은 상술한 문제점을 고려하여 창안된 것으로서, 본 발명이 해결하고자 하는 과제는, 다공성 코팅층이 형성된 복합 분리막이 구조적으로 보다 안정화되고, 통기도 및 이온 전도도가 증가된 전기화학소자용 분리막 및 이를 구비하는 전기화학소자를 제공하는 것이다.
다만, 본 발명이 이루고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 위에서 언급되지 않은 또 다른 기술적 과제들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상술한 기술적 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면,
다공성 고분자 필름; 및
무기물 입자 및 유기물 입자 중 1종 이상의 입자와, 바인더 고분자를 포함하면서 상기 다공성 고분자 필름의 일면 또는 양면에 형성되어 있는 다공성 코팅층을 구비하고,
상기 다공성 고분자 필름이 필름의 표면과 평행하게 배열된 복수의 피브릴이 층 형태로 적층된 구조를 가지고, 상기 피브릴이 서로 결착되어 130 내지 200nm 크기의 라멜라 구조를 갖고, 상기 다공성 고분자 필름의 굴곡도가 1.60 내지 1.90이며, 이때 굴곡도는 하기 수학식으로 계산되는 전기화학소자용 분리막이 제공된다:
[수학식]
(굴곡도(τ))2= NM X ε
(상기 식에서, NM 은 맥멀린 넘버(MacMullin number)로, σ0를 σeff로 나누어서 구한 값이며, σ0는 순수한 액체 전해질의 전도도 값이고, σeff는 분리막과 액체 전해질 조합시의 전도도 값이며, ε는 분리막의 다공도를 나타낸다.)
상기 다공성 코팅층이 다공성 고분자 필름의 일면에 형성되어 있는 경우에는, 상기 다공성 고분자 필름의 굴곡도가 1.60 내지 1.75이고, 상기 다공성 코팅층이 다공성 고분자 필름의 양면에 형성되어 있는 경우에는, 상기 다공성 고분자 필름의 굴곡도가 1.76 내지 1.90일 수 있다.
상기 전기화학소자용 분리막이 2,000 내지 2,500 kg/cm2의 기계방향으로의 인장 강도 및 2,000 내지 2,500kg/cm2의 횡방향으로의 인장 강도를 가질 수 있다.
상기 다공성 고분자 필름은 다공성 폴리올레핀 필름일 수 있다.
상기 다공성 폴리올레핀 필름은 폴리에틸렌; 폴리프로필렌; 폴리부틸렌; 폴리펜텐: 폴리헥센: 폴리옥텐: 에틸렌, 프로필렌, 부텐, 펜텐, 4-메틸펜텐, 헥센, 옥텐 중 1종 이상의 공중합체, 또는 이들의 혼합물을 포함할 수 있다.
상기 다공성 고분자 필름의 두께는 5 내지 50 ㎛이고, 기공 크기 및 기공도는 각각 0.01 내지 50 ㎛ 및 10 내지 95%일 수 있다.
상기 바인더 고분자는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부티레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrile-styrene-butadiene copolymer), 및 폴리이미드(polyimide)로 이루어진 군으로부터 선택되는 1종 이상 또는 이들의 혼합물일 수 있다.
상기 무기물 입자는 유전율 상수가 5 이상, 리튬 이온 전달 능력을 갖는 무기물 입자 또는 이들의 혼합물일 수 있다.
상기 유전율 상수가 5 이상인 무기물 입자가 BaTiO3, Pb(Zr,Ti)O3(PZT), Pb1-xLaxZr1-yTiyO3(PLZT), PB(Mg3Nb2/3)O3-PbTiO3(PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2, SiC 또는 이들의 혼합물일 수 있다.
상기 리튬 이온 전달 능력을 갖는 무기물 입자가 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0<x<2, 0<y<3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 <x<2, 0<y<1, 0<z<3), (LiAlTiP)xOy 계열 글래스(glass) (0<x<4, 0<y<13), 리튬란탄티타네이트(LixLayTiO3, 0<x<2, 0<y<3), 리튬게르마니움티오포스페이트(LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1, 0<w<5), 리튬나이트라이드(LixNy, 0<x<4, 0<y<2), SiS2 계열 glass(LixSiySz, 0<x<3, 0<y<2, 0<z<4), P2S5 계열 glass(LixPySz, 0<x<3, 0<y<3, 0<z<7) 또는 이들의 혼합물일 수 있다.
상기 유기물 입자가 폴리스티렌, 폴리에틸렌, 폴리이미드, 멜라민계 수지, 페놀계 수지, 셀룰로오스, 셀룰로오스 변성체, 폴리프로필렌, 폴리에스테르, 폴리페닐렌설파이드, 폴리아라미드, 폴리아미드이미드, 폴리이미드 부틸아크릴레이트와 에틸메타아크릴레이트의 공중합체 또는 이들의 혼합물일 수 있다.
상기 무기물 입자 및 유기물 입자의 평균입경이 각각 독립적으로 0.001 내지 10 ㎛일 수 있다.
또한, 본 발명의 일 측면에 따르면, 캐소드, 애노드, 및 캐소드와 애노드 사이에 개재되는 분리막을 포함하되, 상기 분리막은 상술한 전기화학소자용 분리막인 전기화학소자가 제공된다.
상기 전기화학소자는 리튬 이차전지일 수 있다.
상기 전기화학소자는 25 내지 55℃에서 300회 사이클 후 80 내지 95%의 용량유지율을 가질 수 있다.
본 발명의 일 실시예에 분리막은 다공성 고분자 필름의 제조시 최적화된 연신배율을 갖는 열고정 전의 원단을 제막하고 난 후 내열성을 갖는 유/무기 양면 코팅공정을 실시하고, 이 후 기존 열고정 보다 높은 고온에서 열고정을 실시함에 따라, 높은 열량으로 인해 피브릴의 결착 밀도 높아지기 때문에 기계적 강도는 강해졌으며 두께는 감소하였다.
즉, 열고정에 의해 최종두께는 줄어들지만 무게는 변하지 않고 기공도와 최종두께는 낮아지기 때문에 다공성 분리막의 밀도가 높아지면서 Hi pot공정에 유리하면서 내열성이 있는 분리막 제조가 가능하다.
그 결과, 기존대비 고온의 열고정 공정을 거쳐 제작된 전지수명이 우수하며 Hi-pot특성이 향상된 새로운 분리막 제조를 통하여 전지 안전성에 큰 기여를 할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 전기화학소자용 분리막을 제조하기 위한 종래의 공정을 나타내는 개념도이다.
도 2는 본 발명의 일 실시예에 따른 전기화학소자용 분리막 제조방법을 나타내는 개념도이다.
도 3은 종래의 제조방법에 의한 전기화학소자용 분리막과 본 발명의 일 실시예에 따른 전기화학소자용 분리막에 있어서, 피브릴 구조를 비교한 개략도이다.
도 4a 내지 도 4c는 종래 분리막의 제조 방법을 도식적으로 나타낸 것이고, 도 4d는 제조된 종래 분리막의 단면을 개략적으로 나타낸 것이다.
도 5a 내지 5c는 본 발명의 분리막의 제조방법을 도식적으로 나타낸 것이고, 도 5d는 제조된 본 발명의 분리막의 단면을 개략적으로 나타낸 것이다.
도 6a 및 6b는 비교예 1-1의 다공성 고분자 필름과 실시예 1-1의 다공성 고분자 필름의 표면을 관찰한 SEM 사진이다.
도 1은 전기화학소자용 분리막을 제조하기 위한 종래의 공정을 나타내는 개념도이다.
도 2는 본 발명의 일 실시예에 따른 전기화학소자용 분리막 제조방법을 나타내는 개념도이다.
도 3은 종래의 제조방법에 의한 전기화학소자용 분리막과 본 발명의 일 실시예에 따른 전기화학소자용 분리막에 있어서, 피브릴 구조를 비교한 개략도이다.
도 4a 내지 도 4c는 종래 분리막의 제조 방법을 도식적으로 나타낸 것이고, 도 4d는 제조된 종래 분리막의 단면을 개략적으로 나타낸 것이다.
도 5a 내지 5c는 본 발명의 분리막의 제조방법을 도식적으로 나타낸 것이고, 도 5d는 제조된 본 발명의 분리막의 단면을 개략적으로 나타낸 것이다.
도 6a 및 6b는 비교예 1-1의 다공성 고분자 필름과 실시예 1-1의 다공성 고분자 필름의 표면을 관찰한 SEM 사진이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일부 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명의 일 측면에 따른 전기화학소자용 분리막은, 다공성 고분자 필름; 및
무기물 입자 및 유기물 입자 중 1종 이상의 입자와, 바인더 고분자를 포함하면서 상기 다공성 고분자 필름의 일면 또는 양면에 형성되어 있는 다공성 코팅층을 구비하고, 상기 다공성 고분자 필름이 필름의 표면과 평행하게 배열된 복수의 피브릴이 층 형태로 적층된 구조를 가지고, 상기 피브릴이 서로 결착되어 130 내지 200㎛ 크기의 라멜라 구조를 갖고, 상기 다공성 고분자 필름의 굴곡도가 1.60 내지 1.90이다.
상기 굴곡도라 함은 분리막 내에 형성된 기공이 얼마나 굴곡성을 가지는지를 나타내는 지표로서 기공 내를 이동하는 분자가 실제로 이동하는 거리를 동일 지점간의 직선 거리로 나누어 계산할 수 있다. 즉, 굴곡도가 1이면 이동 거리가 직선인 기공을 의미하고 굴곡도가 1보다 커질수록 굴곡성이 심한 기공을 의미한다.
이때, 상기 굴곡도(tortuosity)는 다음과 같은 수학식으로 결정된다.
[수학식 1]
(굴곡도(τ))2= NM X ε
상기 식에서, NM 은 맥멀린 넘버(MacMullin number)로, σ0를 σeff로 나누어서 구한 값이며, σ0는 순수한 액체 전해질의 전도도 값이고, σeff는 분리막과 액체 전해질 조합시의 전도도 값이며, ε는 분리막의 다공도를 나타낸다.
예컨대, 본 발명의 일 실시양태에서, 전해액 자체의 이온 전도도 10.2 mS/cm(25℃) 및 분리막 다공도는 38 내지 40%를 적용할 수 있다.
상기 분리막의 굴곡도 값이 적을수록 분리막의 통기시간이 짧아지고 이온 전도도가 커져서 이차전지 사이클 특성에 유리하게 작용하게 된다. 다만, 분리막의 통기시간이 동일 또는 유사하다고 하더라도 분리막의 굴곡도 값이 유의하게 상이할 수 있으며, 따라서, 상이한 이온 전도도를 가질 수 있다.
상기 굴곡도는 1.60 내지 1.90이며, 더 바람직하게는 (1.60) 내지 (1.80)일 수 있다. 상기 굴곡도가 1.90 보다 크면 리튬 이온의 원활한 이동이 확보될 수 없고, 1.60 보다 작으면 리튬이온의 이동저항이 크게 줄어들고 기존 양/음극 설계 balance가 맞지 않아 리튬 덴드라이트를 형성할 수 있다.
또한, 이러한 굴곡도는 다공성 코팅층이 다공성 고분자 필름의 일면 또는 양면에 형성되었는지 여부에 따라서도 그 값이 영향을 받을 수 있다.
본 발명의 일 실시예에 따르면, 상기 다공성 코팅층이 다공성 고분자 필름의 일면에 형성되어 있는 경우에는, 상기 다공성 고분자 필름의 굴곡도가 1.60 내지 1.75이고, 상기 다공성 코팅층이 다공성 고분자 필름의 양면에 형성되어 있는 경우에는, 상기 다공성 고분자 필름의 굴곡도가 1.75 내지 1.90일 수 있다.
이렇게 다공성 코팅층이 일면에 형성된 경우와 양면에 형성된 경우에 굴곡도의 값이 상이한 범위를 갖게 되는 이유는 일면 다공성 코팅층 대비 양면 다공성 코팅층의 경우 전체적인 두께와 저항이 증가하기 때문이다.
여기서 피브릴이라 함은 다공성 고분자 필름을 구성하는 고분자의 사슬이 필름 제조 과정에서 길이 방향으로 연신 및 배향됨으로써 이웃한 분자 사슬 사이의 결합력이 켜저서 길이 방향으로 집합하여 형성된 것을 의미한다.
그 결과, 다공성 고분자 필름은 필름의 표면과 평행하게 배열된 복수의 피브릴이 층 형태로 적층된 구조를 가지게 된다.
본 발명의 일 실시예에 따르면, 상기 다공성 고분자 필름에서 피브릴이 서로 결착되어 있고, 더 바람직하게는 상기 다공성 고분자 필름의 두께 전체에서 피브릴 간에 결착되어 있을 수 있다. 이러한 상기 다공성 고분자 필름의 두께 전체에서 피브릴 간에 결착되어 있다라 함은, 종래 분리막의 단면을 나타내는 도 1d에서 다공성 필름을 구성하는 피브릴이 다공성 필름의 표면에서 피브릴간 결착이 이루어지는 것과는 달리, 본 발명의 분리막 단면에서는 다공성 필름 두께 전체에서 피브릴간 결착이 이루어져 있음(도 2d 참조)을 의미한다. 이와 같은 피브릴간 결착은 다공성 필름의 전체 두께를 감소시키는 일 요인이 되며, 통기도를 향상시키는 요인으로도 작용할 수 있다.
상기 피브릴은 서로 결착되어 라멜라 구조를 가지게 되며, 이때 상기 라멜라 구조의 크기(두께)는 130 내지 200nm, 바람직하게는 130 내지 180nm, 더 바람직하게는 130 내지 160 nm이다. 상기 라멜라 구조의 크기가 이러한 범위를 만족하는 경우, 결착밀도가 높아지면서 기계적 열적성능과 절연파괴전압(Hi-pot)이 개선되는 유리한 효과를 나타낼 수 있다.
또한, 라멜라 구조의 두께가 200nm 이상일 경우, 높은 열고정온도로 인하여 결착밀도가 더욱 증가하여 기공률이 급격히 감소하게 되어 전해액 함칭성 및 이온전도도가 크게 저하될 수 있다.
일반적으로 열고정 온도가 Tm에 가까워질수록 피브릴 및 라멜라 구조간의 모빌리티가 증가하기 때문에 그 피브릴 간의 결착밀도는 높아지게 된다. 이러한 피브릴 간의 결착밀도가 증가함에 따라, 종래에 열고정 온도가 낮은 조건으로 제조되는 분리막과 대비하여, 본 발명의 분리막은 전체적인 두께가 감소하여 밀도가 증가하게 되고 기공도가 감소하여 하이-팟(Hi-pot) 특성이 현저하게 개선될 수 있다.
한편, 종래의 습식법에 의해 다공성 코팅층이 형성된 분리막을 제조하기 위해서는, 도 1에 나타낸 바와 같이, 수지 조성물을 압출/캐스팅, 연신, 추출한 후에 열고정하여서 다공성 고분자 필름을 제조하고, 이어서 상기 다공성 고분자 필름에 코팅 슬러리를 적용하고 건조시키는 공정을 거쳤다. 이와 같이 제조된 다공성 코팅층이 형성된 분리막은 고상/액상 또는 액상/액상의 상분리 후의 연신 과정에서 피브릴 구조를 갖게 되고, 열고정을 거치면서 최종 구조가 결정된다. 즉, 종래의 방법에서는 슬러리가 코팅되지 않아 다공성 코팅층이 형성되기 전에, 다공성 고분자 필름이 열고정이 되므로, 열고정시 다공성 고분자 필름이 받는 열은 전체적으로 일정하게 되므로, 얻어지는 분리막에서는 피브릴 직경이 다공성 고분자 필름의 두께 방향에 대해서 일정하다.
한편, 본 발명의 일 실시예에 따른 전기화학소자용 분리막의 제조 방법은, 도 2를 참조하면, 가소제를 추출하여 얻어진 다공성 고분자 필름에 다공성 코팅층 형성용 슬러리를 코팅하고, 이후에 열고정 단게를 거치게 되고, 슬러리 코팅 단계 전에는 일절 열고정하는 단계를 포함하지 않는다.
그 결과, 본 발명의 일 실시예에 따른 전기화학소자용 분리막은 열고정 단계에서 이미 다공성 고분자 필름의 적어도 일면 상에 다공성 코팅층이 형성되어 있으므로, 열고정시에 다공성 고분자 필름이 받는 열은 필름의 두께 방향으로 불균일하게 되며, 얻어지는 분리막에서의 피브릴 직경도 다공성 고분자 필름의 두께 방향에 대해서 서로 차이가 있게 된다.
상기 다공성 고분자 필름이 열고정시 받는 열 전달은 다공성 코팅층이 일면 또는 양면에 형성되느냐에 따라 차이가 있고, 그에 따라, 최종 피브릴의 직경 분포도 영향을 받을 수 있다.
먼저, 본 발명의 일 양태인 다공성 코팅층이 다공성 고분자 필름의 일면에만 형성된 분리막의 경우에는 상기 열고정의 직접 적용과 간접 적용의 효과가 잘 나타난다. 다공성 코팅층이 다공성 고분자 필름의 일면에만 형성된 분리막에서, 다공성 코팅층이 형성된 후에 열고정을 적용하면 다공성 고분자 필름은 다공성 코팅을 위한 슬러리가 있는 상황에서 간접적으로 열을 받게 되므로 상대적으로 열전달이 느리게 적용된다. 반면, 다공성 코팅층이 형성되지 않은 다공성 고분자 필름에 열고정을 직접 적용하면, 상기 다공성 고분자 필름은 직접적으로 열을 받게 되므로 부분적인 용융 및 재결정화(partial melting-recrystalization)로 인해 결정이 커지고 피브릴의 직경이 커지게 된다. 그 결과, 다공성 코팅층이 형성된 필름의 표면으로부터 다공성 코팅층이 형성되지 않은 타면으로 가는 필름의 두께 방향으로 피브릴 직경이 점점 커지는 경사도(gradient)가 발생하는 경향을 가질 수 있게 된다. 이와 달리, 종래의 방법과 같이 다공성 고분자 필름의 열고정 후에, 슬러리를 코팅하는 경우에는, 이러한 피브릴 직경이 필름 두께 방향에서 모두 일정한 값을 가지게 된다. (도 3 참조)
즉, 다공성 코팅층이 형성된 필름의 표면에 위치한 피브릴의 직경이 필름 두께 방향의 중앙부에 위치한 피브릴의 직경 보다 작게 된다.
또한, 본 발명의 일 양태인 다공성 코팅층이 다공성 고분자 필름의 양면에 형성된 분리막의 경우에는, 열고정시 다공성 고분자 필름의 상면 및 하면에 모두 슬러리가 코팅되어 있는 상황에서 코팅층이 형성된 표면은 간접적으로 열을 받게 되나, 필름 두께 방향의 중앙부는 오히려 코팅층이 없는 필름이 좌측 및 우측면을 통해서 열을 직접 전달 받게 된다. 그 결과, 다공성 코팅층이 형성된 필름의 표면에 위치한 피브릴의 직경이 필름 두께 방향의 중앙부에 위치한 피브릴의 직경 보다 작게 된다.
물론, 앞서 살핀, 다공성 코팅층이 다공성 고분자 필름의 일면에만 형성되는 경우에도, 다공성 코팅층이 형성된 필름의 표면에 위치한 피브릴의 직경이 필름 두께 방향의 중앙부에 위치한 피브릴의 직경 보다 작게 된다.
본 발명의 일 실시예에 따르면, 상기 다공성 코팅층이 형성된 필름의 일면 쪽에 위치한 피브릴의 직경이 상기 필름 두께 방향의 중앙부에 위치한 피브릴의 직경 보다 2 내지 4 배 작고, 바람직하게는 2 내지 3 배 작다.
또한, 상기 다공성 코팅층이 형성된 필름의 일면 쪽에 위치한 피브릴의 직경이 0.01 내지 0.04 ㎛이고, 상기 필름 두께 방향의 중앙부에 위치한 피브릴의 직경이 0.04 내지 0.08 ㎛일 수 있다.
전술한 바와 같이, 상기 다공성 고분자 필름의 일면에만 다공성 코팅층이 형성되어 있는 경우, 상기 다공성 코팅층이 형성된 필름의 일면 쪽에 위치한 피브릴의 직경이 상기 다공성 코팅층이 형성되지 않은 필름의 타면 쪽에 위치한 피브릴의 직경 보다 더 작다.
이러한 경우, 상기 다공성 코팅층이 형성된 필름의 일면 쪽에 위치한 피브릴의 직경은 상기 다공성 코팅층이 형성되지 않은 필름의 타면 쪽에 위치한 피브릴의 직경 보다 2 내지 7 배 작고, 바람직하게는 4 내지 7 배 작다.
구체적으로, 상기 다공성 고분자 필름의 일면에만 다공성 코팅층이 형성되어 있는 경우, 상기 다공성 코팅층이 형성된 필름의 일면 쪽에 위치한 피브릴의 직경은 0.01 내지 0.07 ㎛이고, 상기 다공성 코팅층이 형성되지 않은 필름의 타면 쪽에 위치한 피브릴의 직경 0.07 내지 0.14 ㎛일 수 있다.
또한, 다공성 코팅층이 형성된 다공성 고분자 필름의 일면 쪽에서의 단위면적당 피브릴 개수 밀도가 증가되므로 코팅 슬러리와의 계면접촉면적이 증가되고, 폴리올레핀 다공성 섬유상 구조에 대한 상기 슬러리의 젖음성이 향상될 수 있다.
또한, 본 발명에서는 열고정이 다공성 코팅층 형성을 위한 슬러리를 통해 서서히 다공성 필름에 전달될 수 있고, 종래보다 고온에서 열고정이 이루어질 수 있어서, 다공성 필름을 구성하는 피브릴간 결착 밀도가 증가하게 된다. 따라서, 분리막의 인장 강도와 같은 기계적 강도가 증가하게 된다. 보다 구체적으로, 본 발명의 일 실시예에 따른 분리막은 2,000 내지 2,500 kg/cm2의 기계 방향(MD)으로의 인장 강도 및 2,000 내지 2,500 kg/cm2의 의 횡방향(TD)으로의 인장 강도를 가질 수 있다.
상기 바인더 고분자는 서로 이웃한 입자들의 표면에 위치하여 이들을 서로 연결시키면서 다공성 구조를 형성하고, 입자들의 표면에 위치하는 상기 바인더 고분자의 크기는 10 내지 100 nm, 바람직하게는 10 내지 50 nm이다.
본 발명의 일 실시예에 따르면, 종래의 방법과 달리 다공성 고분자 필름에 슬러리 코팅을 하기 때문에 고온의 온도로 열고정을 할 수 있고, 이러한 열고정시의 고온열풍에 의해 바인더 고분자가 약간 용융했다가 재배열되므로 바인더 고분자가 서로 응집하지 않는다. 반면에, 종래의 방법에서는 이미 열고정이 된 다공성 고분자 필름 상에 슬러리 코팅을 한 후, 상대적으로 낮은 온도, 예를 들어 60℃ 정도에서 건조하여 슬러리의 용매만을 증발시키므로, 바인더 고분자 간에 서로 응집 현상이 더 두드러지게 된다.
이하에서는 본 발명의 일 실시예에 따라서, 희석제가 추출된 다공성 고분자 필름의 적어도 일면에, 다공성 코팅층 형성용 슬러리를 코팅하는 공정, 및 상기 슬러리가 코팅되어 있는 다공성 고분자 필름을 열고정하는 공정의 적용의 결과, 얻어진 분리막의 밀도와 통기도에 대해서 더 자세히 살펴보기로 한다.
본 발명의 일 실시예에 따른 분리막은 열고정 처리 이전의 다공성 고분자 필름(도 5a)에 다공성 코팅층 형성을 위한 슬러리를 도포하고(도 5b), 이어서, 열고정을 실시한다(도 5c). 이러한 공정에서는 열고정이 다공성 코팅층 형성을 위한 슬러리를 거쳐 서서히 이루어질 뿐만 아니라, 다공성 기재의 양면에 다공성 코팅층 형성을 위한 슬러리가 도포된 경우에는 통상적인 열고정 온도보다 높은 온도에서 열고정이 이루어질 수 있기 때문에 다공성 필름의 두께 전반에 걸쳐 피브릴 간의 결착이 이루어지게 된다(도 5d의 1' 참조). 따라서, 분리막의 기계적 강도 및 통기도는 증가하는 반면 분리막 두께는 감소하게 된다. 더욱이, 무기물 입자/유기물 입자가 다공성 필름의 표면 피브릴에 얽혀 존재할 수 있으므로, 분리막의 전체 두께는 더 감소하면서 기계적 강도는 더 증가하게 된다(도 5b와 도 5c 참조).
이러한 차이는 종래 다공성 코팅층이 형성된 분리막의 제조 공정을 살펴보면 더욱 명확한데, 도 4a 내지 도 4c를 참조하면, 종래에는 다공성 고분자 필름을 구성하는 열고정 이전에는 피브릴 결착이 이루어지지 않다가(도 4a의 1 참조), 열고정에 의해 다공성 필름의 표면에 있는 피브릴이 집중적으로 급속하게 결착된다(도 4d의 1 및 1' 참조). 이 과정에서 다공성 필름의 표면에 형성된 기공이 손상 내지는 폐색되어 통기도에 부정적인 영향을 주게 된다(도 4b 참조). 이러한 다공성 필름에 다공성 코팅층 형성을 위한 슬러리를 도포하면(도 4c 참조), 결착된 피브릴(1')로 구성된 다공성 필름 표면 상에 무기물 입자/유기물 입자가 도포되므로, 피브릴과 무기물 입자/유기물 입자가 얽혀있는 본 발명과 달리, 다공성 코팅층이 상대적으로 두껍게 형성되며 분리막 밀도가 낮게 형성된다.
상기 다공성 고분자 필름은 당업계에서 통상적으로 사용되는 것이라면 소재 측면에서 특별히 제한되지 않고, 이러한 다공성 고분자 필름의 예로는 폴리올레핀 고분자 필름이 있다.
상기 폴리올레핀은 당업계에서 통상적으로 사용되는 것이라면 특별히 제한되지 않는다. 이러한 폴리올레핀의 구체적인 예로는 고밀도 폴리에틸렌(HDPE), 저밀도 폴리에틸렌(LDPE), 선형저밀도 폴리에틸렌(LLDPE), 초고분자량 폴리에틸렌(UHMWPE) 등과 같은 폴리에틸렌; 폴리프로필렌; 폴리부틸렌; 폴리펜텐: 폴리헥센: 폴리옥텐: 에틸렌, 프로필렌, 부텐, 펜텐, 4-메틸펜텐, 헥센, 옥텐 중 1종 이상의 공중합체, 또는 이들의 혼합물을 들 수 있으나 이에 제한되지 않는다.
상기 다공성 고분자 필름의 두께는 특별히 제한되지 않으나, 5 내지 50 ㎛가 바람직하고, 다공성 고분자 필름에 존재하는 기공 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.001 내지 50 ㎛ 및 10 내지 99%인 것이 바람직하다.
상기 다공성 코팅층은 무기물 입자 단독, 유기물 입자 단독 또는 무기물 입자와 유기물 입자를 동시에 포함할 수도 있다.
상기 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전기화학소자의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 이온 전달 능력이 있는 무기물 입자를 사용하는 경우 전기화학소자 내의 이온 전도도를 높여 성능 향상을 도모할 수 있다. 또한, 무기물 입자로서 유전율이 높은 무기물 입자를 사용하는 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
무기물 입자의 비제한적인 예로는 유전율 상수가 5 이상, 바람직하게는 10 이상인 고유전율 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 또는 이들의 혼합체를 들 수 있다.
유전율 상수가 5 이상인 무기물 입자의 비제한적인 예로는 BaTiO3, Pb(Zr,Ti)O3(PZT), Pb1-xLaxZr1-yTiyO3(PLZT), PB(Mg3Nb2/3)O3-PbTiO3(PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2, SiC 또는 이들의 혼합물 등이 있다.
본원 명세서에서 '리튬 이온 전달 능력을 갖는 무기물 입자'는 리튬 원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 지칭하는 것으로서, 리튬 이온 전달 능력을 갖는 무기물 입자의 비제한적인 예로는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0<x<2, 0<y<3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 <x<2, 0<y<1, 0<z<3), 14Li2O-9Al2O3-38TiO2-39P2O5 등과 같은 (LiAlTiP)xOy 계열 글래스(glass) (0<x<4, 0<y<13), 리튬란탄티타네이트(LixLayTiO3, 0<x<2, 0<y<3), Li3.25Ge0.25P0.75S4 등과 같은 리튬게르마니움티오포스페이트(LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1, 0<w<5), Li3N 등과 같은 리튬나이트라이드(LixNy, 0<x<4, 0<y<2), Li3PO4-Li2S-SiS2 등과 같은 SiS2 계열 glass(LixSiySz, 0<x<3, 0<y<2, 0<z<4), LiI-Li2S-P2S5 등과 같은 P2S5 계열 glass(LixPySz, 0<x<3, 0<y<3, 0<z<7) 또는 이들의 혼합물 등이 있다.
또한, 상기 유기물 입자는 통기성, 열수축성, 박리 강도 측면에서 유리하고, 바인더 고분자와의 결착성이 우수하다.
상기 유기물 입자의 비제한적인 예로는 폴리스티렌, 폴리에틸렌, 폴리이미드, 멜라민계 수지, 페놀계 수지, 셀룰로오스, 셀룰로오스 변성체 (카르복시메틸셀룰로오스 등), 폴리프로필렌, 폴리에스테르 (폴리에틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리부틸렌테레프탈레이트 등), 폴리페닐렌설파이드, 폴리아라미드, 폴리아미드이미드, 폴리이미드, 부틸아크릴레이트와 에틸메타아크릴레이트의 공중합체(예를 들어, 폴리이미드, 부틸아크릴레이트와 에틸메타아크릴레이트의 가교 고분자 등) 등과 같은 각종 고분자로 이루어지는 입자 등을 들 수 있다. 유기 입자는 2 종 이상의 고분자로 이루어질 수도 있다.
상기 무기물 입자 또는 유기물 입자의 크기는 제한이 없으나, 균일한 두께의 코팅층을 형성하고 적절한 공극률을 갖도록 하는 측면에서 각각 독립적으로 0.001 내지 10㎛ 범위일 수 있다.
상기 바인더 고분자는 무기물 입자 및 유기물 입자 중 1종 이상의 사이를 연결하여 안정하게 고정시켜 주는 기능을 수행할 수 있다면 특별히 제한되지 않으며, 비제한적인 예로 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부티레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrile-styrene-butadiene copolymer), 폴리이미드(polyimide) 등을 들 수 있으며, 이들은 각각 단독으로 또는 이들 중 2종 이상을 혼합하여 사용할 수 있다.
상기 다공성 코팅층 중의 입자와 바인더 고분자의 조성비는 예를 들어 중량 기준으로 50:50 내지 99:1 범위일 수 있고 또는 70:30 내지 95:5일 수 있다. 바인더 고분자 대비 입자의 함량이 지나치게 적으면 분리막의 열적 안전성 개선이 저하될 수 있고, 입자들 사이에 형성되는 빈 공간이 충분히 형성되지 못해 기공 크기 및 기공도가 감소되어 최종 전지 성능 저하가 야기될 수 있다. 반면, 바인더 고분자 대비 입자가 지나치게 많이 함유되면 다공성 코팅층의 내필링성이 약화될 수 있다.
본 발명의 일 실시예에 따른 분리막의 제조방법은 하기와 같다.
먼저, 고분자 수지와 가소제를 포함하는 수지 조성물을 압출한다.
상기 가소제는 당업계에서 통상적으로 사용되는 것이라면 특별히 제한되지 않는다. 이러한 가소제의 비제한적인 예로는 디부틸 프탈레이트(dibutyl phthalate), 디헥실 프탈레이트(dihexyl phthalate), 디옥틸 프탈레이트(dioctyl phthalate) 등의 프탈산 에스테르(phthalic acid ester)류; 디페닐 에테르(diphenyl ether), 벤질 에테르(benzyl ether) 등의 방향족 에테르류; 팔미트산, 스테아린산, 올레산, 리놀레산, 리놀렌산 등의 탄소 수 10개에서 20개 사이의 지방산류; 팔미트산알코올, 스테아린산알코올, 올레산알코올 등의 탄소 수 10개에서 20개 사이의 지방산알코올류; 팔미트산 모노-, 디-, 또는 트리에스테르, 스테아린산 모노-, 디-, 또는 트리에스테르. 올레산 모노-, 디-, 또는 트리에스테르, 리놀레산 모노-, 디-, 또는 트리에스테르 등의 지방산 그룹의 탄소원소수가 4 내지 26개인 포화 및 불포화 지방산 또는 불포화지방산의 이중결합이 에폭시로 치환된 한 개 혹은 두 개 이상의 지방산이, 히드록시기가 1 내지 8개이며, 탄소수가 1 내지 10개인 알코올과 에스테르 결합된 지방산 에스테르류가 있다.
또한, 상기 가소제로는 전술한 성분들을 2종 이상 포함하는 혼합물로도 사용 가능하다.
상기 고분자 수지 대 가소제의 중량비는 80:20 내지 10:90, 바람직하게는 70:30 내지 20:80, 바람직하게는 50:50 내지 30:70일 수 있다. 상기 중량비가 80:20 보다 커서 고분자 수지의 함량이 많아지게 되면, 기공도가 감소하고 기공 크기가 작아지며, 기공 간의 상호연결이 적어 투과도가 크게 떨어지고, 고분자 수지 용액의 점도가 올라가 압출 부하의 상승으로 가공이 어려울 수 있으며, 상기 중량비가 10:90 보다 작아서 고분자 수지의 함량이 적어지게 되면, 고분자 수지와 가소제의 혼련성이 저하되어 고분자 수지가 가소제에 열역학적으로 혼련되지 않고 겔 형태로 압출되어 연신 시 파단 및 두께 불 균일 등의 문제를 야기시킬 수 있고, 제조된 분리막의 강도가 저하될 수 있다.
본 발명에서 복합 분리막을 제조하기 위해, 먼저, 재료의 일부 또는 전부를 헨셀 믹서, 리본 블렌더, 텀블러 블렌더 등을 이용하여 혼합한다. 이어서, 일축 압출기, 이축 압출기 등의 스크류 압출기, 혼련기, 믹서 등에 의해 용융 혼련하고, T형 다이나 환상 다이 등으로부터 압출된다. 혼련/압출된 용융물은 압축 냉각에 의해 고화시킬 수 있으며, 냉각 방법으로는 냉풍이나 냉각수 등의 냉각 매체에 직접 접촉시키는 방법, 냉매로 냉각한 롤이나 프레스기에 접촉시키는 방법 등을 들 수 있다.
이어서, 압출된 수지 조성물을 연신하여 고분자 수지 필름을 수득한다. 이때 연신 방법은 당업계에 알려진 통상적인 방법으로 실시될 수 있으며, 비제한적인 예로는 롤 연신기에 의한 MD(종방향) 일축 연신, 텐터에 의한 TD(횡방향) 일축 연신, 롤 연신기와 텐터, 또는 텐터와 텐터와의 조합에 의한 축차 이축 연신, 동시 이축 텐터나 인플레이션 성형에 의한 동시 이축 연신 등을 들 수 있다. 구체적으로, 상기 압출된 상기 수지 조성물의 연신은 MD 방향 또는 TD 방향으로 1회 이상의 일축 연신을 하거나, MD 방향 및 TD 방향으로 1회 이상 이축 연신을 할 수 있다.
연신비는 종방향 및 횡방향으로 각각 3 배 이상, 바람직하게는 5 내지 10 배이고, 총 연신비(합계 면 배율)로는 20 배 이상, 바람직하게는 20 내지 80 배로 할 수 있다.
만일, 한쪽 방향의 연신비가 3 배 미만인 경우는 한쪽 방향의 배향이 충분하지 않고 동시에 종방향 및 횡방향간의 물성 균형이 깨져 인장강도 및 천공강도 등이 저하될 수 있다. 또한, 총 연신비가 20 배 미만이면 미연신이 발생하고, 기공 형성이 이루어지지 않을 수 있으며, 80 배를 초과하면 연신 중 파단이 발생하고, 최종 필름의 수축률이 증가되는 단점이 있을 수 있다.
이 때, 연신 온도는 사용된 고분자 수지의 융점과 가소제의 농도 및 종류에 따라 달라질 수 있으며, 바람직하게는 상기 연신 온도는 상기 필름내의 고분자 수지의 결정부분의 30 내지 80중량%가 녹는 온도범위에서 선택되는 것이 적당하다.
상기 연신 온도가 상기 시트 성형물 내 고분자 수지의 결정부분의 30중량%가 녹는 온도보다 낮은 온도범위에서 선택되면 필름의 연질성(softness)이 없어 연신성이 나빠져 연신 시 파단이 발생할 가능성이 높고 동시에 미연신도 발생한다. 반면, 상기 연신 온도가 결정부분의 80중량%가 녹는 온도보다 높은 온도범위에서 선택되면 연신이 쉽고 미연신 발생은 적으나, 부분적인 과연신으로 두께편차가 발생하며, 수지의 배향효과가 적어 물성이 크게 떨어지게 된다. 한편, 온도에 따른 결정부분의 녹는 정도는 필름성형물의 DSC(differential scanning calorimeter) 분석으로부터 얻을 수 있다.
이어서, 연신된 필름에서 가소제를 추출하여 다공성 고분자 필름을 수득한다. 구체적으로, 연신된 필름에서 가소제는 유기용매를 사용하여 추출하고, 건조하게 된다.
상기 가소제의 추출에 이용되는 추출 용매로는 고분자 수지에 대하여 빈용매이고 가소제에 대해서는 양용매이면서, 비점이 고분자 수지의 융점보다 낮아 건조가 빠른 것이 바람직하다. 이러한 추출 용매의 비제한적인 예로는 n-헥산이나 시클로헥산 등의 탄화수소류, 염화메틸렌이나 1,1,1-트리클로로에탄, 플루오로카본계 등 할로겐화 탄화수소류, 에탄올이나 이소프로판올 등의 알코올류, 아세톤이나 2-부타논 등의 케톤류를 들 수 있다.
상기 추출방법으로는 침적(immersion) 방법, 용제 스프레이(solvent spray) 방법, 초음파(ultrasonic) 법 등 일반적인 모든 용매추출 방법이 각각 또는 복합적으로 사용될 수 있다. 추출 시 잔류 가소제의 함량은 바람직하게는 1 중량% 이하이어야 한다. 잔류 가소제가 1 중량%를 초과하면 물성이 저하되고 다공성 막의 투과도가 감소한다. 잔류 가소제의 양은 추출 온도와 추출 시간에 영향을 받을 수 있으며, 추출 온도는 가소제와 유기용매의 용해도 증가를 위해 온도가 높은 것이 좋으나 유기용매의 끓음에 의한 안전성 문제를 고려할 때 40℃ 이하가 바람직하다. 상기 추출 온도가 가소제의 응고점 이하이면 추출효율이 크게 떨어지므로 가소제의 응고점보다는 반드시 높아야 한다.
또한, 추출 시간은 제조되는 다공성 고분자 필름의 두께에 따라 다르나, 10 내지 30㎛ 두께의 경우에는, 2 내지 4분이 적당하다.
상기에서 수득된 다공성 고분자 필름의 두께는 특별히 제한되지 않으나, 5 내지 50 ㎛가 바람직하고, 다공성 기재에 존재하는 기공 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.001 내지 50 ㎛ 및 10 내지 99%인 것이 바람직하다.
이어서, 다공성 고분자 필름의 적어도 일면에, 다공성 코팅층 형성용 슬러리를 코팅한다. 이를 위해, 다공성 코팅층 형성용 슬러리를 먼저 준비해야 하는데, 상기 슬러리는 용매에 무기물 입자 및 유기물 입자 중 1종 이상과 함께 바인더 고분자를 분산시켜 준비한다. 즉, 상기 슬러리는 무기물 입자 단독, 유기물 입자 단독 또는 무기물 입자와 유기물 입자를 동시에 포함할 수도 있다.
상기 슬러리에 포함되는 용매로는 입자와 바인더 고분자의 분산이 균일하게 이루어질 수 있으며, 이후 용이하게 제거될 수 있는 것이 바람직하다. 사용 가능한 용매의 비제한적인 예로는 아세톤(acetone), 테트라하이드로퓨란 (tetrahydrofuran), 메틸렌클로라이드(methylene chloride), 클로로포름 (chloroform), 디메틸포름아미드(dimethylformamide), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP), 시클로헥산(cyclohexane), 물 또는 이들의 혼합물 등이 있다.
상기 다공성 코팅층 형성용 슬러리는 다공성 폴리올레핀 필름의 적어도 일면에 코팅하는데, 코팅하는 구체적인 방법은 당업계에 알려진 통상적인 코팅 방법을 사용할 수 있으며, 예를 들면 딥(Dip) 코팅, 다이(Die) 코팅, 롤(roll) 코팅, 콤마(comma) 코팅 또는 이들의 혼합 방식 등 다양한 방식을 이용할 수 있다. 또한, 다공성 코팅층은 다공성 폴리올레핀 필름의 양면 모두 또는 일면에만 선택적으로 형성할 수 있다.
이어서, 상기 슬러리가 코팅된 다공성 폴리올레핀 필름을 열고정하여 다공성 코팅층이 형성된 복합 분리막을 수득한다.
상기 열고정은 필름을 고정시키고 열을 가하여, 수축하려는 필름을 강제로 잡아 주어 잔류응력을 제거하는 공정이다. 열고정 온도가 높을수록 수축률을 감소시키므로 바람직하나, 열고정 온도가 지나치게 높을 경우에는 폴리올레핀 필름이 부분적으로 녹게 되므로 형성된 미세다공이 막혀 투과도가 저하될 수 있다.
본 발명에서는 폴리올레핀 필름으로 연신한 후 가소제를 추출하고 이어서 다공성 코팅층 형성용 슬러리를 코팅한 후에 열고정을 실시하므로, 종래에 폴리올레핀 필름으로 연신 후 가소제를 추출하고 열고정을 실시하였던 공정과는 달리, 폴리올레핀 필름이 아닌 코팅된 슬러리에 열고정이 실시되므로 폴리올레핀 필름에 직접적으로 열이 가해지지 않게 된다.
따라서, 종래의 방법에 비해 높은 온도에서 열고정을 실시하더라도 폴리올레핀 필름의 용융이 억제될 수 있다. 또한, 폴리올레핀 필름에 직접적으로 가해지는 열량이 작아지므로, 종래 열고정 처리된 폴리올레핀 필름의 피브릴에 비해, 다공성 코팅층에 인접한 폴리에틸렌 기재의 피브릴(fibril) 두께가 보다 얇게 형성된다. 이에 따라, 다공성 코팅층에 인접한 다공성 고분자 필름 표면의 단위면적당 피브릴 개수 밀도(fibrilar number density)가 증가되므로 코팅 슬러리와의 계면접촉면적이 증가되고, 코팅 슬러리의 유리전이온도(Tg) 혹은 융점(Tm)보다 높은 온도 영역에서 열고정 처리시에 다공성 폴리올레핀 필름의 섬유상 구조에 대한 상기 슬러리의 젖음성이 향상될 수 있다.
상기 열고정의 온도는, 바람직하게는 Tm - 1℃ 이하로 조절되고, 이때 Tm은 상기 폴리올레핀의 융점에 해당된다.
본 발명의 일 실시예에 따르면, 고분자 수지로서 폴리올레핀 중 폴리에틸렌이 사용되는 경우, 열고정의 온도는 131 내지 134℃, 바람직하게는 131 내지 133 ℃의 온도에서 실시할 수 있고, 열고정 온도가 이러한 범위를 만족하는 경우, 다공성 코팅층과 다공성 고분자 필름의 결착력(박리 강도)이 개선되면서 구조적 안정성도 확보될 수 있고, 통기도, 비저항도를 낮게 할 수 있다.
또한, 상기 열고정은 상기 다공성 고분자 필름에 코팅된 슬러리의 표면에 대하여 수직 방향으로 향하는 열원을 이용하여 실시될 수 있다. 이러한 열원으로서는 열풍 건조기의 열풍 등이 사용될 수 있으나, 열고정의 효과를 거둘 수 있는 것이라면 그 외의 다양한 예들이 사용될 수 있다.
기존의 코팅 후 상대적으로 낮은 온도에서 건조하는 방식에서는, 코팅된 슬러리 내의 바인더 고분자, 특히 용해성이 떨어지는 결정성 고분자는 용매 휘발 후, 코팅층 내에서 분산이 잘 이루어지지 않는 형태로 코팅층 내에 분포하게 된다.
이와 달리, 본 발명의 일 실시예에서는 열고정 단계에서 고온의 열원이 다공성 고분자 필름에 코팅된 슬러리의 표면에 대해 수직 방향으로 가해지기 때문에, 입자 사이의 결정성 바인더 고분자나 입자와 완전히 결합되지 않은 결정성 바인더 고분자까지 고온 열원에 의한 재결정 작용으로 인해 재배열되어 코팅층 내의 불균일 분산에 의한 저항을 크게 줄일 수 있다.
이와 같이 형성된 다공성 코팅층의 두께는 특별한 제한이 없으나 0.01 내지 20㎛ 범위일 수 있고, 기공 크기 및 기공도 역시 특별한 제한이 없으나 기공 크기는 0.001 내지 10㎛ 범위일 수 있고, 기공도는 10 내지 99 % 범위일 수 있다. 기공 크기 및 기공도는 주로 사용되는 입자의 크기에 의존하는데, 예컨대 입경이 1 ㎛ 이하인 입자를 사용하는 경우 형성되는 기공 역시 대략 1 ㎛ 이하를 나타내게 된다.
상기 다공성 코팅층에서는 입자가 충전되어 서로 접촉된 상태에서 상기 바인더 고분자에 의해 서로 결착되고, 이로 인해 입자들 사이에 인터스티셜 볼륨(interstitial volume)이 형성되고, 상기 입자들 사이의 인터스티셜 볼륨(Interstitial Volume)은 빈 공간이 되어 기공을 형성한다.
즉, 바인더 고분자는 입자들이 서로 결착된 상태를 유지할 수 있도록 이들을 서로 부착, 예를 들어, 바인더 고분자가 입자들 사이를 연결 및 고정시키고 있다. 또한, 상기 다공성 코팅층의 기공은 입자들 간의 인터스티셜 볼륨(interstitial volume)이 빈 공간이 되어 형성된 기공이고, 이는 입자들에 의한 충진 구조(closed packed or densely packed)에서 실질적으로 면접하는 입자들에 의해 한정되는 공간이다. 이와 같은 기공 구조는 추후 주액되는 전해액으로 채워지게 되고, 이와 같이 채워진 전해액은 다공성 코팅층의 기공을 통하여 전지를 작동시키기 위하여 필수적인 리튬 이온이 이동하는 경로를 제공할 수 있다.
한편, 전술한 바와 같이, 본 발명의 일 실시예에 따른 분리막의 제조방법은, 도 1에 도시된 종래 제조방법과 달리, 가소제 추출 공정 후에 열고정 공정, 와인딩 및 슬리팅 공정, 언와인딩 공정이 필요하지 않는다.
이때 와인딩 공정이라 함은 압출/연신/추출 단계를 거쳐서 수득된 다공성 고분자 필름이나 슬러리 코팅을 거친 이후에 얻어진 복합 분리막을 롤러 상에 권취하는 단계를 말하고, 슬리팅 공정이라 함은 다공성 고분자 필름이나 복합 분리막의 권취시에 양단의 불필요한 부분을 절단하는 단계를 말한다.
종래의 방법에서는 다공성 고분자 필름의 열고정 후 와인딩 및 슬리팅 공정을 거치고 다시 슬러리 코팅을 위해서 권취했던 필름을 다시 풀어내는 언와인딩 공정이 반드시 필요하였고, 다시 슬러리 코팅 및 건조 공정 후에 다시 와인딩 및 슬리팅 공정을 거쳐서 최종적으로 포장 단계에 이어졌다.
이때, 본 발명의 일 실시에에 따르면, 와인딩 및 슬리팅 공정을 종래의 2회에서 1회로 줄임으로써, 와인딩 및 슬리팅 공정에 따라서 다공성 고분자 필름이 일부 손실되는 문제를 방지하여 수율이 증가할 수 있다.
또한, 종래에 슬러리 코팅 단계 전에 와인딩 및 슬리팅 공정 후에 다시 언와인딩 공정이 생략되므로, 공간 활용 및 공정 비용이 절감될 수 있다. 게다가, 이러한 슬러리 코팅 단계 전의 슬리팅 공정이나, 와인딩/언와인딩 공정을 거치지 않으므로, 초광폭의 대면적 코팅이 가능하고, 최종 분리막 사이의 주름, 핀홀, 스크래치 등의 흠결 발생이 크게 줄어들고, 미코팅 영역도 감소한다. ,
또한, 종래의 가소제 추출 후 열고정 공정과, 슬러리 코팅 후 건조 공정의 2회의 별개의 열처리 공정 대신에, 슬러리 코팅 후 열고정 공정의 단일 열처리 공정으로 개선함으로써, 별도의 2개의 건조 오븐과 열고정 오븐을 사용하지 않고, 1개의 열고정 오븐만을 사용할 수 있어, 공간 활용과 비용 절감이 가능하다.
본 발명의 일 측면에 따르면, 캐소드, 애노드, 및 캐소드와 애노드 사이에 개재된 분리막을 포함하는 전기화학소자로서, 상기 분리막이 전술한 전기화학소자용 분리막인 전기화학소자가 제공된다.
이러한 전기화학소자는 당 기술 분야에 알려진 통상적인 방법에 따라 제조될 수 있으며, 이의 일 실시예를 들면 캐소드와 애노드 사이에 전술한 분리막을 개재(介在)시켜 조립한 후 전해액을 주입함으로써 제조될 수 있다.
상기 분리막과 함께 적용될 전극으로는 특별히 제한되지 않으며, 당업계에 알려진 통상적인 방법에 따라 전극활물질이 전극 전류집전체에 결착된 형태로 제조할 수 있다.
상기 전극활물질 중 캐소드활물질의 비제한적인 예로는 종래 전기화학소자의 캐소드에 사용될 수 있는 통상적인 캐소드활물질이 사용 가능하며, 특히 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬철산화물 또는 이들을 조합한 리튬복합산화물을 사용하는 것이 바람직하다. 애노드활물질의 비제한적인 예로는 종래 전기화학소자의 애노드에 사용될 수 있는 통상적인 애노드활물질이 사용 가능하며, 특히 리튬 금속 또는 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 그래파이트(graphite) 또는 기타 탄소류 등과 같은 리튬 흡착물질 등이 바람직하다.
캐소드 전류집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 애노드 전류집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
본 발명의 일 실시예에서 사용될 수 있는 전해액은 A+B-와 같은 구조의 염으로서, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고 B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, AsF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하는 염이 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마-부티로락톤 또는 이들의 혼합물로 이루어진 유기 용매에 용해 또는 해리된 것이 있으나, 이에만 한정되는 것은 아니다.
상기 전해액 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전지 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전지 조립 전 또는 전지 조립 최종 단계 등에서 적용될 수 있다.
본 발명의 일 실시예에 따른 분리막을 전지로 적용하는 공정으로는 일반적인 공정인 권취(winding) 이외에도 분리막과 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다.
상기 전기화학소자는 25 내지 55℃에서 300회 사이클 후 80 내지 95%, 더 바람직하게는 83 내지 90%의 용량유지율을 가질 수 있다. 이는 본 발명의 전기화학소자에 구비된 분리막은 종래 기술에 대비하여 고온의 열고정 처리에 의해서 제조됨으로써, 분리막의 다공성 고분자 필름 내의 피브릴이 서로 결착되어 높은 결착 밀도를 가지고, 통기도와 비저항도를 낮게 할 수 있으며, 다공성 코팅층과 다공성 고분자 필름의 결착력(박리 강도)이 개선되면서 구조적 안정성이 확보된 것에 기인하는 것이다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1-1: 분리막의 제조
폴리올레핀으로 중량평균분자량이 500,000인 고밀도폴리에틸렌과 가소제로서 동점도가 68.00 cSt인 액체 파라핀을 35:65의 중량비로 사용하여, 210℃의 온도에서 압출하였다. 연신 온도는 115℃로 하였고, 연신비는 종방향 횡방향으로 각각 7배 연신하였다. 이어서, 추출 용매로서 메틸렌 클로라이드를 사용하여 2m/min의 조건에서 가소제인 액체 파라핀을 추출한 후 0.04 ㎛의 평균 기공 크기를 갖는 다공성 폴리올레핀 필름을 수득하였다.
이어서, 다공층 형성용 슬러리로서 0.5 ㎛의 평균 입경을 갖는 Al2O3 입자/시아노에틸 폴리비닐알콜(Cyano resin CR-V, Shin-Etsu Chemical, Ltd.)/PVDF-HFP5(LBG2, Arkema, Inc.)/아세톤을 18.0/0.3/1.7/80의 중량비를 갖도록 혼합하여 준비하였다.
상기 가소제 추출 공정까지 완료된 다공성 폴리올레핀 필름의 일면에 상기 슬러리를 3.5㎛ 두께로 단면 코팅하고, 이어서 132.5℃에서 5m/min으로 열고정을 실시하여, 다공성 코팅층이 형성된 두께 14.5㎛ 의 분리막을 제조하였다. 얻어진 분리막의 다공성 코팅층은 0.4 ㎛의 평균 기공 크기 및 58%의 평균 기공도를 갖는다.
실시예 1-2: 분리막의 제조
상기 슬러리를 4.0㎛ 두께로 양면 코팅하고, 두께 19.0㎛인 점을 제외하고는 실시예 1-1과 동일한 방법으로 분리막을 제조하였다. 얻어진 분리막의 다공성 코팅층은 0.4 ㎛의 평균 기공 크기 및 55%의 평균 기공도를 갖는다.
실시예 1-3:
원통형(18650) 이차전지의 제조
에틸렌 카보네이트, 프로필렌 카보네이트, 메틸 에틸 카보네이트 화합물들을 부피비 기준으로 20/10/70 조성비로 사용하였다. 이어서, 리튬염으로 LiPF6를 1.0M 농도가 되도록 첨가하여 비수 전해액을 수득하였다.
양극 활물질로 삼성분계 양극재(LiNi1/3Co1/3Mn1/3O2)를 사용하고, 도전재로 Super-P(등록상표) 1.3 중량% 및 PVDF(KF1100바인더) 1.8 중량% 및 첨가제로 Li2CO3(탄산리튬) 0.4% 중량 조성의 양극 합제를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가하여 고형분 75%의 양극 슬러리를 제조한 후, 알루미늄 집전체 상에 코팅하여 양극을 제조하였다.
음극 활물질로는 그래파이트를 사용하고 도전재로 Super-P(등록상표) 0.7 중량% 및 SBR 바인더 약 0.9 중량% 및 CMC 분산제 약 0.9 중량%와 함께 DI-Water에 첨가하여 고형분 51%의 음극 슬러리를 제조한 후, 구리 집전체상에 코팅하여 음극을 제조하였다.
상기에서 제조된 양극과 음극 사이에 실시예 1-1에서 제조된 분리막을 개재하고 비수 전해액을 함침시켜 2,800mAh의 용량을 갖는 원통형(18650) 이차전지를 제조하였다.
실시예 1-4: 원통형(18650) 이차전지의 제조
분리막으로 실시예 1-2의 분리막을 사용한 것을 제외하고, 실시예 1-3과 동일한 방식으로 전기화학소자를 제조하였다.
실시예 2-1: 분리막의 제조
다공층 형성용 슬러리로서 0.5 ㎛의 평균 입경을 갖는 부틸아크릴레이트와 에킬메타아크릴레이트의 가교 고분자 화합물로 이루어진 유기물 입자(제온사, FX9022 제품), 바인더 고분자인 폴리부틸아크릴레이트, 분산제인 카르복시메틸 셀룰로오스(CMC), 및 용매로서 물을 18/1.5/0.5/80의 중량비로 준비한 것을 사용한 것을 제외하고 실시예 1-1과 동일한 방법으로 전기화학소자용 분리막을 제조하였다. 얻어진 분리막의 다공성 코팅층은 0.4 ㎛의 평균 기공 크기 및 58%의 평균 기공도를 갖는다
실시예 2-2: 분리막의 제조
상기 슬러리를 4.0㎛ 두께로 양면 코팅하고, 두께 19.0㎛인 점을 제외하고는 실시예 2-1과 동일한 방법으로 분리막을 제조하였다. 얻어진 분리막의 다공성 코팅층은 0.4 ㎛의 평균 기공 크기 및 55%의 평균 기공도를 갖는다.
실시예 2-3: 원통형(18650) 이차전지의 제조
분리막으로 실시예 2-1의 분리막을 사용한 것을 제외하고, 실시예 1-3과 동일한 방식으로 전기화학소자를 제조하였다.
실시예 2-4: 원통형(18650) 이차전지의 제조
분리막으로 실시예 2-2의 분리막을 사용한 것을 제외하고, 실시예 1-3과 동일한 방식으로 전기화학소자를 제조하였다.
비교예 1-1: 분리막의 제조
폴리에틸렌 필름에서 가소제를 추출하는 공정까지는 실시예 1과 동일하게 하였다. 즉, 폴리올레핀으로 중량평균분자량이 500,000인 고밀도폴리에틸렌과 동점도가 68.00 cSt인 액체 파라핀을 35:65의 중량비로 사용하여, 210℃의 온도에서 압출하였다. 이어서, 연신 온도를 115℃로 하고, 연신비를 종방향 횡방향으로 각각 7배 연신하였다. 이어서 가소제를 추출 후, 130℃ 에서 5m/min으로 열고정하여 다공성 폴리올레핀 필름을 얻었고, 이를 분리막으로 준비하였다.
비교예 1-2: 분리막의 제조
Al2O3 입자/시아노에틸 폴리비닐알코올/PVDF-HFP/아세톤 13.5/0.225/1.275/85의 중량 조성비를 갖는, 다공성 코팅층 형성용 슬러리를 준비하였다.
상기 다공성 코팅층 형성용 슬러리를 비교예 1-1에서 수득한 다공성 폴리올레핀 필름의 일면에 3.5㎛ 두께로 단면 코팅하고 이후 60℃ 에서 5m/min 건조하여서 두께 14.5㎛의 분리막을 제조하였다.
비교예 1-3: 분리막의 제조
상기 슬러리를 4.0㎛ 두께로 양면 코팅하고, 두께 19.0㎛인 점을 제외하고는 비교예 1-2와 동일한 방법으로 분리막을 제조하였다.
비교예 1-4: 원통형(18650) 이차전지의 제조
분리막으로 비교예 1-2의 분리막을 사용한 것을 제외하고, 실시예 1-3과 동일한 방식으로 전기화학소자를 제조하였다.
비교예 1-5: 원통형(18650) 이차전지의 제조
분리막으로 비교예 1-3의 분리막을 사용한 것을 제외하고, 실시예 1-3과 동일한 방식으로 전기화학소자를 제조하였다.
비교예 2-1: 분리막의 제조
132.5℃ 에서 5m/min으로 열고정한 점을 제외하고는 비교예 1-1과 동일한 방법으로 다공성 폴리올레핀 필름을 얻었고, 이를 분리막으로 준비하였다.
비교예
2-2: 분리막의 제조
Al2O3 입자/시아노에틸 폴리비닐알코올/PVDF-HFP/아세톤 13.5/0.225/1.275/85의 중량 조성비를 갖는, 다공성 코팅층 형성용 슬러리를 준비하였다.
상기 다공성 코팅층 형성용 슬러리를 비교예 2-1에서 수득한 다공성 폴리올레핀 필름의 일면에 3.5㎛ 두께로 단면 코팅하고 이후 60℃ 에서 5m/min 건조하여서 두께 14.5㎛의 분리막을 제조하였다.
비교예 2-3: 분리막의 제조
상기 슬러리를 4.0㎛ 두께로 양면 코팅하고, 두께 19.0㎛인 점을 제외하고는 비교예 2-2와 동일한 방법으로 분리막을 제조하였다.
비교예 2-4: 원통형(18650) 이차전지의 제조
분리막으로 비교예 2-2의 분리막을 사용한 것을 제외하고, 실시예 1-3과 동일한 방식으로 전기화학소자를 제조하였다.
비교예 2-5: 원통형(18650) 이차전지의 제조
분리막으로 비교예 2-3의 분리막을 사용한 것을 제외하고, 실시예 1-3과 동일한 방식으로 전기화학소자를 제조하였다.
비교예 3-1: 분리막의 제조
다공성 코팅층 형성용 슬러리로서 0.5 ㎛의 평균 입경을 갖는 부틸아크릴레이트와 에틸메타아크릴레이트의 가교 고분자 화합물로 이루어진 유기물 입자(제온사, FX9022), 바인더 고분자인 폴리부틸아크릴레이트, 및 분산제인 카르복시메틸 셀룰로오스(CMC), 및 용매로서 물을 18/1.5/0.5/80의 중량비로 사용한 것을 제외하고, 비교예 1-2와 동일한 방법으로 전기화학소자용 분리막을 제조하였다.
비교예 3-2: 분리막의 제조
다공성 코팅층 형성용 슬러리로서 0.5 ㎛의 평균 입경을 갖는 부틸아크릴레이트와 에틸메타아크릴레이트의 가교 고분자 화합물로 이루어진 유기물 입자(제온사, FX9022), 바인더 고분자인 폴리부틸아크릴레이트, 및 분산제인 카르복시메틸 셀룰로오스(CMC), 및 용매로서 물을 18/1.5/0.5/80의 중량비로 사용한 것을 제외하고, 비교예 1-3과 동일한 방법으로 전기화학소자용 분리막을 제조하였다.
비교예 3-3: 원통형(18650) 이차전지의 제조
분리막으로 비교예 3-1의 분리막을 사용한 것을 제외하고, 실시예 1-3과 동일한 방식으로 전기화학소자를 제조하였다.
비교예 3-4: 원통형(18650) 이차전지의 제조
분리막으로 비교예 3-2의 분리막을 사용한 것을 제외하고, 실시예 1-3과 동일한 방식으로 전기화학소자를 제조하였다.
비교예 4-1: 분리막의 제조
다공성 코팅층 형성용 슬러리로서 0.5 ㎛의 평균 입경을 갖는 부틸아크릴레이트와 에틸메타아크릴레이트의 가교 고분자 화합물로 이루어진 유기물 입자(제온사, FX9022), 바인더 고분자인 폴리부틸아크릴레이트, 및 분산제인 카르복시메틸 셀룰로오스(CMC), 및 용매로서 물을 18/1.5/0.5/80의 중량비로 사용한 것을 제외하고, 비교예 2-2와 동일한 방법으로 전기화학소자용 분리막을 제조하였다.
비교예 4-2: 분리막의 제조
다공성 코팅층 형성용 슬러리로서 0.5 ㎛의 평균 입경을 갖는 부틸아크릴레이트와 에틸메타아크릴레이트의 가교 고분자 화합물로 이루어진 유기물 입자(제온사, FX9022), 바인더 고분자인 폴리부틸아크릴레이트, 및 분산제인 카르복시메틸 셀룰로오스(CMC), 및 용매로서 물을 18/1.5/0.5/80의 중량비로 사용한 것을 제외하고, 비교예 2-3과 동일한 방법으로 전기화학소자용 분리막을 제조하였다.
비교예 4-3: 원통형(18650) 이차전지의 제조
분리막으로 비교예 4-1의 분리막을 사용한 것을 제외하고, 실시예 1-3과 동일한 방식으로 전기화학소자를 제조하였다.
비교예 4-4: 원통형(18650) 이차전지의 제조
분리막으로 비교예 4-2의 분리막을 사용한 것을 제외하고, 실시예 1-3과 동일한 방식으로 전기화학소자를 제조하였다.
평가예 1: 분리막의 평가
전술한 실시예 1-1, 1-2, 2-1, 2-2, 비교예 1-1, 1-2, 1-3, 2-1, 2-2, 2-3, 3-1, 3-2, 4-1, 4-2에서 제조한 분리막 각각의 두께, 통기 시간, 기공도, 평균 기공크기, 기계방향(MD)와 횡방향(TD)의 인장강도, 열수축율, 절연파괴전압, 굴곡도, 라멜라 구조의 크기를 측정하고, 그 결과를 하기 표 1 및 표 2에 기재하였다.
이때, 열수축율은 원단 및 단면복합막은 120℃/1hr의 조건에서, 양면복합막은 150℃/0.5hr의 조건에서 처리하여 측정하였다.,
굴곡도는 하기 수학식을 이용하여 측정하였다:
[수학식]
(굴곡도(τ))2= NM X ε
상기 식에서, NM 은 맥멀린 넘버(MacMullin number)로, σ0를 σeff로 나누어서 구한 값이며, σ0는 순수한 액체 전해질의 전도도 값이고, σeff는 분리막과 액체 전해질 조합시의 전도도 값이며, ε는 분리막의 다공도를 나타낸다.
하기 표 1 및 표 2에서는 전해액 자체의 이온 전도도 10.2 mS/cm(25℃)에 각 분리막의 다공도를 적용하여 계산하였다.
또한, 라멜라 구조의 크기는 테이프로 분리막의 다공성 코팅층을 박리한 후 주사 전자 현미경(SEM, Scanning electron microscope(Hitachi S-4800)) 장치를 이용하여 관찰하여 측정하였다.
구체적으로, SEM장치를 이용하여 비교예 1-1과 실시예 1-1의 분리막에서 다공성 코팅층을 테이프를 이용하여 박리하고 남은 다공성 고분자 필름의 표면을 관찰한 결과를 각각 도 6a 및 도 6b에 나타내었다.
절연파괴전압 (Hi-pot 측정)은 램프온(Ramp on)조건으로 DC방식, 100V/sec, 전류 한계(current limit) 0.5mA으로 진행하였다
평가예 2: 원통형(18650)셀의 평가
실시예 1-3, 1-4, 2-3, 2-4, 비교예 1-4, 1-5, 2-4, 2-5, 3-3, 3-4, 4-3, 4-3에서 제조된 코인셀을 이용하여 설계 용량 대비 용량 유지율을 측정하고, 그 결과를 하기 표 1 및 표 2에 기재하였다.
이때, 설계용량 대비 용량 유지율은 각 온도별로 충전 0.8 C 레이트 및 방전 0.5 C 레이트로 전지 충방전을 실시하였고 최종 300 사이클 후의 레이트(rate) 특성을 제1 사이클 후의 레이트에 대비한 비율로 평가하였다.
조건 | 기존공정 (열고정 → 코팅방식) |
기존공정 (열고정 →코팅방식) |
개선공정 (코팅 → 열고정방식) |
|||||||||
구분 | 비교예 1-1 원단 |
비교예 1-2 단면 복합막 |
비교예 1-3 양면 복합막 |
비교예 2-1 원단 |
비교예 2-2 단면 복합막 |
비교예 2-3 양면 복합막 |
실시예 1-1 단면 복합막 |
실시예 1-2 양면 복합막 |
||||
열고정온도 | ℃ | 130 | - | - | 132.5 | - | - | 132.5 | ||||
두께 | um | 11.0 | 14.5 | 19.0 | 11.0 | 14.5 | 19.0 | 14.5 | 19.0 | |||
통기시간 | Sec /100ml |
160 | 230 | 380 | 380 | 440 | 610 | 190 | 300 | |||
분리막 다공도 (Porosity) |
% | 38 | 38 | 38 | 35 | 35 | 35 | 35 | 35 | |||
Tensile Str. | MD | Kg /cm2 |
1,700 | 1,700 | 1,700 | 2,350 | 2,350 | 2,350 | 2,300 | 2,300 | ||
TD | 1,400 | 1,400 | 1,400 | 1,980 | 1,980 | 1,980 | 2,000 | 2,000 | ||||
열수축률 | MD | % | <15 | <8 | <12 | <12 | <5 | <8 | <6 | <8 | ||
TD | <10 | <4 | <10 | <7 | <3 | <4 | <4 | <5 | ||||
절연파괴전압 | KV | 1.2 ~1.4 |
1.5 ~1.8 |
2.0 ~2.4 |
1.3 ~1.6 |
1.6 ~2.0 |
2.5 ~3.0 |
1.6 ~2.0 |
2.5 ~3.0 |
|||
굴곡도 | 1.55 | 1.85 | 2.23 | 1.69 | 2.10 | 2.85 | 1.60 | 1.90 | ||||
라멜라 구조의 크기 | nm | 110 | 110 | 110 | 160 | 160 | 160 | 150 | 150 | |||
설계 용량 대비 용량 유지율 |
25℃ | 300 Cycle 후 |
% | - | 85 | 77 | - | 59 | 49 | 88 | 83 | |
55℃ | - | 81 | 75 | - | 62 | 58 | 85 | 81 |
조건 | 기존공정 (열고정 → 코팅방식) |
기존공정 (열고정 →코팅방식) |
개선공정 (코팅 →열고정방식) |
||||||||
구분 | 비교예 1-1 원단 |
비교예 3-1 단면 복합막 |
비교예 3-2 양면 복합막 |
비교예 2-1 원단 |
비교예 4-1 단면 복합막 |
비교예 4-2 양면 복합막 |
실시예 2-1 단면 복합막 |
실시예 2-2 양면 복합막 |
|||
열고정온도 | ℃ | 130 | - | - | 132.5 | - | - | 132.5 | |||
두께 | um | 11.0 | 14.5 | 19.0 | 11.0 | 14.5 | 19.0 | 14.5 | 19.0 | ||
통기시간 | Sec /100ml |
160 | 220 | 320 | 380 | 420 | 550 | 160 | 260 | ||
분리막 다공도 (Porosity) |
% | 38 | 38 | 38 | 35 | 35 | 35 | 35 | 35 | ||
Tensile Str. | MD | Kg /cm2 |
1,700 | 1,730 | 1,750 | 2,350 | 2,400 | 2,400 | 2,350 | 2,350 | |
TD | 1,400 | 1,450 | 1,450 | 1,980 | 2,000 | 2,050 | 2,000 | 2,000 | |||
열수축률 | MD | % | <15 | <8 | <12 | <12 | <5 | <8 | <6 | <8 | |
TD | <10 | <4 | <10 | <7 | <3 | <4 | <4 | <5 | |||
절연파괴전압 | KV | 1.2 ~1.4 |
1.5 ~1.8 |
2.0 ~2.4 |
1.3 ~1.6 |
1.6 ~2.0 |
2.5 ~3.0 |
1.6 ~2.0 |
2.5 ~3.0 |
||
굴곡도 | τ | 1.55 | 1.82 | 2.21 | 1.69 | 2.05 | 2.79 | 1.60 | 1.84 | ||
라멜라 구조의 크기 | nm | 110 | 110 | 110 | 160 | 160 | 160 | 150 | 150 | ||
설계 용량 대비 용량 유지율 |
25℃ | 300 Cycle 후 |
% | - | 87 | 79 | - | 61 | 55 | 90 | 83 |
55℃ | - | 80 | 77 | - | 47 | 58 | 84 | 82 |
상기 표 1 및 2에서 알 수 있듯이, 실시예 1-1, 1-2, 2-1 및 2-2의 분리막은 우수한 인장 강도를 유지하면서도 열수축율, 통기도, 절연파괴전압, 굴곡도 측면에서 비교예들의 분리막 보다 탁월한 물성을 갖는 것으로 나타났다.
또한, 실시예 1-1, 1-2, 2-1 및 2-2의 분리막은 라멜라 구조의 크기 면에서 비교예 1-2, 1-3, 3-1 및 3-2의 분리막과 비교하여 40nm 정도 더 두꺼워진 것을 알 수 있으며 비교예 2-2, 2-3, 4-1 및 4-2의 분리막은 라멜라 구조의 크기가 실시예 실시예 1-1, 1-2, 2-1 및 2-2의 분리막과 동등 수준이나 굴곡도 매우 높은 편이며 사이클 성능이 좋지 않았다.
또한, 실시예 1-3, 1-4, 2-3, 2-4의 원통형(18650)셀은 비교예들의 분리막과 비교하여 우수한 사이클 특성을 나타내었다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
Claims (15)
- 다공성 고분자 필름; 및
무기물 입자 및 유기물 입자 중 1종 이상의 입자와, 바인더 고분자를 포함하면서 상기 다공성 고분자 필름의 일면 또는 양면에 형성되어 있는 다공성 코팅층을 구비하고,
상기 다공성 고분자 필름이 필름의 표면과 평행하게 배열된 복수의 피브릴이 층 형태로 적층된 구조를 가지고, 상기 피브릴이 서로 결착되어 130 내지 200nm 크기의 라멜라 구조를 가지며, 상기 다공성 고분자 필름의 굴곡도가 1.60 내지 1.90이며, 이때 굴곡도는 하기 수학식으로 계산되는 전기화학소자용 분리막:
[수학식]
(굴곡도(τ))2= NM X ε
(상기 식에서, NM 은 맥멀린 넘버(MacMullin number)로, σ0를 σeff로 나누어서 구한 값이며, σ0는 순수한 액체 전해질의 전도도 값이고, σeff는 분리막과 액체 전해질 조합시의 전도도 값이며, ε는 분리막의 다공도를 나타낸다.) - 제1항에 있어서,
상기 다공성 코팅층이 다공성 고분자 필름의 일면에 형성되어 있는 경우에는, 상기 다공성 고분자 필름의 굴곡도가 1.60 내지 1.75이고, 상기 다공성 코팅층이 다공성 고분자 필름의 양면에 형성되어 있는 경우에는, 상기 다공성 고분자 필름의 굴곡도가 1.76 내지 1.90인 것을 특징으로 하는 전기화학소자용 분리막. - 제1항에 있어서,
상기 전기화학소자용 분리막이 2,000 내지 2,500 kg/cm2의 기계방향으로의 인장 강도 및 2,000 내지 2,500kg/cm2의 횡방향으로의 인장 강도를 가지는 것을 특징으로 하는 전기화학소자용 분리막. - 제1항에 있어서,
상기 다공성 고분자 필름은 다공성 폴리올레핀 필름인 것을 특징으로 하는 전기화학소자용 분리막. - 제4항에 있어서,
상기 다공성 폴리올레핀 필름은 폴리에틸렌; 폴리프로필렌; 폴리부틸렌; 폴리펜텐: 폴리헥센: 폴리옥텐: 에틸렌, 프로필렌, 부텐, 펜텐, 4-메틸펜텐, 헥센, 옥텐 중 1종 이상의 공중합체, 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 전기화학소자용 분리막. - 제1항에 있어서,
상기 다공성 고분자 필름의 두께는 5 내지 50 ㎛이고, 기공 크기 및 기공도는 각각 0.01 내지 50 ㎛ 및 10 내지 95%인 것을 특징으로 하는 전기화학소자용 분리막. - 제1항에 있어서,
상기 바인더 고분자는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부티레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrile-styrene-butadiene copolymer), 및 폴리이미드(polyimide)로 이루어진 군으로부터 선택되는 1종 이상 또는 이들의 혼합물인 것을 특징으로 하는 전기화학소자용 분리막. - 제1항에 있어서,
상기 무기물 입자는 유전율 상수가 5 이상, 리튬 이온 전달 능력을 갖는 무기물 입자 또는 이들의 혼합물인 것을 특징으로 하는 전기화학소자용 분리막. - 제8항에 있어서,
상기 유전율 상수가 5 이상인 무기물 입자가 BaTiO3, Pb(Zr,Ti)O3(PZT), Pb1-xLaxZr1-yTiyO3(PLZT), PB(Mg3Nb2/3)O3-PbTiO3(PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2, SiC 또는 이들의 혼합물인 것을 특징으로 하는 전기화학소자용 분리막. - 제8항에 있어서,
상기 리튬 이온 전달 능력을 갖는 무기물 입자가 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0<x<2, 0<y<3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 <x<2, 0<y<1, 0<z<3), (LiAlTiP)xOy 계열 글래스(glass) (0<x<4, 0<y<13), 리튬란탄티타네이트(LixLayTiO3, 0<x<2, 0<y<3), 리튬게르마니움티오포스페이트(LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1, 0<w<5), 리튬나이트라이드(LixNy, 0<x<4, 0<y<2), SiS2 계열 glass(LixSiySz, 0<x<3, 0<y<2, 0<z<4), P2S5 계열 glass(LixPySz, 0<x<3, 0<y<3, 0<z<7) 또는 이들의 혼합물인 것을 특징으로 하는 전기화학소자용 분리막. - 제1항에 있어서,
상기 유기물 입자가 폴리스티렌, 폴리에틸렌, 폴리이미드, 멜라민계 수지, 페놀계 수지, 셀룰로오스, 셀룰로오스 변성체, 폴리프로필렌, 폴리에스테르, 폴리페닐렌설파이드, 폴리아라미드, 폴리아미드이미드, 폴리이미드, 부틸아크릴레이트와 에틸메타아크릴레이트의 공중합체 또는 이들의 혼합물인 것을 특징으로 하는 전기화학소자용 분리막. - 제1항에 있어서,
상기 무기물 입자 및 유기물 입자의 평균입경이 각각 독립적으로 0.001 내지 10 ㎛인 것을 특징으로 하는 전기화학소자용 분리막. - 캐소드, 애노드, 및 캐소드와 애노드 사이에 개재된 분리막을 포함하는 전기화학소자에 있어서,
상기 분리막은 제1항 내지 제12항에 따른 전기화학소자용 분리막인 것을 특징으로 하는 전기화학소자. - 제13항에 있어서,
상기 전기화학소자는 리튬 이차전지인 것을 특징으로 하는 전기화학소자. - 제13항에 있어서,
상기 전기화학소자는 25 내지 55℃에서 300회 사이클 후 80 내지 95%의 용량유지율을 가지는 것을 특징으로 하는 전기화학소자.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103144187A TWI560927B (en) | 2013-12-17 | 2014-12-17 | Separator for electrochemical device and electrochemical device |
PCT/KR2014/012496 WO2015093852A1 (ko) | 2013-12-17 | 2014-12-17 | 전기화학소자용 분리막 |
US14/917,683 US9905824B2 (en) | 2013-12-17 | 2014-12-17 | Separator for electrochemical device |
CN201480054780.6A CN105594014B (zh) | 2013-12-17 | 2014-12-17 | 用于电化学装置的隔板 |
JP2016516837A JP6263611B2 (ja) | 2013-12-17 | 2014-12-17 | 電気化学素子用分離膜 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130157285 | 2013-12-17 | ||
KR1020130157285 | 2013-12-17 | ||
KR20130165969 | 2013-12-27 | ||
KR1020130165969 | 2013-12-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150070979A true KR20150070979A (ko) | 2015-06-25 |
KR101672815B1 KR101672815B1 (ko) | 2016-11-04 |
Family
ID=53517380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140182526A KR101672815B1 (ko) | 2013-12-17 | 2014-12-17 | 전기화학소자용 분리막 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9905824B2 (ko) |
EP (1) | EP3029757A4 (ko) |
JP (1) | JP6263611B2 (ko) |
KR (1) | KR101672815B1 (ko) |
CN (1) | CN105594014B (ko) |
TW (1) | TWI560927B (ko) |
WO (1) | WO2015093852A1 (ko) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017043728A1 (ko) * | 2015-09-07 | 2017-03-16 | 삼성에스디아이 주식회사 | 다공성 필름의 제조 방법, 이로 제조된 다공성 필름, 및 이를 포함한 분리막 또는 전기화학 전지 |
CN108352482A (zh) * | 2015-11-11 | 2018-07-31 | 株式会社Lg化学 | 具有电极粘合剂层的隔离件和包括其的电化学装置 |
WO2018164454A1 (ko) * | 2017-03-07 | 2018-09-13 | 삼성에스디아이 주식회사 | 다공성 필름, 이를 포함하는 분리막 및 전기 화학 전지 |
US10318051B2 (en) | 2015-12-31 | 2019-06-11 | Lg Display Co., Ltd. | Contact sensitive device, display apparatus including the same and method of manufacturing the same |
US10915020B2 (en) | 2016-12-12 | 2021-02-09 | Samsung Sdi Co., Ltd. | Photosensitive resin composition, photosensitive resin layer using same and color filter |
KR20220156228A (ko) * | 2021-05-18 | 2022-11-25 | 도레이첨단소재 주식회사 | 이축 연신 폴리에스테르 필름 및 이를 포함하는 이차전지 분리막 |
CN115428249A (zh) * | 2020-03-27 | 2022-12-02 | 宁德新能源科技有限公司 | 一种电化学装置及包含该电化学装置的电子装置 |
US11658365B2 (en) | 2018-01-30 | 2023-05-23 | Lg Energy Solution, Ltd. | Separator for electrochemical device and method for manufacturing the same |
WO2023146316A1 (ko) * | 2022-01-26 | 2023-08-03 | 주식회사 엘지화학 | 전기화학소자용 분리막 및 이를 포함하는 전기화학소자 |
EP4391195A1 (en) | 2022-11-17 | 2024-06-26 | SK On Co., Ltd. | Separator having excellent withstand voltage properties and secondary battery including the separator |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2999028B1 (en) * | 2013-11-05 | 2019-01-16 | LG Chem, Ltd. | Separation membrane for electrochemical element |
JP2018200780A (ja) * | 2017-05-26 | 2018-12-20 | 旭化成株式会社 | リチウムイオン二次電池用セパレータ |
KR20200060341A (ko) * | 2017-09-29 | 2020-05-29 | 도레이 카부시키가이샤 | 다공 복합 필름, 전지용 세퍼레이터, 및 다공 복합 필름의 제조 방법 |
CN110249448B (zh) * | 2017-09-29 | 2021-10-19 | 东丽株式会社 | 多孔复合膜、电池用隔膜、电池和多孔复合膜的制造方法 |
JP6978273B2 (ja) * | 2017-10-24 | 2021-12-08 | 住友化学株式会社 | 水系塗料 |
EP3704749A4 (en) * | 2017-10-30 | 2021-09-08 | Arkema Inc. | LITHIUM-ION BATTERY SEPARATOR |
KR102209826B1 (ko) * | 2018-03-06 | 2021-01-29 | 삼성에스디아이 주식회사 | 분리막, 이의 제조방법 및 이를 포함하는 리튬전지 |
CN114284632B (zh) | 2018-04-11 | 2024-04-05 | 宁德新能源科技有限公司 | 隔离膜及储能装置 |
EP3843175A4 (en) * | 2018-08-24 | 2022-05-04 | Zeon Corporation | SLURRY COMPOSITION FOR NON-WATER SECONDARY BATTERY FUNCTIONAL LAYER, NON-WATER SECONDARY BATTERY SEPARATOR AND NON-WATER SECONDARY BATTERY SEPARATOR |
CN112567568B (zh) * | 2018-08-24 | 2023-06-02 | 日本瑞翁株式会社 | 非水系二次电池功能层用浆料组合物、功能层、间隔件以及非水系二次电池 |
KR102651679B1 (ko) * | 2018-10-23 | 2024-03-27 | 에스케이이노베이션 주식회사 | 이차전지용 분리막 및 이를 이용한 전기화학소자 |
CN109980290B (zh) * | 2019-03-18 | 2021-05-07 | 浙江锋锂新能源科技有限公司 | 一种混合固液电解质锂蓄电池 |
KR102416526B1 (ko) * | 2019-06-07 | 2022-07-01 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 |
KR20210061137A (ko) * | 2019-11-19 | 2021-05-27 | 주식회사 엘지에너지솔루션 | 전기화학소자용 분리막 및 이를 포함하는 전기화학소자 |
CN110815763B (zh) * | 2019-11-19 | 2021-06-08 | 青岛蓝科途膜材料有限公司 | 制备高强度高模量的聚烯烃薄膜的设备及方法和高强度高模量的聚烯烃薄膜 |
KR20210075678A (ko) * | 2019-12-13 | 2021-06-23 | 주식회사 엘지에너지솔루션 | 고상-액상 하이브리드 전해질 막, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 |
JP7440296B2 (ja) * | 2020-02-28 | 2024-02-28 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
KR102629464B1 (ko) * | 2020-04-13 | 2024-01-25 | 삼성에스디아이 주식회사 | 세퍼레이터 및 이를 채용한 리튬 전지 |
CN114639921A (zh) * | 2020-12-16 | 2022-06-17 | 湖北江升新材料有限公司 | 一种锂电池隔膜的制备方法 |
CN113540699B (zh) * | 2021-07-20 | 2024-09-10 | 宁德新能源科技有限公司 | 一种电化学装置及电子装置 |
CN114024095B (zh) * | 2021-10-27 | 2022-08-05 | 长园泽晖新能源材料研究院(珠海)有限公司 | 一种具有特殊孔结构的涂层隔膜及其制备方法 |
CN115000620B (zh) * | 2022-05-10 | 2024-09-13 | 河北金力新能源科技股份有限公司 | 超薄低透气耐击穿电池隔膜及其制备方法 |
CN116207446B (zh) * | 2023-05-06 | 2023-08-01 | 深圳中兴新材技术股份有限公司 | 低短路率的锂电池隔膜及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110035847A (ko) * | 2009-09-29 | 2011-04-06 | 주식회사 엘지화학 | 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법 |
KR20110057079A (ko) * | 2009-11-23 | 2011-05-31 | 주식회사 엘지화학 | 다공성 코팅층을 구비한 분리막의 제조방법, 이로부터 형성된 분리막 및 이를 구비한 전기화학소자 |
KR20130091459A (ko) * | 2012-02-08 | 2013-08-19 | 에스케이이노베이션 주식회사 | 내열성 및 안정성이 우수한 폴리올레핀계 복합 미세다공막 및 이의 제조방법 |
KR20130122570A (ko) * | 2012-04-30 | 2013-11-07 | 주식회사 엘지화학 | 세퍼레이터의 제조방법 및 그 방법에 의해 제조된 세퍼레이터를 구비하는 전기화학소자 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000020492A1 (en) * | 1998-10-01 | 2000-04-13 | Tonen Chemical Corporation | Microporous polyolefin film and process for producing the same |
JP5171150B2 (ja) * | 2000-03-07 | 2013-03-27 | 帝人株式会社 | リチウムイオン二次電池用セパレータ |
KR100406690B1 (ko) * | 2001-03-05 | 2003-11-21 | 주식회사 엘지화학 | 다성분계 복합 필름을 이용한 전기화학소자 |
JP4177612B2 (ja) | 2002-07-30 | 2008-11-05 | 株式会社東芝 | リチウムイオン二次電池 |
DE10255121B4 (de) | 2002-11-26 | 2017-09-14 | Evonik Degussa Gmbh | Separator mit asymmetrischem Porengefüge für eine elektrochemische Zelle |
KR101183912B1 (ko) * | 2005-08-25 | 2012-09-21 | 토레이 밧데리 세퍼레이터 필름 고도 가이샤 | 폴리에틸렌 다층 미세 다공막 및 이를 이용한 전지용세퍼레이터 및 전지 |
US7112389B1 (en) * | 2005-09-30 | 2006-09-26 | E. I. Du Pont De Nemours And Company | Batteries including improved fine fiber separators |
KR100727248B1 (ko) | 2007-02-05 | 2007-06-11 | 주식회사 엘지화학 | 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자 |
KR100983438B1 (ko) | 2007-05-15 | 2010-09-20 | 주식회사 엘지화학 | 다공성 코팅층이 형성된 세퍼레이터 및 이를 구비한전기화학소자 |
WO2010024559A2 (ko) * | 2008-08-25 | 2010-03-04 | 주식회사 엘지화학 | 다공성 코팅층을 구비한 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자 |
JP2011210574A (ja) * | 2010-03-30 | 2011-10-20 | Teijin Ltd | ポリオレフィン微多孔膜、非水系二次電池用セパレータ及び非水系二次電池 |
WO2013058371A1 (ja) * | 2011-10-21 | 2013-04-25 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
JP5934027B2 (ja) * | 2012-05-30 | 2016-06-15 | 帝人株式会社 | 極細繊維構造体 |
WO2014100213A2 (en) * | 2012-12-18 | 2014-06-26 | Sabic Innovative Plastics Ip B.V. | High temperature melt integrity battery separators via spinning |
JP6370154B2 (ja) * | 2013-10-29 | 2018-08-08 | パナソニック株式会社 | 非水電解質二次電池用セパレータ及び非水電解質二次電池 |
KR101656413B1 (ko) | 2013-10-31 | 2016-09-09 | 주식회사 엘지화학 | 전기화학소자용 분리막의 제조방법 및 그로부터 제조된 전기화학소자용 분리막 |
EP2999028B1 (en) | 2013-11-05 | 2019-01-16 | LG Chem, Ltd. | Separation membrane for electrochemical element |
-
2014
- 2014-12-17 TW TW103144187A patent/TWI560927B/zh active
- 2014-12-17 WO PCT/KR2014/012496 patent/WO2015093852A1/ko active Application Filing
- 2014-12-17 CN CN201480054780.6A patent/CN105594014B/zh active Active
- 2014-12-17 EP EP14872095.6A patent/EP3029757A4/en not_active Withdrawn
- 2014-12-17 KR KR1020140182526A patent/KR101672815B1/ko active IP Right Grant
- 2014-12-17 US US14/917,683 patent/US9905824B2/en active Active
- 2014-12-17 JP JP2016516837A patent/JP6263611B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110035847A (ko) * | 2009-09-29 | 2011-04-06 | 주식회사 엘지화학 | 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법 |
KR20110057079A (ko) * | 2009-11-23 | 2011-05-31 | 주식회사 엘지화학 | 다공성 코팅층을 구비한 분리막의 제조방법, 이로부터 형성된 분리막 및 이를 구비한 전기화학소자 |
KR20130091459A (ko) * | 2012-02-08 | 2013-08-19 | 에스케이이노베이션 주식회사 | 내열성 및 안정성이 우수한 폴리올레핀계 복합 미세다공막 및 이의 제조방법 |
KR20130122570A (ko) * | 2012-04-30 | 2013-11-07 | 주식회사 엘지화학 | 세퍼레이터의 제조방법 및 그 방법에 의해 제조된 세퍼레이터를 구비하는 전기화학소자 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017043728A1 (ko) * | 2015-09-07 | 2017-03-16 | 삼성에스디아이 주식회사 | 다공성 필름의 제조 방법, 이로 제조된 다공성 필름, 및 이를 포함한 분리막 또는 전기화학 전지 |
CN108352482A (zh) * | 2015-11-11 | 2018-07-31 | 株式会社Lg化学 | 具有电极粘合剂层的隔离件和包括其的电化学装置 |
US10318051B2 (en) | 2015-12-31 | 2019-06-11 | Lg Display Co., Ltd. | Contact sensitive device, display apparatus including the same and method of manufacturing the same |
US10877590B2 (en) | 2015-12-31 | 2020-12-29 | Lg Display Co., Ltd. | Contact sensitive device, display apparatus including the same and method of manufacturing the same |
US10915020B2 (en) | 2016-12-12 | 2021-02-09 | Samsung Sdi Co., Ltd. | Photosensitive resin composition, photosensitive resin layer using same and color filter |
WO2018164454A1 (ko) * | 2017-03-07 | 2018-09-13 | 삼성에스디아이 주식회사 | 다공성 필름, 이를 포함하는 분리막 및 전기 화학 전지 |
US11502372B2 (en) | 2017-03-07 | 2022-11-15 | Samsung Sdi Co., Ltd. | Porous film, separator comprising same, and electrochemical cell |
US11658365B2 (en) | 2018-01-30 | 2023-05-23 | Lg Energy Solution, Ltd. | Separator for electrochemical device and method for manufacturing the same |
CN115428249A (zh) * | 2020-03-27 | 2022-12-02 | 宁德新能源科技有限公司 | 一种电化学装置及包含该电化学装置的电子装置 |
KR20220156228A (ko) * | 2021-05-18 | 2022-11-25 | 도레이첨단소재 주식회사 | 이축 연신 폴리에스테르 필름 및 이를 포함하는 이차전지 분리막 |
WO2023146316A1 (ko) * | 2022-01-26 | 2023-08-03 | 주식회사 엘지화학 | 전기화학소자용 분리막 및 이를 포함하는 전기화학소자 |
EP4391195A1 (en) | 2022-11-17 | 2024-06-26 | SK On Co., Ltd. | Separator having excellent withstand voltage properties and secondary battery including the separator |
Also Published As
Publication number | Publication date |
---|---|
JP2016532240A (ja) | 2016-10-13 |
US20160218340A1 (en) | 2016-07-28 |
KR101672815B1 (ko) | 2016-11-04 |
EP3029757A1 (en) | 2016-06-08 |
EP3029757A4 (en) | 2017-01-18 |
CN105594014A (zh) | 2016-05-18 |
CN105594014B (zh) | 2018-04-20 |
WO2015093852A1 (ko) | 2015-06-25 |
TWI560927B (en) | 2016-12-01 |
JP6263611B2 (ja) | 2018-01-17 |
TW201530862A (zh) | 2015-08-01 |
US9905824B2 (en) | 2018-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101672815B1 (ko) | 전기화학소자용 분리막 | |
KR101666045B1 (ko) | 전기화학소자용 분리막 | |
KR101646101B1 (ko) | 전기화학소자용 분리막 | |
KR102086129B1 (ko) | 세퍼레이터 및 이를 포함하는 전기화학소자 | |
KR101656413B1 (ko) | 전기화학소자용 분리막의 제조방법 및 그로부터 제조된 전기화학소자용 분리막 | |
KR101943502B1 (ko) | 이차 전지용 분리막의 제조 방법 및 상기 방법에 의해 제조된 분리막 | |
KR20150068711A (ko) | 컬링/크랙 현상이 개선된 전기화학소자용 세퍼레이터 및 그의 제조방법 | |
KR101915345B1 (ko) | 전기화학소자용 분리막의 제조방법 및 그로부터 제조된 전기화학소자용 분리막 | |
KR101827425B1 (ko) | 컬링 현상이 개선된 전기화학소자용 세퍼레이터 및 그의 제조방법 | |
KR20150030102A (ko) | 전기화학소자용 분리막의 제조방법 및 그로부터 제조된 전기화학소자용 분리막 | |
KR101924988B1 (ko) | 전기화학소자용 분리막의 제조방법 | |
KR101499676B1 (ko) | 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자 | |
KR101816764B1 (ko) | 전기화학소자용 세퍼레이터의 제조방법 및 그로부터 제조된 전기화학소자용 세퍼레이터 | |
KR20190049604A (ko) | 다공성 분리막 및 이를 포함하는 전기화학소자 | |
KR101822592B1 (ko) | 전기화학소자용 세퍼레이터의 제조방법 및 그로부터 제조된 전기화학소자용 세퍼레이터 | |
KR101984881B1 (ko) | 안전성이 향상된 전기화학소자용 세퍼레이터 및 이를 포함하는 전극조립체 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
FPAY | Annual fee payment |
Payment date: 20191016 Year of fee payment: 4 |