KR20150035785A - 냉동기용 작동 유체 조성물 - Google Patents

냉동기용 작동 유체 조성물 Download PDF

Info

Publication number
KR20150035785A
KR20150035785A KR1020147036707A KR20147036707A KR20150035785A KR 20150035785 A KR20150035785 A KR 20150035785A KR 1020147036707 A KR1020147036707 A KR 1020147036707A KR 20147036707 A KR20147036707 A KR 20147036707A KR 20150035785 A KR20150035785 A KR 20150035785A
Authority
KR
South Korea
Prior art keywords
refrigerant
oil
hfc
refrigerator
fluid composition
Prior art date
Application number
KR1020147036707A
Other languages
English (en)
Other versions
KR101957692B1 (ko
Inventor
마사노리 사이토
소우이치로 콘노
구니코 아데가와
Original Assignee
제이엑스 닛코닛세키에너지주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이엑스 닛코닛세키에너지주식회사 filed Critical 제이엑스 닛코닛세키에너지주식회사
Publication of KR20150035785A publication Critical patent/KR20150035785A/ko
Application granted granted Critical
Publication of KR101957692B1 publication Critical patent/KR101957692B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/04Well-defined hydrocarbons aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/06Well-defined hydrocarbons aromatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/106Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/22Alkylation reaction products with aromatic type compounds, e.g. Friedel-crafts
    • C10M2205/223Alkylation reaction products with aromatic type compounds, e.g. Friedel-crafts used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • C10N2020/101Containing Hydrofluorocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • C10N2020/103Containing Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • C10N2020/106Containing Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/64Environmental friendly compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/70Soluble oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Lubricants (AREA)

Abstract

모노플루오로에탄을 함유하는 냉매와, n-d-M 환 분석에서의 %CN이 10 내지 60이고 또한 유동점이 -15℃ 이하인 광유 및 유동점이 -15℃ 이하인 합성 탄화수소유로부터 선택되는 적어도 1종을 기유로서 함유하고, 40℃에서의 동점도가 3 내지 500㎟/s인 냉동기유를 함유하는, 냉동기용 작동 유체 조성물.

Description

냉동기용 작동 유체 조성물 {WORKING FLUID COMPOSITION FOR REFRIGERATING MACHINE}
본 발명은 냉동기용 작동 유체 조성물에 관한 것으로서, 보다 상세하게는, 모노플루오로에탄(「HFC-161」 또는 「R161」이라고도 불림)을 함유하는 냉매를 함유하는 냉동기용 작동 유체 조성물에 관한 것이다.
근년의 오존층 파괴의 문제로부터, 종래 냉동 기기의 냉매로서 사용되어 온 CFC(클로로플루오로카본) 및 HCFC(하이드로클로로플루오로카본)이 규제의 대상이 되었고, 이들을 대신해서 HFC(하이드로플루오로카본)가 냉매로서 사용되고 있다.
HFC 냉매 중, HFC-134a, R407C, R410A는 카 에어컨용, 냉장고용 또는 룸 에어컨용의 냉매로서 표준적으로 사용되고 있다. 그러나, 이들의 HFC 냉매는, 오존 파괴 계수(ODP)가 제로이지만 지구 온난화 계수(GWP)가 높기 때문에, 규제의 대상이 되고 있다. 이들 냉매의 대체 후보의 하나로서 디플루오로메탄이 검토되고 있는데, 지구 온난화 계수가 충분히 낮지는 않고, 비점이 너무 낮아서 열역학적 특성이 현행의 냉동 시스템에는 그대로 적용할 수 없고, 또한 종래의 HFC 냉매로 사용되고 있는 폴리올 에스테르나 폴리비닐 에테르 등의 윤활유(냉동기유(冷凍機油))와 상용(相溶)하기 어렵다는 문제점이 있다. 한편, 불포화 불화 탄화수소류는, ODP 및 GWP의 쌍방이 매우 작고, 구조에 따라서는 불연성이며, 그 중에서도 HFO-1234yf는 냉매 성능의 척도인 열역학적 특성이 HFC-134a와 거의 동등하거나 그 이상인 것으로부터, 냉매로서의 사용이 제안되고 있다(특허문헌 1 내지 3).
또한, 제1 성분으로서 1,1-디플루오로에탄(HFC-152a), 1,1,1-트리플루오로-2-모노플루오로에탄(HFC-134a), 1,1,1-트리플루오로-2,2-디플루오로에탄(HFC-125)로부터 선택되는 1종 이상의 제1 성분 80질량% 이상, 제2 성분으로서 이산화탄소(R744) 20질량% 이하로 이루어진 작동 매체가 제안되고 있다(특허문헌 4).
또한, 가연성이기는 하지만, ODP가 0이고 GWP가 약 3으로 극히 작은, 이소부탄(R600a)이나 프로판(R290)과 같은 탄화수소도 검토되고 있다(특허문헌 5 내지 7).
특허문헌 1: 국제공개 WO2004/037913호 팜플렛 특허문헌 2; 국제공개 WO2005/105947호 팜플렛 특허문헌 3: 국제공개 WO2009/057475호 팜플렛 특허문헌 4: 일본 공개특허공보 특개평10-265771호 특허문헌 5: 일본 공개특허공보 특개2000-044937호 특허문헌 6: 일본 공개특허공보 특개2000-274360호 특허문헌 7: 일본 공개특허공보 특개2010-031728호
냉동·공조 시스템에서의 과제는, 냉매에 대해서는, 지구 온난화 계수(GWP)가 작고 환경에 대한 악영향이 적고, 연소·폭발하기 어려워 안전하게 사용할 수 있고, 열역학 특성이 용도에 적합하며, 화학 구조가 심플하고 저렴하게 대량 공급이 가능한 것이고, 냉매와 냉동기유가 공존하는 계의 특성으로서는, 상호 용해하고(상용성), 안정성이 뛰어나고, 마모되지 않는 유막이 유지된다(윤활성)고 하는, 많은 특성을 전부 만족하는 작동 유체를 발견하는 것이다.
GWP가 큰 현행의 HFC 냉매를 대신하는, 저(低)GWP의 차세대 냉매로서는, 전술한 바와 같이 HFC-32(GWP: 675), HFO-1234yf(GWP: 4), HFC-152a(GWP: 120), 프로판(R290, GWP: 3) 등이 유력한 후보로서 검토되고 있지만, 각각 과제를 안고 있다.
냉동·공조 기기의 냉매 순환 사이클에 있어서는, 냉매 압축기를 윤활하는 냉동기유가 냉매와 함께 사이클 내를 순환하기 때문에, 냉동기유에는 냉매와의 상용성이 요구된다. 그러나, HFC-32를 사용하는 냉동·공조 시스템에서는 냉동기유와 상용하기 어렵다는 과제가 있다. 냉동·공조 기기에 있어서, 냉매에 사용하는 냉동기유의 선택에 따라서는, 냉매와 냉동기유의 충분한 상용성을 얻을 수 없고, 냉매 압축기로부터 토출된 냉동기유가 사이클 내의 온도가 낮은 곳에 체류하기 쉬워진다. 그 결과, 냉매 압축기 내의 유량이 저하되어 윤활 불량에 의한 마모나, 내경이 1mm 이하의 가는 관인 캐필러리 등의 팽창 기구를 폐색한다는 문제가 생긴다. 또한, HFC-32의 비점은 -52℃이고, 룸 에어컨, 패키지 에어컨 등에 사용되고 있는 현행 냉매인 HCFC-22보다 약 10℃ 낮고, 같은 온도에서는 보다 고압이 되는 것으로부터 토출 온도가 너무 올라간다는 열역학 특성의 문제도 있고, 또한, GWP도 675로 충분하게는 작지 않다.
불포화 불화탄화수소이고, GWP도 극히 작은 HFO-1234yf를 사용하는 냉동·공조 시스템에 있어서는, 현행의 HFC에 사용되고 있는 폴리올 에스테르, 에테르 화합물 등의 냉동기유와 상용성이 있어, 적용 가능하다고 생각되어 왔다. 그러나, 본 발명자들의 검토에 의하면, 불포화 불화탄화수소는 분자 내에 불안정한 이중 결합을 가지므로, 열·화학적 안정성이 떨어진다는 안정성 면에서의 과제가 밝혀졌다. 또한, HFO-1234yf의 비점은 -25℃이고, 비점이 -26℃의 HFC-134a가 사용되고 있는 카 에어컨, 냉장고 분야에는 적용할 수 있지만, 비점이 -41℃이고, 비교적 압력이 높은 HCFC-22 등이 사용되고 있는 냉매 사용량이 많은 룸 에어컨, 패키지 에어컨, 산업용 냉동기 등의 분야에는 효율이 너무 나빠지기 때문에 적용할 수 없다.
HFC-152a는 가연성인 점을 제외하면, GWP도 작고 특성 밸런스가 좋은 냉매이다. 그러나, 비점이 -25℃이고, 이의 열역학 특성으로부터 HFC-134a 분야에밖에 적용할 수 없다. HFC-134a가 사용되고 있는 주된 분야 중, 냉매 충전량이 적은 냉장고 분야에서는, 이미 GWP가 3으로 작은 이소부탄(R600a)으로의 교체가 진행되고 있다. 하지만, 이소부탄에도, 열역학 특성, 안전성의 면에서 냉매 충전량이 많은 용도에는 적용할 수 없다는 문제가 있다.
프로판은 비점이 -42℃이고 GWP도 극히 작고, HCFC-22나 이의 대체로서 ODP가 0이고, HFC-32와 HFC-125가 각각 50질량%의 혼합 냉매인 R410A가 사용되고 있는 분야에서의 냉매 특성이 우수하다. 그러나, 강연성(强燃性)이고 폭발성도 높고, 안전면의 과제가 있다.
또한, 특허문헌 4에 기재되어 있는 바와 같은, 제1 성분으로서의 1,1-디플루오로에탄 등 80질량% 이상과 제2 성분으로서 이산화탄소 20질량% 이하로 이루어진 냉매의 경우, ODP는 0이지만, GWP는 충분히 작지는 않다.
본 발명은, 이와 같은 실정을 감안하여 이루어진 것으로서, 환경에 대한 악영향이 적고, 고효율 시스템에 있어서, 상용성, 열·화학적 안정성 및 윤활성을 고수준으로 달성하는 것이 가능한 냉동기용 작동 유체 조성물을 제공하는 것을 목적으로 한다.
본 발명자들은, 상기 목적을 달성하기 위해 예의 검토를 거듭한 결과, 모노플루오로에탄(HFC-161)을 함유하는 냉매와, 특정한 광유 및/또는 합성 탄화수소유를 기유(基油)로 한 냉동기유를 조합하여 사용함으로써, 냉매 상용성과 열·화학적 안정성의 양쪽을 높은 수준으로 달성할 수 있음을 발견하여, 본 발명을 완성시키기에 이르렀다.
즉, 본 발명은,
모노플루오로에탄을 함유하는 냉매와,
n-d-M 환 분석에서의 %CN이 10 내지 60이고 또한 유동점이 -15℃ 이하인 광유 및 유동점이 -15℃ 이하인 합성 탄화수소유로부터 선택되는 적어도 1종을 기유로서 함유하고, 40℃에서의 동점도가 3 내지 500㎟/s인 냉동기유
를 함유하는 냉동기용 작동 유체 조성물을 제공한다.
상기 냉매와 상기 냉동기유의 질량비는 90:10 내지 30:70인 것이 바람직하다.
상기 냉매 중의 모노플루오로에탄의 함유 비율은 50질량% 이상인 것이 바람직하고, 또한, 상기 냉매의 지구 온난화 계수는 300 이하인 것이 바람직하다.
상기 냉매는 이산화탄소를 추가로 함유하는 것이 바람직하다.
상기 기유가 합성 탄화수소유를 함유하는 경우, 당해 합성 탄화수소유는 알킬벤젠, 알킬나프탈렌 및 폴리-α-올레핀으로부터 선택되는 적어도 1종인 것이 바람직하다.
본 발명에 의하면, 모노플루오로에탄을 함유하는 냉매를 사용하는 냉동·공조 시스템에 있어서, 기존 시스템의 대폭적인 변경을 필요로 하지 않고, 상용성, 열·화학적 안정성 및 윤활성을 고수준으로 달성하는 것이 가능한 냉동·공조기용의 작동 유체 조성물을 제공하는 것이 가능해 진다.
또한, 본 발명의 냉동기용 작동 유체 조성물에 의하면, 냉매의 저GWP화 및 불연화(不燃化)를 달성할 수 있고, 냉동·공조 시스템을 안전하게 또한 고효율로 운전할 수 있다.
이하, 본 발명의 적합한 실시형태에 대해 상세하게 설명한다.
본 발명의 실시형태에 따른 냉동기용 작동 유체 조성물은,
모노플루오로에탄을 함유하는 냉매와,
n-d-M 환 분석에서의 %CN이 10 내지 60이고 또한 유동점이 -15℃ 이하인 광유 및 유동점이 -15℃ 이하인 합성 탄화수소유로부터 선택되는 적어도 1종을 기유로서 함유하고, 40℃에서의 동점도가 3 내지 500㎟/s인 냉동기유
를 함유한다.
본 실시형태에 따른 냉동기용 작동 유체 조성물에 있어서, 냉매와 냉동기유의 배합 비율은 특별히 제한되지 않지만, 냉매와 냉동기유의 질량비가 90:10 내지 30:70인 것이 바람직하고, 보다 바람직하게는 80:20 내지 40:60이다.
다음에, 냉동기용 작동 유체 조성물의 함유 성분에 대해 상술한다.
[냉매]
본 실시형태에서의 냉매는 모노플루오로에탄(HFC-161)을 함유한다. 모노플루오로에탄은 분자 내에 불소를 1개 갖고, 특징적인 특성을 나타낸다.
즉, 우선, 냉매로서 HCFC-22가 사용되어 온 분야에 있어서, 저GWP 냉매로서 열역학 특성에서 가장 적합한 것은 프로판(R290)이다. 그러나, 프로판은 강연성이므로 안전면의 큰 문제와, 또한 냉동기유와 공존했을 경우, 냉동기유에 지나치게 용해되어 기름의 점도를 대폭 내려서, 윤활성을 저하시킨다는 과제가 있다.
이에 대해 모노플루오로에탄은, GWP가 100 이하로 작고, 비점이 -37℃이고, HCFC-22의 비점 -41℃와 근접해 있어 열역학 특성이 유사하여, 단독으로도 냉매로서의 열역학 특성, 냉동기유와의 상용성, 안정성이 양호하다. 또한, 가연성이기는 하지만, 프로판의 폭발 하한값인 2.1용량%에 대해 HFC-161의 폭발 하한값은 5.0용량%이고, 또한 프로판보다 비점이 5℃ 높고, 저압이며 냉매 누출을 일으키기 어려워 훨씬 안전성이 높다. 실내의 냉매 농도가 5.0용량%에 달하는 경우는 거의 없다. 또한, 분자 내에 불소를 갖는 것으로부터 냉동기유로의 용해량이 프로판보다 훨씬 적어, 냉동·공조 장치 1개당의 냉매 충전량이 적게 들고, 상응의 안전 대책을 함으로써 실용화는 가능하다고 생각된다. 공존하는 냉동기유로의 용해량이 적음으로써, 냉동기유의 점도 저하도 작고, 윤활성에 관해서도 유리한 방향이며, 분자 내에 이중 결합이 없으므로 안정성도 문제는 없다.
또한, HFC-161을 함유하는 냉매에 다른 냉매 성분을 추가로 함유시킴으로써, 냉매(혼합 냉매)의 특성을 목적·용도에 따라 보다 적합한 것으로 할 수 있다. 배합하는 냉매로서는, 하이드로플루오로카본(HFC), 하이드로플루오로올레핀(HFO), 이산화탄소(R744), 암모니아(R717), 불소화 에테르 화합물 등을 들 수 있다.
여기서, 상기의 냉매 성분 중 HFC나 HFO는, 분자 내의 불소 원자의 수가 많을수록, 즉 1분자에서 차지하는 불소 원자의 비율이 높을수록, 광유 및 합성 탄화수소유와의 상용성이 저하된다. 따라서, HFC-161과의 배합 비율에도 따르지만, 부분적으로 냉매와 냉동기유가 2층 분리하는 경우에는 시스템에서의 대응이 필요해진다.
모노플루오로에탄과 조합하는 바람직한 성분에 대해, 괄호 내에 비점, GWP, 연소성을 부기(付記)해서 열거하면, HFC-32(-52℃, 675, 미연성(微燃性)), HFC-152a(-25℃, 120, 가연성), HFC-143a(-47℃, 4300, 미연성), HFC-134a(-26℃, 1300, 불연성), HFC-125(-49℃, 3400, 불연성), HFO-1234ze(-19℃, 6, 미연성), HFO-1234yf(-29℃, 4, 미연성), 프로판(-42℃, 3, 강연성), 이소부탄(-12℃, 3, 강연성), 이산화탄소(-78℃, 1, 불연성)을 들 수 있다. 이들 성분은 2종 이상을 조합해도 좋다.
예를 들어, 본 실시형태에서의 냉매(혼합 냉매)의 안전성을 높이기 위해서는, 불연성 냉매를 배합하면 좋지만, 불연성의 HFC 냉매는 대체로 GWP가 높다. 그래서, 미연성 냉매를 배합하여 특성의 밸런스를 잡는 방법이 있다. 특히, 이산화탄소는 불연이고, GWP의 기준 화합물로 1로 작으므로, 열역학 특성에 영향을 주지 않는 범위에서의 배합은 유효하다.
또한, 효율을 높이기 위해서는 고압의 냉매, 즉 비점이 낮은 냉매를 배합하게 되는데, 프로판은 강연성이므로, HFC-32, HFC-143a, HFC-125이 후보가 된다.
GWP를 작게 하기 위해서는, HFO-1234ze, HFO-1234yf, 이산화탄소 또는 프로판, 이소부탄이 바람직하다.
또한, HCFC-22가 사용되어 온 분야 이외에 적용하기 위해서 혼합 냉매의 압력을 내리는 경우에는, 종합적인 특성 밸런스를 고려하여, 비점이 -30℃보다 높은 HFC-134a, HFO-1234ze, HFO-1234yf 등의 비교적 압력이 낮은 냉매로부터 선정하게 된다.
본 실시형태에서의 냉매가 모노플루오로에탄과 상기 성분의 혼합 냉매인 경우, 당해 혼합 냉매 중의 모노플루오로에탄의 함유 비율이 50질량% 이상인 것이 바람직하고, 70질량% 이상인 것이 보다 바람직하다. 또한, GWP에 대해서는 300 이하로 하는 것이, 지구 환경 보호의 관점에서 바람직하고, 200 이하, 또한 150 이하가 보다 바람직하다. 본 실시형태에 있어서 사용되는 냉매가 혼합 냉매일 경우, 당해 혼합 냉매는 공비 혼합물인 것이 바람직하지만, 냉매로서 필요한 물성을 갖고 있으면 특별히 공비 혼합물일 필요는 없다.
[냉동기유]
본 실시형태에서의 냉동기유는, n-d-M 환 분석에서의 %CN이 10 내지 60이고 또한 유동점이 -15℃ 이하인 광유 및 유동점이 -15℃ 이하인 합성 탄화수소유로부터 선택되는 적어도 1종을 기유로 하는 것이다.
광유는 파라핀계, 나프텐계 등의 원유를 상압 증류 및 감압 증류하여 수득된 윤활유 유분(留分)을, 용제 탈력(脫瀝), 용제 정제, 수소화 정제, 수소화 분해, 용제 탈납, 수소화 탈납, 백토 처리, 황산 세정의 1종 또는 2종 이상의 정제를 적절히 조합하여 수득할 수 있다.
n-d-M 환 분석은 ASTM D-3238로 규정되어 있고, 기름의 20℃에서의 굴절율, 밀도와 유황분, 점도(40℃ 및 100℃)를 측정하고, 계산으로 방향족 탄소수(%CA), 나프텐 탄소수(%CN), 파라핀 탄소수(%CP)를 구하는 방법이고, 3종의 탄소의 합계가 100%인 것으로부터, 기름의 조성 타입의 지표가 된다. 광유의 %CN이 10 미만이 되면, %CP가 많아져 냉매와 기름의 상용성이 저하된다. 한편, 광유의 %CN이 60을 초과하면 %CP가 적어지고, 점도 지수가 작아지는 등, 점도 특성이 저하, 즉 윤활성이 저하된다. %CN은 바람직하게는 20 내지 50이다.
합성 탄화수소유로서는, 알킬벤젠, 알킬나프탈렌, 폴리-α-올레핀(PAO), 폴리부텐, 에틸렌-α-올레핀 공중합체 등을 들 수 있고, 예를 들어 폴리부텐 등은 분자량이 커지면 고체가 되므로, 유동점은 -15℃ 이하인 것이 필요하다. 그 중에서도 HFC-161 냉매와 공존한 경우의 상용성, 점도 지수 등의 특성으로부터, 알킬벤젠, 알킬나프탈렌, PAO가 바람직하다.
알킬벤젠은 벤젠환에 알킬기가 결합한 방향족 탄화수소이다. 알킬기의 화학구조에 의해 직쇄 타입과 분기(分枝) 타입이 있고, 치환 알킬기의 수에 의해 모노-, 디-, 트리-, 테트라 알킬벤젠과 같이 불린다. 알킬벤젠으로서는 탄소수 1 내지 30의 알킬기를 1 내지 4개 갖고, 알킬기의 합계 탄소수가 3 내지 30인 것이 바람직하다. 알킬기로서는 탄소수에 따라, 메틸기, 에틸기나 직쇄상 또는 분기상의 프로필기, 부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기, 노닐기, 데실기, 운데실기, 도데실기, 트리데실기, 테트라데실기, 헵타데실기, 옥타데실기 등이 있다. 그 중에서도 프로필렌, 부텐, 이소부틸렌 등의 올레핀의 올리고머로부터 유도되는 분기상의 알킬기가 바람직하고, 40℃에서의 동점도가 3 내지 50㎟/s인 것이 보다 바람직하다.
알킬나프탈렌은 나프탈렌환에 알킬기가 결합한 방향족 탄화수소이며, 알킬기 에 대해서는 알킬벤젠과 동일하다. 나프탈렌환에 탄소수가 1 내지 10의 알킬기를 1 내지 4개 갖고, 알킬기의 총 탄소수가 1 내지 20의 것이 바람직하고, 나프탈렌 환이 안정한 것으로부터, 내열성 등 안정성이 우수하다. 또한, 40℃에서의 동점도가 10 내지 100㎟/s인 것이 바람직하다.
폴리-α-올레핀(PAO)은, 탄소수 6 내지 18의 직쇄이고 양 말단의 한 쪽에 이중 결합을 갖는 올레핀을 몇 분자만 한정적으로 중합시키고, 다음에 수소 첨가하여 수득되는 무색 투명의 액체이다. 예를 들어 탄소수 10의 α-데센이나 탄소수 12의 α-도데센의 3량체 또는 4량체를 중심으로 전후로 분포한 이소파라핀이고, 광유와 비교하면 순도가 높고, 분자량 분포는 좁다. 분자 구조가 빗 형상의 분기를 갖고 있고, 점도 지수가 높고, 유동점이 낮고, 점도에 비해 인화점이 높은 등 광유보다 우수한 성상을 나타낸다.
본 실시형태에서의 냉동기유의 동점도는 특별히 한정되지 않지만, 40℃에서의 동점도는 바람직하게는 3 내지 500㎟/s, 보다 바람직하게는 5 내지 400㎟/s로 할 수 있다. 또한, 100℃에서의 동점도는 바람직하게는 1 내지 50㎟/s, 보다 바람직하게는 2 내지 30㎟/s로 할 수 있다.
본 실시형태에서의 냉동기유의 체적 저항율은 특별히 한정되지 않지만, 바람직하게는 1.0×1010Ω·m 이상, 보다 바람직하게는 1.0×1011Ω·m 이상으로 할 수 있다. 특히, 밀폐형의 냉동기용에 사용하는 경우에는 높은 전기 절연성이 필요해지는 경향이 있다. 또한, 본 발명에 있어서, 체적 저항율이란, JIS C 2101 「전기 절연유 시험 방법」에 준거하여 측정한 25℃에서의 값을 의미한다.
본 실시형태에서의 냉동기유의 수분 함유량은 특별히 한정되지 않지만, 냉동기유 전량 기준으로 바람직하게는 100ppm 이하, 보다 바람직하게는 50ppm 이하, 가장 바람직하게는 30ppm 이하로 할 수 있다. 특히 밀폐형의 냉동기용에 사용하는 경우에는, 냉동기유의 열·화학적 안정성이나 전기 절연성에 대한 영향의 관점에서, 수분 함유량이 적은 것이 요구된다.
본 실시형태에서의 냉동기유의 산가는 특별히 한정되지 않지만, 냉동기 또는 배관에 사용되고 있는 금속으로의 부식을 방지하기 위해, 그리고 냉동기유의 열화를 방지하기 위해, 바람직하게는 0.1mg KOH/g 이하, 보다 바람직하게는 0.05mg KOH/g 이하로 할 수 있다. 또한, 본 발명에 있어서, 산가란, JlSK2501 「석유 제품 및 윤활유-중화가 시험 방법」에 준거하여 측정한 산가를 의미한다.
본 실시형태에서의 냉동기유의 회분(灰分)은 특별히 한정되지 않지만, 냉동기유의 열·화학적 안정성을 높여 슬러지 등의 발생을 억제하기 위해, 바람직하게는 100ppm 이하, 보다 바람직하게는 50ppm 이하로 할 수 있다. 또한, 본 발명에 있어서, 회분이란, JISK2272 「원유 및 석유 제품의 회분 및 황산 회분 시험 방법」에 준거하여 측정한 회분의 값을 의미한다.
본 실시형태에 따른 냉동기용 작동 유체 조성물은, 필요에 따라 추가로 각종첨가제를 배합한 형태로 사용할 수도 있다. 또한, 이하의 첨가제의 함유량은 냉동기유 조성물 전량을 기준으로 하여, 5질량% 이하, 특히는, 2질량% 이하가 바람직하다.
본 실시형태에 따른 냉동기용 작동 유체 조성물의 내마모성, 내하중성을 더욱 개량하기 위해, 인산 에스테르, 산성 인산 에스테르, 티오 인산 에스테르, 산성 인산 에스테르의 아민염, 염소화 인산 에스테르 및 아인산 에스테르로 이루어진 그룹으로부터 선택되는 적어도 1종의 인 화합물을 배합할 수 있다. 이들 인 화합물은, 인산 또는 아인산과 알칸올, 폴리에테르형 알코올과의 에스테르 또는 이의 유도체이다.
또한, 본 실시형태에 따른 냉동기용 작동 유체 조성물은, 이의 열·화학적 안정성을 더욱 개량하기 위해, 페닐글리시딜 에테르형 에폭시 화합물, 알킬글리시딜 에테르형 에폭시 화합물, 글리시딜 에스테르형 에폭시 화합물, 알릴옥시란 화합물, 알킬옥시란 화합물, 지환식 에폭시 화합물, 에폭시화 지방산 모노에스테르 및 에폭시화 식물유로부터 선택되는 적어도 1종의 에폭시 화합물을 함유할 수 있다.
또한, 본 실시형태에 따른 냉동기용 작동 유체 조성물은, 이의 성능을 더욱 높이기 위해, 필요에 따라 종래 공지의 냉동기유용 첨가제를 함유할 수 있다. 이러한 첨가제로서는, 예를 들어 디-tert.-부틸-p-크레졸, 비스페놀 A 등의 페놀계의 산화 방지제, 페닐-α-나프틸아민, N,N-디(2-나프틸)-p-페닐렌디아민 등의 아민계의 산화 방지제, 디티오인산 아연 등의 마모 방지제, 염소화 파라핀, 황 화합물 등의 극압제, 지방산 등의 유성제, 실리콘계 등의 소포제, 벤조트리아졸 등의 금속 불활성화제, 점도 지수 향상제, 유동점 강하제, 청정 분산제 등을 들 수 있다. 이들 첨가제는 1종을 단독으로 사용해도 좋고, 2종 이상을 조합하여 사용해도 좋다.
본 실시형태에 따른 냉동기용 작동 유체 조성물은, 왕복 운동식이나 회전식의 밀폐형 압축기를 갖는 룸 에어컨, 냉장고, 또는 개방형 또는 밀폐형의 카 에어컨에 바람직하게 사용된다. 또한, 본 실시형태에 따른 냉동기용 작동 유체 조성물 및 냉동기유는 제습기, 급탕기, 냉동고, 냉동 냉장 창고, 자동 판매기, 쇼 케이스, 화학 플랜트 등의 냉각 장치 등에 바람직하게 사용된다. 또한, 본 실시형태에 따른 냉동기용 작동 유체 조성물 및 냉동기유는, 원심식의 압축기를 갖는 것에도 바람직하게 사용된다.
실시예
이하, 실시예 및 비교예에 기초하여 본 발명을 더욱 구체적으로 설명하겠지만, 본 발명은 이하의 실시예에 한정되는 것은 아니다.
[냉동기유]
우선, 이하에 기재하는 기유 1 내지 4에 산화 방지제인 디-tert.-부틸-p-크레졸(DBPC)을 0.1질량% 첨가하여, 냉동기유 1 내지 4를 조제하였다. 냉동기유 1 내지 4의 각종 성상을 표 1에 기재하였다.
[기유]
기유 1: 나프텐 원유로부의 감압 유출유를 푸르푸랄 추출, 수소화 정제에 의해 정제한 기유(제이엑스 닛코닛세키에너지주식회사 제조)
기유 2: 파라핀 원유로부터의 감압 유출유를 수소화 분해, 수소화 탈납에 의해 정제한 기유(한국, SK 루브리칸츠사 제조)
기유 3: 분기 타입 알킬벤젠(제이엑스 닛코닛세키에너지주식회사 제조)
기유 4: 폴리-α-올레핀(엑손모빌사 제조)
Figure pct00001
[실시예 1 내지 8, 비교예 1 내지 10]
실시예 1 내지 8 및 비교예 1 내지 10에서는, 각각 상기의 냉동기유 1 내지 4중 어느 하나와, 표 2 내지 4에 기재한 냉매를 조합한 냉동기용 작동 유체 조성물에 대해, 이하에 기재하는 평가 시험을 실시하였다. 또한, 후술하는 바와 같이, 냉동기용 작동 유체 조성물에서의 냉매와 냉동기유의 질량비는 시험마다 변경하였다.
냉매로서, 실시예에는 HFC-161 단독과, HFC-161에 이산화탄소(R744) 배합하고, 연소성을 억제한 혼합 냉매 A를 사용하였다. 또한, GWP에 대해 HFC-161의 확정한 값이 공표되어 있지 않은 것으로부터, 최대값인 100을 사용하여 계산하였다.
비교예에는, 현재 폭넓게 사용되고 있는 HFC-134a와 GWP값, 연소성, 열역학 특성으로부터 신냉매로서 유력 후보인 프로판(R290), HFC-32, HFO-1234yf를 사용하였다.
[냉매]
HFC-161: 모노플루오로에탄 (GWP: 약 100)
R744: 이산화탄소 (GWP: 1)
R290: 프로판 (GWP: 3)
HFC-134a: 1,1,1,2-테트라플루오로에탄 (GWP: 1300)
HFC-32: 디플루오로메탄 (GWP: 675)
HFO-1234yf: 2,3,3,3-테트라플루오로프로펜 (GWP: 4)
혼합 냉매 A: HFC-161/R744 = 80/20 (질량비, GWP: 약 80)
다음에, 실시예 1 내지 8 및 비교예 1 내지 10의 냉동기용 작동 유체 조성물에 대해, 이하에 기재하는 평가 시험을 실시하였다. 그 결과를 표 2 내지 4에 기재하였다.
[상용성의 평가]
JIS-K-2211 「냉동기유」의 「냉매와의 상용성 시험 방법」에 준거하고, 혼합 냉매를 포함하는 상기 냉매의 각각 18g에 대해 냉동기유를 2g 배합하고, 냉매와 냉동기유가 0℃에서 서로 용해되어 있는지를 관찰하였다. 수득된 결과를 표 2 내지 4에 기재하였다. 표 중, 「상용」은 냉매와 냉동기유가 상호 용해된 것을 의미하고, 「분리」는 냉매와 냉동기유가 2층으로 분리된 것을 의미한다.
[열·화학적 안정성의 평가]
JIS-K-2211에 준거하고, 수분을 100ppm 이하로 조정한 냉동기유(초기 색상 L 0.5) 1g과, 상기의 각종 냉매 1g과, 촉매(철, 동, 알루미늄의 각 선)를 유리관에 봉입한 후, 철제의 보호관에 넣어 175℃에 가열하여 1주간 유지하여 시험하였다. 시험 후에, 냉동기유의 색상 및 촉매의 색 변화를 평가하였다. 색상은, ASTM D156에 준거하여 평가하였다. 또한, 촉매의 색 변화는, 외관을 육안으로 관찰하고, 변화 없음, 광택 없음, 흑화 중 어느 것에 해당하는지를 평가하였다. 광택 없음, 흑화의 경우에는 냉동기유와 냉매의 혼합 액체, 즉 작동 유체가 열화되어 있다고 할 수 있다. 얻어진 결과를 표 2 내지 4에 기재하였다.
Figure pct00002
Figure pct00003
Figure pct00004
표 2에 기재된 본 발명의 실시예 1 내지 8은, 냉매의 GWP는 모두 150 이하로 작고, 냉매와 냉동기유의 상용성에 문제가 없고, 열·화학적 안정성, 윤활성도 양호하여, 우수한 냉동·공조기용의 작동 유체라고 할 수 있다.
한편, 비교예 1 내지 4는, 어느 쪽의 냉동기유도 냉매와는 상용하지만, 냉매가 지나치게 용해되기 때문에 점도 저하를 일으켜서 윤활성이 악화되므로 작동 유체로서의 사용은 어렵다. 비교예 5 내지 8은, GWP가 크고, 또한 냉매와 냉동기유의 상용성이 없으므로 사용할 수 없다. 비교예 9, 10은 GWP가 작지만, 냉동기유와 냉매가 공존했을 경우의 열·화학적 안정성이 나쁘고, 동, 철 촉매가 변색되고, 기름의 착색, 즉 열화가 보이고, 또한, 상용성이 없으므로, 적합한 작동 유체라고는 할 수 없다.
본 발명은, HFC-161을 함유하는 냉매가 사용되는 냉동·공조기에 사용되는 작동 유체 조성물이고, 압축기, 응축기, 교축 장치, 증발기 등을 갖고, 이들 사이에서 냉매를 순환시키는 냉각 효율이 높은 냉동 시스템으로, 특히는, 로터리 타입, 스윙 타입, 스크롤 타입, 레시프로 타입 압축기 등의 압축기를 갖는 냉동·공조기의 작동 유체로서 사용할 수 있고, 룸 에어컨, 패키지 에어컨, 산업용 냉동기, 냉장고, 카 에어컨 등의 분야에서 적합하게 사용할 수 있다.

Claims (5)

  1. 모노플루오로에탄을 함유하는 냉매와,
    n-d-M 환 분석에서의 %CN이 10 내지 60이고 또한 유동점이 -15℃ 이하인 광유 및 유동점이 -15℃ 이하인 합성 탄화수소유로부터 선택되는 적어도 1종을 기유(基油)로서 함유하고, 40℃에서의 동점도가 3 내지 500㎟/s인 냉동기유(冷凍機油)
    를 함유하는, 냉동기용 작동 유체 조성물.
  2. 제1항에 있어서, 상기 냉매와 상기 냉동기유의 질량비가 90:10 내지 30:70인, 냉동기용 작동 유체 조성물.
  3. 제1항 또는 제2항에 있어서, 상기 냉매 중의 모노플루오로에탄의 함유 비율은 50질량% 이상이고, 상기 냉매의 지구 온난화 계수는 300 이하인, 냉동기용 작동 유체 조성물.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 냉매가 이산화탄소를 추가로 함유하는, 냉동기용 작동 유체 조성물.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 기유가 합성 탄화수소유를 함유하고, 당해 합성 탄화수소유가 알킬벤젠, 알킬나프탈렌 및 폴리-α-올레핀으로부터 선택되는 적어도 1종인, 작동 유체 조성물.
KR1020147036707A 2012-07-13 2013-07-11 냉동기용 작동 유체 조성물 KR101957692B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2012-157870 2012-07-13
JP2012157870A JP5937446B2 (ja) 2012-07-13 2012-07-13 冷凍機用作動流体組成物
PCT/JP2013/069026 WO2014010693A1 (ja) 2012-07-13 2013-07-11 冷凍機用作動流体組成物

Publications (2)

Publication Number Publication Date
KR20150035785A true KR20150035785A (ko) 2015-04-07
KR101957692B1 KR101957692B1 (ko) 2019-03-14

Family

ID=49916134

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147036707A KR101957692B1 (ko) 2012-07-13 2013-07-11 냉동기용 작동 유체 조성물

Country Status (6)

Country Link
US (1) US9732263B2 (ko)
EP (1) EP2873716B1 (ko)
JP (1) JP5937446B2 (ko)
KR (1) KR101957692B1 (ko)
CN (1) CN104379710B (ko)
WO (1) WO2014010693A1 (ko)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5937446B2 (ja) 2012-07-13 2016-06-22 Jxエネルギー株式会社 冷凍機用作動流体組成物
CN104293300A (zh) * 2014-09-09 2015-01-21 西安交通大学 一种替代hcfc-22的混合制冷剂及其制备方法和应用
CN104342264A (zh) * 2014-09-29 2015-02-11 武汉杰生润滑科技有限公司 一种冷冻机油组合物
CN106147925B (zh) * 2015-03-23 2019-01-18 中国石油天然气股份有限公司 一种冷冻机油组合物及其应用
CN108473898A (zh) * 2016-02-24 2018-08-31 Jxtg能源株式会社 冷冻机油
DE102016204378A1 (de) * 2016-03-16 2017-09-21 Weiss Umwelttechnik Gmbh Prüfkammer
JP6161766B2 (ja) * 2016-05-12 2017-07-12 Jxtgエネルギー株式会社 冷凍機用作動流体組成物
JP7054330B2 (ja) * 2017-02-03 2022-04-13 Eneos株式会社 冷凍機油
EP3617504A4 (en) * 2017-04-28 2020-04-22 Panasonic Appliances Refrigeration Devices Singapore HERMETICALLY SEALED REFRIGERANT COMPRESSOR AND COOLING DEVICE WITH USE THEREOF
US20190122479A1 (en) * 2017-10-23 2019-04-25 Nidec Motor Corporation Drive system for vending machine
JP7252537B2 (ja) * 2018-12-05 2023-04-05 国立大学法人 東京大学 冷凍機用作動流体組成物の耐燃焼性を向上させる方法
CN113330092B (zh) * 2018-12-31 2024-04-09 霍尼韦尔国际公司 经稳定的热传递组合物、方法和系统
CN110951523A (zh) * 2019-11-26 2020-04-03 广州市骏辉环保科技有限公司 一种合成冷冻机油及其制备方法和应用
CN112877113B (zh) * 2019-11-29 2023-02-28 中石油克拉玛依石化有限责任公司 一种冷冻机油及其制备方法和应用
WO2021145405A1 (ja) * 2020-01-15 2021-07-22 出光興産株式会社 潤滑油組成物
JPWO2023286863A1 (ko) * 2021-07-16 2023-01-19

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265771A (ja) 1997-03-24 1998-10-06 Sanai:Kk 作動媒体
JP2000044937A (ja) 1998-07-27 2000-02-15 Matsushita Refrig Co Ltd 冷媒用ガス
JP2000274360A (ja) 1999-03-23 2000-10-03 Toshiba Corp 密閉形電動圧縮機および空気調和機
WO2004037913A2 (en) 2002-10-25 2004-05-06 Honeywell International, Inc. Compositions containing flourine substituted olefins
WO2005105947A2 (en) 2004-04-29 2005-11-10 Honeywell International, Inc. Compositions containing fluorine substituted olefins
JP2006275013A (ja) * 2005-03-30 2006-10-12 Nippon Oil Corp 冷媒圧縮機用試運転油、及び冷媒圧縮機の試運転方法
WO2009057475A1 (ja) 2007-10-29 2009-05-07 Nippon Oil Corporation 冷凍機油および冷凍機用作動流体組成物
JP2010031728A (ja) 2008-07-29 2010-02-12 Hitachi Appliances Inc 冷媒圧縮機
JP2010261052A (ja) * 2003-08-01 2010-11-18 Jx Nippon Oil & Energy Corp 冷凍機油組成物
JP2012031239A (ja) * 2010-07-29 2012-02-16 Hitachi Appliances Inc 冷凍空調用圧縮機及び冷凍空調装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161089A (ja) 1987-12-18 1989-06-23 Kiyouseki Seihin Gijutsu Kenkyusho:Kk 冷凍機油の製造方法
US4941986A (en) 1989-03-16 1990-07-17 The Lubrizol Corporation Liquid compositions containing organic nitro compounds
JP2901369B2 (ja) * 1991-01-30 1999-06-07 株式会社日立製作所 冷凍機油組成物とそれを内蔵した冷媒圧縮機及び冷凍装置
JP2901529B2 (ja) * 1996-01-09 1999-06-07 株式会社日立製作所 冷凍機油組成物
JPH08231972A (ja) * 1996-01-09 1996-09-10 Hitachi Ltd 冷凍装置
JP3860942B2 (ja) * 1999-11-18 2006-12-20 株式会社ジャパンエナジー 冷凍装置用潤滑油組成物、作動流体及び冷凍装置
GB0105065D0 (en) 2001-03-01 2001-04-18 Ici Plc Lubricant compositions
JP5237543B2 (ja) 2006-10-25 2013-07-17 出光興産株式会社 グリース
US8333901B2 (en) 2007-10-12 2012-12-18 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US8628681B2 (en) * 2007-10-12 2014-01-14 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
EP3093323A1 (en) 2008-07-30 2016-11-16 Honeywell International Inc. Compositions containing difluoromethane and fluorine substituted
CN107384322A (zh) 2008-07-30 2017-11-24 霍尼韦尔国际公司 含有二氟甲烷和氟取代的烯烃的组合物
JP5265996B2 (ja) * 2008-09-11 2013-08-14 Jx日鉱日石エネルギー株式会社 潤滑油組成物
EP2367896A1 (en) * 2008-12-02 2011-09-28 Mexichem Amanco Holding S.A. de C.V. Heat transfer compositions
JP5848002B2 (ja) 2010-01-18 2016-01-27 Jx日鉱日石エネルギー株式会社 潤滑油組成物
JP5937446B2 (ja) 2012-07-13 2016-06-22 Jxエネルギー株式会社 冷凍機用作動流体組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265771A (ja) 1997-03-24 1998-10-06 Sanai:Kk 作動媒体
JP2000044937A (ja) 1998-07-27 2000-02-15 Matsushita Refrig Co Ltd 冷媒用ガス
JP2000274360A (ja) 1999-03-23 2000-10-03 Toshiba Corp 密閉形電動圧縮機および空気調和機
WO2004037913A2 (en) 2002-10-25 2004-05-06 Honeywell International, Inc. Compositions containing flourine substituted olefins
JP2010261052A (ja) * 2003-08-01 2010-11-18 Jx Nippon Oil & Energy Corp 冷凍機油組成物
WO2005105947A2 (en) 2004-04-29 2005-11-10 Honeywell International, Inc. Compositions containing fluorine substituted olefins
JP2006275013A (ja) * 2005-03-30 2006-10-12 Nippon Oil Corp 冷媒圧縮機用試運転油、及び冷媒圧縮機の試運転方法
WO2009057475A1 (ja) 2007-10-29 2009-05-07 Nippon Oil Corporation 冷凍機油および冷凍機用作動流体組成物
JP2010031728A (ja) 2008-07-29 2010-02-12 Hitachi Appliances Inc 冷媒圧縮機
JP2012031239A (ja) * 2010-07-29 2012-02-16 Hitachi Appliances Inc 冷凍空調用圧縮機及び冷凍空調装置

Also Published As

Publication number Publication date
CN104379710B (zh) 2016-08-31
CN104379710A (zh) 2015-02-25
KR101957692B1 (ko) 2019-03-14
JP5937446B2 (ja) 2016-06-22
EP2873716A1 (en) 2015-05-20
US9732263B2 (en) 2017-08-15
JP2014019757A (ja) 2014-02-03
EP2873716A4 (en) 2015-05-20
US20150203732A1 (en) 2015-07-23
WO2014010693A1 (ja) 2014-01-16
EP2873716B1 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
KR101957692B1 (ko) 냉동기용 작동 유체 조성물
KR101874780B1 (ko) 냉동기용 작동 유체 조성물
JP5941056B2 (ja) 冷凍機用作動流体組成物及び冷凍機油
KR101879567B1 (ko) 냉동기용 작동 유체 조성물
EP2821466B1 (en) Working fluid composition for refrigerator, refrigeration oil, and method for producing same
EP3470501B1 (en) Working fluid composition for refrigerator
EP3170881A1 (en) Refrigerator oil composition, and refrigeration device
KR20150116824A (ko) 냉동기유 및 냉동기용 작동 유체 조성물
JP5986778B2 (ja) 冷媒組成物およびフッ化炭化水素の分解抑制方法
KR102618141B1 (ko) 냉동기 윤활유 및 냉동기용 혼합 조성물
JP6631622B2 (ja) 冷凍機潤滑油及び冷凍機用混合組成物
JP6161766B2 (ja) 冷凍機用作動流体組成物
JP7474202B2 (ja) 冷凍機用組成物
JP6054495B2 (ja) 冷凍機用作動流体組成物

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right