KR20140119078A - 하전 입자선 장치 - Google Patents

하전 입자선 장치 Download PDF

Info

Publication number
KR20140119078A
KR20140119078A KR1020147021504A KR20147021504A KR20140119078A KR 20140119078 A KR20140119078 A KR 20140119078A KR 1020147021504 A KR1020147021504 A KR 1020147021504A KR 20147021504 A KR20147021504 A KR 20147021504A KR 20140119078 A KR20140119078 A KR 20140119078A
Authority
KR
South Korea
Prior art keywords
diaphragm
charged particle
housing
space
tube
Prior art date
Application number
KR1020147021504A
Other languages
English (en)
Other versions
KR101607043B1 (ko
Inventor
유스께 오미나미
다까시 오시마
히로유끼 이또
미쯔구 사또
스께히로 이또
Original Assignee
가부시키가이샤 히다치 하이테크놀로지즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 히다치 하이테크놀로지즈 filed Critical 가부시키가이샤 히다치 하이테크놀로지즈
Publication of KR20140119078A publication Critical patent/KR20140119078A/ko
Application granted granted Critical
Publication of KR101607043B1 publication Critical patent/KR101607043B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/16Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • H01J2237/0451Diaphragms with fixed aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06341Field emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/14Lenses magnetic
    • H01J2237/1405Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/16Vessels
    • H01J2237/164Particle-permeable windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2602Details
    • H01J2237/2605Details operating at elevated pressures, e.g. atmosphere
    • H01J2237/2608Details operating at elevated pressures, e.g. atmosphere with environmental specimen chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2801Details

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

격막(101)을 간단하게 착탈할 수 있고, 시료(6)를 진공하와 고압하에 배치할 수 있는 하전 입자선 장치(111)를 제공한다. 하전 입자원(110)과 전자 광학계(1, 2, 7)를 보유 지지하는 경통(3)과, 경통(3)에 연결되는 제1 하우징(4)과, 제1 하우징(4)의 내측으로 우묵하게 들어가는 제2 하우징(100)과, 경통(3) 내의 공간과 제1 하우징(4) 내의 공간을 격리하고 하전 입자선이 투과하는 제1 격막(10)과, 제2 하우징(100)의 오목부(100a)의 내부와 외부의 공간을 격리하고 하전 입자선이 투과하는 제2 격막(101)과, 하전 입자원(110)을 수용하는 제3 하우징(22)에 연결되는 관(23)을 갖고, 제1 격막(10)은 관(23)에 설치되고, 관(23)과 제3 하우징(22)은 경통(3)에 대해 광축(30)의 방향으로 착탈 가능하다. 제1 하우징(4)과 제2 하우징(100)으로 둘러싸인 공간(105)은 감압되고, 오목부(100a) 중(inside)에 배치된 시료(6)에, 하전 입자선이 조사된다.

Description

하전 입자선 장치{CHARGED PARTICLE BEAM DEVICE}
본 발명은 하전 입자선을 시료에 조사하는 하전 입자선 장치에 관한 것이다.
최근, 미소 영역을 관찰하기 위해, 주사 전자 현미경(SEM), 투과 전자 현미경(TEM), 주사 투과 전자 현미경(STEM), 집속 이온 빔 가공 관찰 장치(FIB) 등의 하전 입자선 장치가 사용되고 있다. 이들 장치에서는, 전자 빔이나 이온 빔 등의 하전 입자선이, 시료에 조사된다. 일반적으로, 이들 하전 입자선 장치에서는, 시료가 배치되는 공간을 진공 배기하여 촬상이 행해지고 있다. 저진공하나 대기압하에서도 전자 현미경을 사용하여 시료를 관찰하고자 하는 니즈는 많다. 최근, 관찰 대상인 시료를 대기압하에 있어서 관찰 가능한 SEM이 개발되어 있다(특허문헌 1 및 특허문헌 2 등 참조). 이들 SEM은, 원리적으로는 전자 광학계와 시료 사이에 전자선이 투과 가능한 격막을 설치하여 진공 상태의 공간과 대기압 상태의 공간을 구획하는 것이며, 모두 시료와 전자 광학계 사이에 격막을 설치하는 점에서 공통되고 있다.
특허문헌 1에서는, 전자 광학 경통의 전자원을 하측에 대물 렌즈를 상측에 배치하고, 전자 광학 경통 말단의 전자선의 출사 구멍 상에 O링을 개재하여 전자선이 투과할 수 있는 격막을 설치한 대기압 SEM이 개시되어 있다. 시료는 그 격막 상에 직접 놓이고, 시료의 하면측으로부터 1차 전자선을 조사하여, SEM 관찰을 행한다. 특허문헌 2에서는, 전자 광학 경통의 전자원을 상측에 대물 렌즈를 하측에 배치하고, 시료와 조금 이격된 위치에 격막을 설치하고 있다. 격막 상면측으로부터 전자선을 조사하여 SEM 관찰을 행한다. 또한, 격막은, 시료와 조금 이격된 위치에 배치할 뿐만 아니라, 전자원 근방에도 배치되어 있다.
일본 특허 출원 공개 제2008-153086호 공보 일본 특허 출원 공개 제2008-262886호 공보
특허문헌 1에서는, 시료를 격막에 접촉시킬 필요가 있으므로, 시료 교환 때마다 격막을 교환해야 한다. 그로 인해, 시료 교환에 시간을 필요로 한다고 생각된다. 또한, 격막이 깨지면, 전자원이 배치되는 공간의 진공도가 악화되고, 전자를 방출하는 필라멘트가 끊어질 우려가 있다.
특허문헌 2에서는, 시료와 조금 이격된 위치에 격막이 설치되어 있으므로, 격막을 시료 교환 때마다 교환할 필요는 없고, 격막도 파손되기 어렵다. 또한, 전자원 근방에도 격막이 설치되어 있으므로, 시료와 조금 이격된 위치에 설치된 격막이 파손된 경우라도, 필라멘트를 끊어뜨리는 일이 없다.
단, 특허문헌 2에서도, 격막을 교환하는 것이 곤란하다고 생각된다. 격막에는, 하전 입자선이 조사되어 투과되므로, 격막을 구성하는 분자 레벨의 구조는, 하전 입자의 충돌에 의해, 서서히 열화된다고 생각된다. 이로 인해, 격막은 정기적으로 교환하는 것이 바람직하다. 이로 인해, 격막의 교환은 용이한 것이 요망된다. 그리고, 격막을 간단하게 제거함으로써, 시료를 진공 상태에 배치하는 종래의 SEM 관찰이 가능하면, 유용하다. 반대로, 시료를 진공 상태에 배치하는 종래의 하전 입자선 장치에, 간단하게 격막을 설치함으로써, 시료를 대기압 등의 진공보다 압력이 높은 고압하에서 SEM 관찰이 가능하면, 유용하다.
따라서, 본 발명이 해결하려고 하는 과제는, 격막을 간단하게 착탈할 수 있고, 시료를 진공하와 고압하에 배치할 수 있는 하전 입자선 장치를 제공하는 것이다.
즉, 본 발명은,
하전 입자선을 방출하는 하전 입자원과,
상기 하전 입자선을 집속시켜 광축을 제어하는 하전 입자 광학계와,
상기 하전 입자원과 상기 하전 입자 광학계를 보유 지지하는 경통과,
상기 경통에 연결되고, 내부로 상기 하전 입자선을 출사하는 제1 하우징과,
상기 제1 하우징의 개구로부터 상기 제1 하우징의 내측으로 우묵하게 들어가는 제2 하우징과,
상기 광축 상에 배치되고, 상기 경통 내의 공간과 상기 제1 하우징 내의 공간을 격리하고, 상기 하전 입자선이 투과하는 제1 격막과,
상기 광축 상에 배치되고, 상기 제2 하우징의 오목부의 내부와 외부의 공간을 격리하고, 상기 하전 입자선이 투과하는 제2 격막을 갖고,
상기 제1 하우징과 상기 제2 하우징으로 둘러싸인 공간은 감압되고,
상기 제2 하우징의 오목부 중에 배치된 시료에, 상기 하전 입자선이 조사되는 하전 입자선 장치인 것을 특징으로 하고 있다.
또한, 본 발명은,
하전 입자선을 방출하는 하전 입자원과,
상기 하전 입자선을 집속시켜 광축을 제어하는 하전 입자 광학계와,
상기 하전 입자원과 상기 하전 입자 광학계를 보유 지지하는 경통과,
상기 하전 입자원을 수용하는 하우징에 연결되고, 상기 하전 입자 광학계를 관통하고, 상기 광축이 내측을 통과하도록 배치된 관과,
상기 관에 설치되고, 상기 광축 상에 배치되고, 상기 하우징 내의 공간에 연통되는 상기 관 내의 공간과 상기 관 외의 공간을 격리하고, 상기 하전 입자선이 투과하는 격막을 갖고,
상기 격막과 상기 관은, 상기 하우징을 상기 경통에 대해 상기 광축의 방향으로 이동시킴으로써, 착탈 가능한 하전 입자선 장치인 것을 특징으로 하고 있다.
본 발명에 따르면, 격막을 간단하게 착탈할 수 있고, 시료를 진공하와 고압하에 배치할 수 있는 하전 입자선 장치를 제공할 수 있다.
도 1은 본 발명의 제1 실시 형태에 따른 하전 입자선 장치(현미경)의 구성도이다.
도 2는 제1 실시 형태의 전자 대물 렌즈 근방의 확대도이다.
도 3은 제1 실시 형태의 제1 변형예의 제1 격막 근방의 확대도이다.
도 4a의 (a)는 제1 실시 형태의 제1 격막 근방의 평면도이며, (b)는 (a)의 직경 방향의 단면도이다.
도 4b의 (a)는 제1 실시 형태의 제2 변형예의 제1 격막 근방의 평면도이며, (b)는 (a)의 직경 방향의 단면도이다.
도 5는 제1 실시 형태의 제3 변형예의 전자 대물 렌즈 근방의 확대도이다.
도 6은 제1 실시 형태의 제4 변형예의 전자 대물 렌즈 근방의 확대도이다.
도 7a는 제1 실시 형태의 하전 입자선 장치(현미경)의 본체로부터 빼낸 관(원관 형상부)의 구성도이다.
도 7b는 제1 실시 형태의 관(원관 형상부)이 빼내어진 하전 입자선 장치(현미경)의 본체의 구성도이다.
도 8은 제1 실시 형태의 제5 변형예의 하전 입자선 장치(현미경)의 본체로부터 빼낸 관(원관 형상부)의 구성도이다.
도 9는 제1 실시 형태의 제6 변형예의 하전 입자선 장치(현미경)의 구성도이다.
도 10은 본 발명의 제2 실시 형태에 따른 하전 입자선 장치(현미경)의 구성도이다.
다음으로, 본 발명의 실시 형태에 대해, 적절히 도면을 참조하면서 상세하게 설명한다. 또한, 각 도면에 있어서, 공통되는 부분에는 동일한 부호를 부여하고 중복된 설명을 생략하고 있다.
(제1 실시 형태)
-장치 구성에 대해-
도 1에, 본 발명의 제1 실시 형태에 따른 하전 입자선 장치(하전 입자선 현미경)(111)의 구성도를 나타낸다. 또한, 제1, 2 실시 형태에서는, 하전 입자선 장치(하전 입자선 현미경)(111)로서, 전자선 장치인 SEM을 예로 설명하지만, 본 발명은 다른 하전 입자선 장치(하전 입자선 현미경)(111)에도 적용할 수 있다. 이 하전 입자선 장치(하전 입자선 현미경)(111)에 의하면, 대기압하에 배치된 시료(6)에 하전 입자선을 조사하여 관찰할 수 있다. 이 하전 입자선 장치(111)는 전자선(하전 입자선)을 방출하기 위한 전자원(110)과, 전자 광학 렌즈(1)나 편향 코일(2)이나 전자 대물 렌즈(7) 등의 전자 광학계(하전 입자 광학계)와 전자원(110)을 보유 지지하는 전자 광학 경통(3)과, 전자 광학 경통(3)에 연결되어 보유 지지하고 시료(6)를 내포하는 제1 하우징(시료 하우징)(4)을 갖고 있다. 전자원(110)은 제3 하우징(22) 내에 수용되어 있다. 전자 광학 렌즈(1)나 편향 코일(2)이나 전자 대물 렌즈(7) 등의 전자 광학계는, 전자선을 집속시켜 그 광축을 제어한다. 전자 광학 렌즈(1)나 전자 대물 렌즈(7)는 전자선을 집속시킨다. 편향 코일(2)은 집속한 전자선의 광축(30)을 주사시킨다.
제1 하우징(4)에는, 전자 광학 경통(3)이 삽입되고, 전자 광학 경통(3)으로부터 제1 하우징(4)의 내부로 전자선이 출사된다. 제1 하우징(4)과 전자 광학 경통(3)은, O링 등의 진공 밀봉부(15)를 개재하여 밀착되고, 제1 하우징(4)의 내부의 공간(105)의 기밀이 확보되어 있다. 제1 하우징(4)에는 하우징 내부를 대기 누설하기 위한 밸브 또는 가스 입출구(5)가 형성되어 있다. 전자 대물 렌즈(7)의 아래에는 시료(6)에 전자선이 조사되었을 때에 시료(6)로부터 방출되는 2차 전자나 반사 전자 등의 2차적 신호를 검출하는 검출기(8)가 설치되어 있다. 전자 대물 렌즈(7)의 근방에, 전자선이 투과하는 제1 격막(10)이 배치되어 있다. 전자 대물 렌즈(7)의 근방에 제1 격막(10)을 배치하는 효과에 대해서는 후술한다. 이 제1 격막(10)에 의해, 그 제1 격막(10)의 상측의 전자 광학 경통(3)[관(23)] 내의 공간(20)과, 하측의 제1 하우징(4) 내의 공간(105)을 격리하고 있다. 제1 격막(10)은 전자선의 광축(30) 상에 배치되어 있다.
진공 펌프(18)는 진공 밸브 또는 진공 밀봉부(24)를 개재하여 제3 하우징(22)에 접속되고, 주로 전자원(110)으로부터 제1 격막(10)의 상면까지의 공간(20)을 진공화한다. 진공 펌프(19)는 밸브(25)를 개재하여 제1 하우징(4)에 접속되고, 주로 제1 격막(10)의 하면으로부터 후술하는 제2 격막(101)의 상면까지의 공간(105)을 진공화한다. 도시하지는 않았지만, 진공 펌프(18)와 진공 펌프(19)는 연결되어 있어도 되고, 각각이 단수개에 한하지 않고 복수개여도 된다.
제1 하우징(4)에, 어태치먼트 하우징(100)이 설치되어 있다. 어태치먼트 하우징(100)은 상자 형상의 오목부(100a)와, 그 오목부(100a)의 테두리에 설치되어 양면에 시일면을 갖는 플랜지(100c)를 갖고 있다. 제1 하우징(4)에는 개구(4a)가 형성되어 있고, 이 개구(4a)로부터 제1 하우징(4)의 내측에 어태치먼트 하우징(100)의 오목부(100a)가 삽입되어 있다. 오목부(100a)는 제1 하우징(4)의 개구(4a)로부터 제1 하우징(4)의 내측으로 우묵하게 들어가 있다. 개구(4a)는 어태치먼트 하우징(100)에 의해 막아져 있다. 개구(4a)의 주위에 설치되는 제1 하우징(4)의 시일면과, 그것에 대향하는 어태치먼트 하우징(100)의 플랜지(100c)의 시일면은, O링 등의 진공 밀봉부(106)를 개재하여 밀착되고, 제1 하우징(4)과 어태치먼트 하우징(100)으로 둘러싸인 공간(105)을 감압 가능하게 하고 있다.
어태치먼트 하우징(100)의 전자 광학 경통(3)측에는, 관통 구멍(100b)이 형성되어 있다. 그 관통 구멍(100b)은 전자선이 투과 가능한 제2 격막(101)을 구비한 플랜지(102)로 기밀하게 막아져 있다. 제2 격막(101)은 상기 광축(30) 상에 배치되어 있다. 제2 격막(101)은 어태치먼트 하우징(100)의 오목부(100a)의 내측의 공간(104)과, 외측의 제1 하우징(4)과 어태치먼트 하우징(100)으로 둘러싸인 공간(105)을 격리하고 있다. 어태치먼트 하우징(100)과 플랜지(102)의 시일면에는, 진공 밀봉부(103)가 설치되어 있다. 제2 격막(101)[플랜지(102)]이 배치되는 측의 오목부(100a)의 테두리에 가드(100d)가 설치되어 있다. 이 가드(100d)보다 낮은 위치로 시료(6)를 설정하지 않으면, 시료(6)가 가드(100d)에 닿아, 오목부(100a) 내에 삽입할 수 없게 되어 있다. 가드(100d)는 제2 격막(101)보다 낮은 위치로 설정되어 있으므로, 삽입 시에, 시료(6)가 제2 격막(101)에 닿는 것을 방지할 수 있다.
시료(6)를 보유 지지하기 위한 시료 홀더(9) 등을 구비한 스테이지(11)는 판 부재(플랜지)(12)에 지지되어 있다. 플랜지(12)는 O링 등의 진공 밀봉부(107)를 사이에 두고, 어태치먼트 하우징(100)의 플랜지(100c)의 시일면에 밀착되도록 지지되어 있다. 플랜지(12)는 제1 하우징(4)의 개구(4a)측에 지지되어 있다. 플랜지(12)의 외측에는, 스테이지(11)의 슬라이드나 틸트 등의 변위 기구를 제어하기 위한 손잡이(13)가 설치되어 있다. 전동으로 변위시키는 경우에는, 모터나 액추에이터 등이 구비되어 있어도 된다. 또한, 플랜지(12)에는, 가스 도입 등을 행하기 위한 밸브 또는 가스 입출구(14)를 구비하고 있어도 된다. 밸브 또는 가스 입출구(14)는 복수개 있어도 된다. 밸브 또는 가스 입출구(14)로부터 특정 가스를 공간(104)에 충전시키는 것도 가능하고, 밸브 또는 가스 입출구(14)를 진공 펌프에 연결시키면, 공간(104)을 감압(진공이나 저진공)으로 하는 것도 가능하다.
전자선은 대기 중에서는 산란되므로, 시료(6)와 제2 격막(101)은 가능한 한 가까운 쪽이 바람직하다. 구체적으로, 제2 격막(101)과 시료(6) 사이의 거리는 1000㎛ 이하로 하는 것이 바람직하다. 이것은, 일반적인 SEM의 가속 전압(예를 들어, 수십 ㎸ 정도)으로 방출된 전자선이 통과할 수 있는 대기 공간의 거리는, 1000㎛ 이하이기 때문이다. 이로 인해, 스테이지(11)에는, 시료(6)를 높이 방향으로 변경할 수 있는 기구가 구비되어 있는 것이 보다 바람직하다. 혹은, 제2 격막(101)이 시료(6)의 방향으로 움직이는 기구여도 된다.
시료(6)의 교환은, 플랜지(12)를 어태치먼트 하우징(100)[제1 하우징(4)]으로부터 분리하는 방향으로 이동시키고, 시료 스테이지(11)를 어태치먼트 하우징(100)의 오목부(100a)로부터 인출하여 행해진다. 플랜지(12)가 원활하게 이동할 수 있도록 가이드(16)나 레일(17) 등이 구비되어 있어도 된다.
제2 격막(101)의 교환은, 플랜지(12)를 이동시켜 시료 스테이지(11)를 어태치먼트 하우징(100)의 오목부(100a)로부터 인출한 후에, 오목부(100a) 중에 손을 넣어 행할 수 있다. 혹은, 플랜지(12)를 이동시켜 시료 스테이지(11)를 어태치먼트 하우징(100)의 오목부(100a)로부터 인출한 후에, 오목부(100a)를 제1 하우징(4)의 개구(4a)로부터 인발(drawing)하고, 어태치먼트 하우징(100)을 제1 하우징(4)으로부터 제거하고, 그 후에 교환해도 된다. 이와 같이, 교환을 위해 분해하는 부품 개수는 적고, 손이 닿기 쉬워, 용이하게 교환할 수 있다. 또한, 상기한 바와 같이, 어태치먼트 하우징(100)을 제1 하우징(4)으로부터 제거하면, 시료(6)를 진공 중에서 관찰할 수 있게 된다. 즉, 어태치먼트 하우징(100)이 생략되므로, 플랜지(12)가 제1 하우징(4)의 개구(4a)를 막게 된다(폐색). 플랜지(12)의 시일면이, 제1 하우징(4)의 개구(4a)의 주변의 시일면에, 진공 밀봉부(106)를 개재하여 밀착된다. 플랜지(12)와 제1 하우징(4)으로 둘러싸인 공간(104와 105)이 진공 펌프(19)로 진공화될 수 있으므로, 시료(6)를 진공하에서 관찰할 수 있다. 반대로, 통상, 시료(6)를 진공하에서 관찰하는 종래의 하전 입자선 장치에, 제2 격막(101)이 설치된 어태치먼트 하우징(100)을 장착하는 것만으로, 시료(6)를 대기압(고압)하에서 관찰할 수 있게 된다.
다음으로, 제1 격막(10)에 대해 설명한다. 전자원(110)이 설치되어 있는 공간(20)은 제1 격막(10)의 상면까지 달하고 있다. 전자원(110)은 굵은 원관 형상의 제3 하우징(22) 내에 설치되어 있다. 제1 격막(10)은 가느다란 원관 형상의 관(23)의 선단에 배치되고, 그 선단을 막고 있다. 관(23)의 다른 한쪽의 선단은, 제3 하우징(22)에 연결되어 있다. 관(23) 내의 공간과 제3 하우징(22) 내의 공간은, 서로 연통되고, 1개의 공간(20)으로 되어 있다. 이 공간(20)은 진공화 가능한 기밀의 공간으로 되어 있다. 관(23)은 전자 광학 렌즈(1)나 편향 코일(2)이나 전자 대물 렌즈(7) 등의 전자 광학계를 관통하고 있다. 관(23)을 가느다랗게 함으로써, 관(23)의 외측에 있는 전자 광학 렌즈(1)나 편향 코일(2)이나 전자 대물 렌즈(7) 등의 전자 광학계도 작게 할 수 있다. 이들 전자 광학계를 작게 해도, 관(23)이 가느다랗고, 전자 광학계와 관(23)의 중심축까지의 거리를 짧게 할 수 있으므로, 관(23)의 중심축 부근에 강력한 자장을 발생시킬 수 있다. 전자 광학계에 영구 자석 등을 사용한 경우라도 마찬가지이다. 관(23)의 내측을, 전자선의 광축(30)이 통과하고 있다. 전자 광학 렌즈(1)나 편향 코일(2)이나 전자 대물 렌즈(7) 등의 전자 광학계는, 기본적으로 대기측에 배치되어 있다. 관(23)의 내부의 공간(20)은 진공으로 되어 있다. 관(23)의 외측으로부터 내측의 공간(20)에 있어서 전자장을 발생시키므로, 관(23)은 비자성체인 것이 바람직하다.
제1 격막(10)의 교환은, 밸브(25)를 폐쇄하고, 밸브 또는 가스 입출구(5)를 개방하고, 제1 하우징(4)과 어태치먼트 하우징(100)으로 둘러싸인 공간(105)을 대기압으로 한 후에, 제3 하우징(22)을 광축(30)의 연장 방향으로 이동시키고, 관(23)을 전자 광학 경통(3)으로부터 인발하여 행한다. 인발된 관(23)에 대한 제1 격막(10)의 교환은, 제1 격막(10)이 노출되므로, 용이하게 행할 수 있다. 이와 같이, 교환을 위해 분해하는 부품 개수는 적고, 손이 닿기 쉬워, 용이하게 교환할 수 있다. 또한, 인발된 관(23)으로부터, 제1 격막(10)을 제거하고, 새로운 제1 격막(10)을 설치하지 않고, 관(23)을 전자 광학 경통(3)에 삽입하면, 제1 격막(10)이 생략된 상태에서, 시료(6)를 관찰할 수 있다. 반대로, 종래의 하전 입자선 장치에 있어서, 제3 하우징(22)에, 제1 격막(10)이 설치된 관(23)을 연결시키는 것만으로, 광축(30) 상에 제1 격막(10)을 설치할 수 있다.
-SEM상 취득 수순-
다음으로, 하전 입자선 장치(111)를 사용한 SEM상 취득 수순에 대해 설명한다. 우선, 인출되어 있는 시료 홀더(9) 상에 시료(6)를 배치한다. 다음으로, 시료 홀더(9)에 재치한 시료(6)를 어태치먼트 하우징(100)의 오목부(100a) 중에 넣고, 플랜지(12)를 어태치먼트 하우징(100)의 플랜지(100c)에 밀착되도록 고정한다. 다음으로, 전자선을 전자원(110)으로부터 방출시킨다. 전자선은, 전자 광학 렌즈(1)나 편향 코일(2)이나 전자 대물 렌즈(7) 등의 전자 광학계가 형성한 전자장을 통과하고, 제1 격막(10)과 제2 격막(101)을 투과한다. 다음으로, 시료(6)를 제2 격막(101)에 접근시킨다. 접근시킴으로써, 제2 격막(101)을 투과한 전자선이 대기 중을 진행해도, 시료(6)에 도달할 수 있게 된다. 도달한 전자선은 시료(6)에 조사되고, 시료(6)로부터 반사 전자 혹은 2차 전자가 출사된다. 마지막으로, 이들을 검출기(8)에 의해 검출함으로써, SEM상이 취득된다.
-격막(10, 101)에 대해-
제1 격막(10)과 제2 격막(101)은 전자선이 투과해야 하므로, 얇은 쪽이 바람직하다. 지나치게 두꺼우면 전자선이 산란되어 분해능이 저하된다. 구체적으로, 제1 격막(10)과 제2 격막(101)의 두께는, 100㎚ 이하인 것이 바람직하다. 이것은, 일반적인 SEM의 가속 전압(예를 들어, 수십 ㎸ 정도)으로, 투과 가능한 두께이다. 제1 격막(10)과 제2 격막(101)의 재료로서는, 실리콘, 산화 실리콘, 실리콘 나이트라이드, 실리콘 카바이드, 카본, 유기 물질 등을 사용할 수 있다.
도 2에, 전자 대물 렌즈(7)와 그 근방의 확대도를 나타낸다. 전자 대물 렌즈(7)의 주위에는, 전자 광학 경통(3)의 일부를 이루는 자심(3a)이 설치되어 있다. 이 자심(3a)의 갭의 근방에 발생하는 전자장(36)에 의해, 전자선을 집속시키는 렌즈 효과는 발생한다. 제1 격막(10)은 이 전자장(36)의 정중앙의 가장 자장이 강해지는 렌즈 중심에 배치되어 있다. 자심(3a)의 갭은, 상하 방향[광축(30) 방향]으로 개방되어 있고, 제1 격막(10)은 자심(3a)의 갭의 대략 중간의 높이에 배치되어 있다. 이 제1 격막(10)은 3개의 기능을 갖고 있다.
제1 기능은, 상기한 바와 같이, 이 제1 격막(10)에 의해 상측의 공간(20)과 하측의 공간[105(104)]을 격리하고, 상측의 공간(20)의 기압과 하측의 공간[105(104)]의 기압에서, 기압의 차가 발생할 수 있도록 하고 있다. 공간(20)은 전자원(110)(도 1 참조)이 배치되므로 고진공 상태로 유지되어 있다. 관(23)에 제1 격막(10)이 설치되어 있으므로, 고진공 상태인 공간(20)을 시료(6)측에 근접시킬 수 있다. 가령, 공간(105)의 진공도가 나빠도 전자선은 시료(6)[제2 격막(101)(도 1 참조)]에 도달하는 것이 가능해진다. 이에 의해, 진공 펌프(19)(도 1 참조)에는, 고성능의 고진공도용 진공 펌프가 아니라, 저렴하며 간편한 진공 펌프를 사용할 수 있다.
제2 기능은, 제2 격막(101)(도 1 참조)이 깨져도, 대기의 유입을 공간(105)까지로 하고, 공간(20)에 유입되는 것을 방지하는 기능이다. 이에 의해, 전자원(110)의 필라멘트가 타서 끊어지는 것을 방지할 수 있다. 또한, 관(23)의 외주면과, 자심(3a)[전자 광학 경통(3)]의 내주면이, O링 등의 진공 밀봉부(27)를 개재하여 밀착됨으로써, 상기 공간(105)의 기밀성이 확보되어 있다. 관(23)의 외경 d1은, 전자 광학 렌즈(1)(도 1 참조)나 편향 코일(2)이나 전자 대물 렌즈(7) 등의 전자 광학계의 내경 d3보다 작게 되어 있다(d1<d3). 이로 인해, 전자 광학 렌즈(1)나 편향 코일(2)이나 전자 대물 렌즈(7) 등의 전자 광학계를 보유 지지하는 전자 광학 경통(3)으로부터, 관(23)을 제1 격막(10)마다 삽발할 수 있다(끼웠다 뺐다 할 수 있다).
제3 기능은, 광축(30)으로부터 이격된 전자선을 커트하는 조리개의 기능이다. 일반적으로, 광축(30)으로부터 이격된 전자선의 궤도(32)는 전자 대물 렌즈(7)에 의한 강한 전자장에 의해 크게 휘어진다. 이로 인해, 광축(30)의 가까운 곳을 통과한 전자선의 궤도(33)와, 시료(6) 상에 있어서 어긋난다. 이로 인해, 시료(6)의 표면 상에 포커스되지 않는다. 이것은 구면수차라고 불리고 있다. 이것을 해결하기 위해, 관(23)의 내경 d2보다 작은 직경 d4의 관통 구멍(34a)이 형성된 격벽판(격막 보유 지지부)(34)이, 관(23)에 설치되어 있다(d4<d2). 격벽판(34)은 관(23)[전자 광학 경통(3)] 내의 공간(20)과 제1 하우징(4) 내의 공간(105)을 격리하고 있다. 격벽판(34)은 제1 격막(10)보다 두껍고, 전자선이 투과하지 않도록 되어 있다. 제1 격막(10)은 격벽판(34)에 형성된 관통 구멍(34a)을 막도록(폐색하도록) 형성되어 있다. 관통 구멍(34a)은 격벽판(34)의 중심[광축(30)] 부근에 배치되어 있다. 이에 의해, 궤도(32)와 같이 광축(30)으로부터 벗어나 통과하는 전자선을 격벽판(34)에 의해 커트할 수 있고, 상기 구면수차를 저감할 수 있다. 또한, 격벽판(34)과 관(23)은 접착제(35)에 의해 고정 및 진공 밀봉되어 있다. 격벽판(34)은 궤도(32)의 전자선에 의해 대전하므로, 도전성을 갖는 것이 바람직하다. 제1 격막(10)은 궤도(33)의 전자선에 의해 대전하므로, 도전성을 갖는 것이 바람직하다. 또한, 제1 격막(10)과 격벽판(34)을 접지하기 위해, 접착제(35)와 관(23)도 도전성을 갖는 것이 바람직하다. 또한, 제1 격막(10)과 격벽판(34)과 접착제(35)는 전자장(36) 중에 놓이므로, 비자성체인 것이 바람직하다.
도 3에, 제1 실시 형태의 제1 변형예의 제1 격막(10)과 그 근방의 확대도를 나타낸다. 관(23)의 단부면을 시일면으로 하여, 진공 밀봉부(38)를 개재하여, 격벽판(34)에 밀착시키고 있다. 관(23)의 선단의 외주면에는, 나사가 깎여져 있고, 고정 부재(37)에 깎여진 나사산(39)과 나사 결합함으로써, 고정 부재(37)가 격벽판(34)에 대해 관(23)의 방향으로 압접하고, 격벽판(34)을 관(23)의 단부면에 밀착시키고 있다. 또한, 관(23)의 외경보다, 고정 부재(37)의 외경이 큰 경우에는, 이 고정 부재(37)의 외경 d11이, 상기 전자 광학 렌즈(1)나 편향 코일(2)이나 전자 대물 렌즈(7) 등의 전자 광학계의 내경 d3보다 작아지도록 한다(d11<d3). 이와 같이 함으로써, 관(23)은 고정 부재(37) 등이 부착된 상태에서, 전자 광학 경통(3)(도 1 참조)으로부터 인발할 수 있다.
도 4a의 (a)에, 제1 실시 형태의 제1 격막(10)과 그 근방의 평면도를 나타내고, (b)에, (a)의 직경 방향의 단면도를 나타낸다. 제1 격막(10) 상에 격벽판(34)이 형성되고, 격벽판(34) 상에 도전성 혹은 반도전성의 막(40)이 형성되어 있다. 격벽판(34)과 막(40)에는, 관통 구멍(34a)이 형성되어 있다. 관통 구멍(34a)은 제1 격막(10)에 의해 막아져 있다. 이러한 구조는, 격벽판(34)의 각각의 표면에, 제1 격막(10)과 막(40)을 형성하고, 막(40)에 관통 구멍(34a)을 형성하고, 격벽판(34)에도 관통 구멍(34a)을 형성함으로써, 제작할 수 있다. 관통 구멍(34a)은 도 4a의 (a)에 도시하는 바와 같이, 평면에서 볼 때, 대략 원형으로 되어 있다. 이에 의하면, 원주 방향으로 균등하게 구면수차를 저감시킬 수 있다. 막(40)은 격벽판(34)의 표면에는 전자선이 조사되므로, 그 표면에 전하가 모이지 않도록 형성되어 있다. 막(40)은 증착에 의해 형성할 수 있다. 또한, 제2 격막(101)도, 제1 격막(10)과 동일한 구조의 것을 사용할 수 있다.
도 4b의 (a)에, 제1 실시 형태의 제2 변형예의 제1 격막(10)과 그 근방의 평면도를 나타내고, (b)에, (a)의 직경 방향의 단면도를 나타낸다. 제1 실시 형태의 제2 변형예가 제1 실시 형태와 다른 점은, 도 4b의 (a)에 도시하는 바와 같이, 평면에서 볼 때, 관통 구멍(34a)이 대략 사각형으로 되어 있는 점이다. 또한, 도 4b의 (a)와 (b)에 도시하는 바와 같이, 관통 구멍(34a)의 측벽에 테이퍼가 되어 있는 점이다. 이러한 형상은, 격벽판(34)에, 실리콘 등의 단결정 기판을 사용한 경우에 얻어진다. 단결정 기판에 관통 구멍(34a)을 습식 에칭 등에 의해 형성하면, 결정 방위에 의해 에칭 속도가 다르므로, 상기 사각형이나 상기 테이퍼가 출현한다. 실리콘 등의 단결정 기판의 미세 가공 기술은 확립되어 있으므로, 관통 구멍(34a)의 직경을 작게 하고자 하는 경우에 이용할 수 있다. 관통 구멍(34a)의 직경(폭)은 예를 들어 수십 ㎛ 내지 1㎜ 정도의 크기이다. 상기한 바와 같이, 전자선이 투과해야 하므로 제1 격막(10)의 두께는 얇은 쪽이 좋지만, 얇아도 제1 격막(10)의 강도를 확보하기 위해, 관통 구멍(34a)의 직경(면적)은 작게 해야 한다. 어떠한 두께나 면적이 좋은지는, 관찰에서 필요한 분해능이나 조리개 사이즈에 의한다.
-렌즈 방식에 대해-
도 5에, 제1 실시 형태의 제3 변형예의 전자 대물 렌즈(7)와 그 근방의 확대도를 나타낸다. 전자 대물 렌즈(7)의 주위에는, 전자 광학 경통(3)의 일부를 이루는 자심(3a)이 설치되어 있다. 이 자심(3a)의 갭의 근방에 발생하는 전자장(36)에 의해, 전자선을 집속시키는 렌즈 효과는 발생한다. 전자장(36)은 자심(3a)의 하측[시료(6)(도 1 참조)측]으로 스며나오고 있고, 소위, 세미 인 렌즈 방식으로 되어 있다. 제1 격막(10)은 이 전자장(36)의 하측에서 가장 자장이 강해지는 렌즈 중심에 배치되어 있다. 자심(3a)의 갭은, 대략 직경 방향[광축(30)에 대략 직각인 방향]으로 개방되어 있고, 제1 격막(10)은 자심(3a)의 갭의 높이보다 낮은 위치에 배치되어 있다. 한편, 제1 실시 형태의 전자 대물 렌즈(7)에서는, 도 2에 도시하는 바와 같이, 자심(3a)의 갭은, 상하 방향[광축(30) 방향]으로 개방되어 있고, 제1 격막(10)은 자심(3a)의 갭의 대략 중간의 높이에 배치되어 있다. 전자장(36)은 자심(3a)의 하측[시료(6)(도 1 참조)측]으로 스며나오고 있지 않고, 소위, 아웃 렌즈 방식으로 되어 있다. 제1 실시 형태의 제3 변형예에 의하면, 제1 격막(10)의 높이를, 자심(3a)보다 낮게 할 수 있고, 제1 격막(10)을 시료(6)(도 1 참조)나 제2 격막(101)에 근접시킬 수 있다. 그리고, 전자원(110)(도 1 참조)을 포함한 고진공의 공간(20)을 시료(6)나 제2 격막(101)에 접근시킬 수 있다.
-제1 격막(10)의 배치 장소에 대해-
도 6에, 제1 실시 형태의 제4 변형예의 전자 대물 렌즈(7)와 그 근방의 확대도를 나타낸다. 제1 실시 형태에서는, 제1 격막(10)을 전자 대물 렌즈(7)가 형성하는 전자장(36)에서 가장 자장이 강해지는 렌즈 중심에 배치하고 있다. 제1 실시 형태의 제4 변형예에서는, 전자원(110)과 전자 대물 렌즈(7) 사이에 배치하고 있다. 구체적으로는, 전자 광학 렌즈(콘덴서 렌즈)[1(1a, 1b, 도 1 참조)]가 형성하는 전자장(36)에서 가장 자장이 강해지는 렌즈 중심에 배치해도 된다. 혹은, 전자 광학 렌즈(1a와 1b)의 사이나, 전자 광학 렌즈(1b)와 전자 대물 렌즈(7) 사이에서, 전자선이 집속되는 크로스오버 위치에 배치해도 된다. 크로스오버 위치에서는, 복수개의 전자선이 교차하고 있다. 제1 실시 형태의 제4 변형예에서는, 일례로서, 제1 격막(10)을 전자 광학 렌즈(1b)와 전자 대물 렌즈(7) 사이에서, 전자선이 집속되는 크로스오버 위치(41)(도 6 참조)에 배치한 경우를 설명한다. 전자 광학 렌즈(1b)의 주위에는, 전자 광학 경통(3)의 일부를 이루는 자심(3c)이 설치되어 있다. 이 자심(3c)의 갭의 근방에 발생하는 전자장에 의해, 전자선을 집속시키는 렌즈 효과가 발생한다. 자심(3c)은 지지 통(3b)을 개재하여, 자심(3a)에 지지되어 있다. 제1 격막(10)을 크로스오버 위치(41)에 배치하면, 제1 격막(10)에 전자선이 한점으로 조여져 입사되어 오므로, 격벽판(34)의 관통 구멍(34a)의 직경(면적)을 작게 하는 것이 가능해진다. 이로 인해, 내구성을 유지한 상태에서, 제1 격막(10)을 얇게 할 수 있다. 또한, 전자 대물 렌즈(7)가 형성하는 전자장(36)에서 가장 자장이 강해지는 렌즈 중심에는, 대물 조리개로서, 관통 구멍(44a)이 형성된 차폐판(44)을 배치하면 좋다.
-착탈 가능한 관(23)에 대해-
도 7a에, 제1 실시 형태의 하전 입자선 장치(111)의 본체로부터 빼낸 관(23)과 그 근방의 구성도를 나타내고, 도 7b에, 그 관(23)이 빼내어진 하전 입자선 장치(111)의 본체의 구성도를 나타낸다. 도 7a에 도시하는 바와 같이, 진공 밸브 또는 진공 밀봉부(24)를 폐쇄한 상태에서, 진공 밸브 또는 진공 밀봉부(24)를 진공 펌프(18)로부터 분리하면, 제3 하우징(22)과 관(23)의 내부의 공간(20)을 진공인 상태에서, 하전 입자선 장치(111)의 본체로부터 제거할 수 있다. 그리고, 진공 밸브 또는 진공 밀봉부(24)를 가스 봄베에 접속하고, 건조한 불활성의 가스를 흘리면서, 제1 격막(10)을 교환할 수 있다. 제1 격막(10)의 교환 후에, 진공 밸브 또는 진공 밀봉부(24)에 진공 펌프(18)를 재연결하여, 공간(20)을 진공 배기한다. 이 진공 배기에 전후하여, 전자 광학 경통(3)의 상방으로부터, 제1 격막(10)이 부착된 관(23)이 삽입된다. 이와 같이, 제1 격막(10)이 부착된 관(23)은 전자 광학 경통(3)에 대해 착탈 가능하게 되어 있다.
도 8에, 제1 실시 형태의 제5 변형예의 하전 입자선 장치(현미경)의 본체로부터 빼낸 관(23)의 구성도를 나타낸다. 전자원(110)에는 통상, 수 ㎸ 내지 수십 ㎸의 고전압을 인가하므로, 제3 하우징(22)과의 내전압을 확보하기 위해, 전자원(110)은 제3 하우징(22)의 측벽으로부터 소정의 거리만큼 이격해야 한다. 그로 인해, 도 7a에 도시하는 바와 같이, 제1 실시 형태에서는, 제3 하우징(22)은 관(23)보다 굵게 되어 있다. 그러나, 가속 전압이 낮아도 되는 경우에는, 도 8에 도시하는 바와 같이, 모두 동일한 굵기의 관(23)으로 할 수 있다. 제1 실시 형태에서는, 제3 하우징(22)이 전자 광학 경통(3)에 접촉함으로써, 제1 격막(10)을 배치해야 하는 높이를 일의적으로 결정할 수 있다. 또한, 제3 하우징(22)과 전자 광학 경통(3) 사이에 스페이서를 사이에 둠으로써, 제1 격막(10)을 배치해야 하는 높이를 조절할 수 있다. 제1 실시 형태의 제5 변형예에서는, 관(23)을 전자 광학 경통(3)에 삽입하는 깊이를 임의로 조정할 수 있다. 이로 인해, 제1 격막(10)을 배치해야 하는 높이를 임의로 조절할 수 있다.
도 9에, 제1 실시 형태의 제6 변형예의 하전 입자선 장치(111)의 구성도를 나타낸다. 제1 실시 형태의 제6 변형예가 제1 실시 형태와 다른 점은, 제3 하우징(22) 내에 비증발형의 게터재(45)가 설치되어 있는 점이다. 게터재(45)는 상기 공간(20) 내의 가스를 흡착하여, 진공 상태를 유지할 수 있다. 이로 인해, 고진공에 도달 가능한 진공 펌프(18)를 생략할 수 있다. 상기 공간(20)을 대기압으로부터 진공화하기 위해서는, 우선, 러프 펌핑용 펌프를 진공 밸브 또는 진공 밀봉부(24)에 접속하고, 공간(20)을 저진공이기는 하지만 진공화한다. 그 후, 진공 밸브 또는 진공 밀봉부(24)를 폐쇄하여, 펌프를 제거하고, 게터재(45)에 의해, 고진공으로 높인다. 제1 실시 형태의 제6 변형예에 의하면, 통상의 관찰 시에 있어서, 진공 펌프(18)를 생략할 수 있으므로, 통상의 관찰 시에 있어서의 하전 입자선 장치(111)의 소형화를 할 수 있다.
(제2 실시 형태)
도 10에, 본 발명의 제2 실시 형태에 따른 하전 입자선 장치(현미경)(111)의 구성도를 나타낸다. 제2 실시 형태가, 제1 실시 형태와 다른 점은, 제2 격막(101)이 부착된 어태치먼트 하우징(100)이 제거되어 있는 점이다. 이에 의해, 제1 하우징(4)과 플랜지(12)로 둘러싸인 공간(21)[제1 실시 형태의 공간(104)과 공간(105)에 상당]은 진공 상태가 된다. 공간(21) 내에 배치되는 시료(6)는 진공하에서 관찰할 수 있다. 또한, 진공 펌프(19)에 의해 공간(21)을 진공 배기한 후에, 가스 입출구(5나 14)로부터 가스를 공간(21)에 도입하여, 공간(21)을 저진공의 상태에서, 시료(6)를 SEM 관찰할 수도 있다. 이것은, 제1 격막(10)에 의해, 상기 공간(20)이 고진공으로 유지될 수 있기 때문이다. 그리고, 제1 격막(10)은 제1 실시 형태와 마찬가지로, 용이하게 교환할 수 있다.
또한, 제2 실시 형태에 있어서는, 시료(6)를 교환할 때마다, 제1 하우징(4) 내가 대기압으로 된다. 이로 인해, 제1 격막(10)에는, 시료(6)의 관찰과 교환을 반복하면, 대기압이 작용하거나 하지 않거나 하고, 제1 격막(10)의 내구성이, 압력 변동이 없는 제1 실시 형태에 비해 저하된다고 생각된다. 따라서, 하전 입자선 장치(111)를 제2 실시 형태로 사용하거나, 제1 실시 형태와 제2 실시 형태의 병용으로 사용하는 경우에는, 제1 실시 형태로 사용하는 경우에 비해, 내구성을 높인 제1 격막(10)을 사용하는 것이 바람직하다. 내구성을 높이기 위해서는, 제1 격막(10)을 두껍게 하거나, 격벽판(34)의 관통 구멍(34a)의 직경을 작게 하면 된다.
1, 1a, 1b : 전자 광학 렌즈[전자(하전 입자) 광학계, 콘덴서 렌즈]
2 : 편향 코일[전자(하전 입자) 광학계]
3 : 전자 광학(하전 입자 광학) 경통
3a : 자심
3b : 지지 통
3c : 자심
4 : 제1 하우징(시료 하우징)
4a : 제1 하우징의 개구
5 : 밸브 또는 가스 입출구
6 : 시료
7 : 전자 대물 렌즈[전자(하전 입자) 광학계]
8 : 검출기
9 : 시료 홀더
10 : 제1 격막
11 : 시료 스테이지
12 : 스테이지가 구비된 판 부재(플랜지)
13 : 스테이지 위치 조정용 손잡이
14 : 밸브 또는 가스 입출구
15 : 진공 밀봉부
16 : 가이드
17 : 레일
18, 19 : 진공 펌프
20 : 전자원(110)과 제1 격막(10) 사이의 공간(경통 내의 공간)
21 : 시료 분위기 공간(제1 하우징 내의 공간)
22 : 제3 하우징(원관 형상부)
23 : 관(원관 형상부)
24 : 진공 밸브 또는 진공 밀봉부
25 : 밸브
27 : 진공 밀봉부
30 : 광축
32 : 하전 입자선(광축으로부터 보다 이격된 곳을 통과하는 궤도)
33 : 하전 입자선(광축에 보다 가까운 곳을 통과하는 궤도)
34 : 격막 보유 지지부(격벽판)
34a : 관통 구멍
35 : 접착재
36 : 전자장(전자계)
37 : 고정 부재
38 : 진공 밀봉부
39 : 나사산
40 : 도전성 혹은 반도전성의 막
41 : 크로스오버 위치(하전 입자선이 교차하는 위치)
44 : 차폐판(관통 구멍이 구비된 부재)
44a : 관통 구멍
45 : 게터재(비증발형 게터재)
100 : 어태치먼트 하우징(제2 하우징)
100a : 제2 하우징의 오목부
100b : 관통 구멍
100c : 플랜지
100d : 가드
101 : 제2 격막(대물 격막)
102 : 플랜지
103 : 진공 밀봉부
104 : 제2 격막과 시료 사이의 공간
105 : 제1 격막과 제2 격막 사이의 공간(제1 하우징과 제2 하우징으로 둘러싸인 공간)
106, 107 : 진공 밀봉부
110 : 전자원(하전 입자원)
111 : 하전 입자선 장치(하전 입자선 현미경)
d1 : 관의 외경
d2 : 관의 내경
d3 : 전자 광학계의 전자계 형성용 코일의 내경
d4 : 격벽판의 관통 구멍의 구멍 직경
d5 : 제2 격막과 시료의 간격

Claims (10)

  1. 하전 입자선을 방출하는 하전 입자원과,
    상기 하전 입자선을 집속시켜 광축을 제어하는 하전 입자 광학계와,
    상기 하전 입자원과 상기 하전 입자 광학계를 보유 지지하는 경통과,
    상기 경통에 연결되고, 내부로 상기 하전 입자선을 출사하는 제1 하우징과,
    상기 제1 하우징의 개구로부터 상기 제1 하우징의 내측으로 우묵하게 들어가는 제2 하우징과,
    상기 광축 상에 배치되고, 상기 경통 내의 공간과 상기 제1 하우징 내의 공간을 격리하고, 상기 하전 입자선이 투과하는 제1 격막과,
    상기 광축 상에 배치되고, 상기 제2 하우징의 오목부의 내부와 외부의 공간을 격리하고, 상기 하전 입자선이 투과하는 제2 격막을 갖고,
    상기 제1 하우징과 상기 제2 하우징으로 둘러싸인 공간은 진공 상태로 감압되고,
    상기 제2 하우징의 오목부 중에 배치된 시료에, 상기 제1 격막 및 상기 제2 격막을 투과한 상기 하전 입자선이 조사되는 것을 특징으로 하는 하전 입자선 장치.
  2. 제1항에 있어서,
    상기 제1 격막은, 상기 하전 입자 광학계에 의해 형성되는 전자계 중에 배치되는 것을 특징으로 하는 하전 입자선 장치.
  3. 제1항에 있어서,
    상기 제1 격막은, 복수의 상기 하전 입자선이 교차하는 위치에 배치되는 것을 특징으로 하는 하전 입자선 장치.
  4. 제1항에 있어서,
    상기 하전 입자원을 수용하는 제3 하우징에 연결되고, 상기 하전 입자 광학계를 관통하고, 상기 광축이 내측을 통과하도록 배치된 관을 갖고,
    상기 제1 격막은, 상기 관에 설치되고,
    상기 관과 상기 제3 하우징은, 상기 경통에 대해 상기 광축의 방향으로 착탈 가능한 것을 특징으로 하는 하전 입자선 장치.
  5. 제4항에 있어서,
    상기 관의 외경은, 상기 하전 입자 광학계가 갖는 전자계 형성용 코일의 내경보다 작은 것을 특징으로 하는 하전 입자선 장치.
  6. 제4항에 있어서,
    상기 관에 설치되고, 상기 경통 내의 공간과 상기 제1 하우징 내의 공간을 격리하고, 상기 제1 격막보다 두껍고 상기 하전 입자선이 투과하지 않는 격벽판을 갖고,
    상기 제1 격막은, 상기 격벽판에 형성된 관통 구멍을 막도록 설치되고,
    상기 격벽판에 형성된 관통 구멍의 구멍 직경은, 상기 관의 내경보다 작은 것을 특징으로 하는 하전 입자선 장치.
  7. 제4항에 있어서,
    상기 제1 격막은, 상기 제3 하우징 내의 공간에 연통되는 상기 관 내의 공간과, 상기 제1 하우징 내의 공간을 격리하고,
    상기 제1 하우징과 상기 제2 하우징으로 둘러싸인 공간을 대기압으로 함으로써,
    상기 관 내와 상기 제3 하우징 내를 진공의 상태 그대로,
    상기 관과 상기 제3 하우징은, 상기 경통에 대해 착탈 가능한 것을 특징으로 하는 하전 입자선 장치.
  8. 제1항에 있어서,
    상기 하전 입자원으로부터 상기 제1 격막까지의 공간을 기밀 상태로 하는 진공 밸브 또는 진공 밀봉부와,
    상기 하전 입자원으로부터 상기 제1 격막까지의 공간을 감압 상태로 하는 비증발형 게터재가 상기 하전 입자원으로부터 상기 제1 격막까지의 공간을 구획하는 벽면에 설치되어 있는 것을 특징으로 하는 하전 입자선 장치.
  9. 제1항에 있어서,
    상기 제1 격막 및 상기 제2 격막의 두께가, 100㎚ 이하인 것을 특징으로 하는 하전 입자선 장치.
  10. 제1항에 있어서,
    상기 시료에 상기 하전 입자선을 조사할 때에, 상기 제2 격막과 상기 시료의 간격을, 1000㎛ 이하로 하는 것을 특징으로 하는 하전 입자선 장치.
KR1020147021504A 2012-02-27 2013-02-15 하전 입자선 장치 KR101607043B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012039500A JP5836838B2 (ja) 2012-02-27 2012-02-27 荷電粒子線装置
JPJP-P-2012-039500 2012-02-27
PCT/JP2013/053737 WO2013129143A1 (ja) 2012-02-27 2013-02-15 荷電粒子線装置

Publications (2)

Publication Number Publication Date
KR20140119078A true KR20140119078A (ko) 2014-10-08
KR101607043B1 KR101607043B1 (ko) 2016-03-28

Family

ID=49082344

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147021504A KR101607043B1 (ko) 2012-02-27 2013-02-15 하전 입자선 장치

Country Status (6)

Country Link
US (1) US9208995B2 (ko)
JP (1) JP5836838B2 (ko)
KR (1) KR101607043B1 (ko)
CN (1) CN104094373B (ko)
DE (1) DE112013000696B4 (ko)
WO (1) WO2013129143A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10068746B2 (en) 2015-12-15 2018-09-04 Seron Technologies Inc. Scanning electron microscope
KR20210099530A (ko) * 2020-02-04 2021-08-12 (주)새론테크놀로지 주사 전자 현미경

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6035602B2 (ja) * 2012-11-21 2016-11-30 株式会社日立ハイテクノロジーズ 荷電粒子線装置、試料台ユニット、及び試料観察方法
KR101554594B1 (ko) * 2013-12-02 2015-09-22 한국표준과학연구원 하전입자 빔 프로브 형성 장치 및 이의 이용방법
JP6047508B2 (ja) * 2014-01-27 2016-12-21 株式会社日立ハイテクノロジーズ 荷電粒子線装置、試料画像取得方法、およびプログラム記録媒体
JP6302702B2 (ja) 2014-02-27 2018-03-28 株式会社日立ハイテクノロジーズ 走査電子顕微鏡および画像生成方法
JP6491890B2 (ja) * 2015-01-21 2019-03-27 株式会社日立ハイテクノロジーズ 荷電粒子線装置
KR101663730B1 (ko) * 2015-03-23 2016-10-10 한국원자력연구원 차등진공을 이용한 하전입자빔 대기인출장치
KR101682522B1 (ko) * 2015-06-02 2016-12-06 참엔지니어링(주) 시료 관찰 방법
JP6097863B2 (ja) * 2016-05-16 2017-03-15 株式会社日立ハイテクノロジーズ 荷電粒子線装置、試料画像取得方法、およびプログラム記録媒体
WO2018189817A1 (ja) 2017-04-11 2018-10-18 株式会社アドバンテスト 露光装置
US10824077B2 (en) 2017-04-11 2020-11-03 Advantest Corporation Exposure device
JP2021055996A (ja) * 2017-12-13 2021-04-08 株式会社日立ハイテク 電子線照射装置、分析システム
TWI744671B (zh) * 2018-08-03 2021-11-01 日商紐富來科技股份有限公司 電子光學系統及多射束圖像取得裝置
CN112397300B (zh) * 2020-10-26 2022-03-25 南京新康达磁业股份有限公司 一种金属磁粉心粉末的无机绝缘粘接设备及其粘接方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139842A (ja) * 1988-11-18 1990-05-29 Nikon Corp 電子線装置
JP2007305499A (ja) * 2006-05-15 2007-11-22 Hitachi High-Technologies Corp 差動排気走査形電子顕微鏡
JP2008153086A (ja) 2006-12-19 2008-07-03 Jeol Ltd 試料検査装置及び試料検査方法並びに試料検査システム
JP2008262886A (ja) 2007-04-12 2008-10-30 Beam Seiko:Kk 走査型電子顕微鏡装置
JP2010509709A (ja) * 2006-10-24 2010-03-25 ビー・ナノ・リミテッド インターフェース、非真空環境内で物体を観察する方法、および走査型電子顕微鏡

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528014B2 (ja) * 2004-04-05 2010-08-18 株式会社日立ハイテクノロジーズ 試料検査方法
JP2006147430A (ja) * 2004-11-22 2006-06-08 Hokkaido Univ 電子顕微鏡
TW200639901A (en) 2005-05-09 2006-11-16 Li Bing Huan Device for operating gas in vacuum or low-pressure environment and for observation of the operation
EP2365321B1 (en) 2006-12-19 2013-10-02 JEOL Ltd. Sample inspection apparatus, sample inspection method, and sample inspection system
US8334510B2 (en) 2008-07-03 2012-12-18 B-Nano Ltd. Scanning electron microscope, an interface and a method for observing an object within a non-vacuum environment
JP5237728B2 (ja) 2008-08-29 2013-07-17 日本電子株式会社 粒子線装置
JP2012503856A (ja) * 2008-09-28 2012-02-09 ビー−ナノ リミテッド 真空化されたデバイス、および、走査型電子顕微鏡
JP2010230417A (ja) 2009-03-26 2010-10-14 Jeol Ltd 試料の検査装置及び検査方法
JP2013020918A (ja) * 2011-07-14 2013-01-31 Hitachi High-Technologies Corp 荷電粒子線装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139842A (ja) * 1988-11-18 1990-05-29 Nikon Corp 電子線装置
JP2007305499A (ja) * 2006-05-15 2007-11-22 Hitachi High-Technologies Corp 差動排気走査形電子顕微鏡
JP2010509709A (ja) * 2006-10-24 2010-03-25 ビー・ナノ・リミテッド インターフェース、非真空環境内で物体を観察する方法、および走査型電子顕微鏡
JP2008153086A (ja) 2006-12-19 2008-07-03 Jeol Ltd 試料検査装置及び試料検査方法並びに試料検査システム
JP2008262886A (ja) 2007-04-12 2008-10-30 Beam Seiko:Kk 走査型電子顕微鏡装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10068746B2 (en) 2015-12-15 2018-09-04 Seron Technologies Inc. Scanning electron microscope
KR20210099530A (ko) * 2020-02-04 2021-08-12 (주)새론테크놀로지 주사 전자 현미경

Also Published As

Publication number Publication date
WO2013129143A1 (ja) 2013-09-06
KR101607043B1 (ko) 2016-03-28
CN104094373A (zh) 2014-10-08
JP5836838B2 (ja) 2015-12-24
US9208995B2 (en) 2015-12-08
CN104094373B (zh) 2016-08-17
JP2013175377A (ja) 2013-09-05
US20150014530A1 (en) 2015-01-15
DE112013000696T5 (de) 2014-10-09
DE112013000696B4 (de) 2018-08-02

Similar Documents

Publication Publication Date Title
KR101607043B1 (ko) 하전 입자선 장치
US9673020B2 (en) Charged particle beam device, method for adjusting charged particle beam device, and method for inspecting or observing sample
US7915584B2 (en) TEM with aberration corrector and phase plate
EP2565900B1 (en) Beam device and system comprising a particle beam device and an optical microscope
US7339167B2 (en) Charged particle beam apparatus
US5254856A (en) Charged particle beam apparatus having particular electrostatic objective lens and vacuum pump systems
JP2008192617A (ja) 粒子と光子で同時に試料を観察する粒子光学装置
KR20150022907A (ko) 하전 입자선 장치 및 시료 관찰 방법
US20200090903A1 (en) Charged Particle Beam Device
KR102029869B1 (ko) 탈착가능한 전자현미경용 시료실 장치 및 이를 포함하는 전자현미경
JPS5938701B2 (ja) 二段試料台を備えた走査型電子顕微鏡
US10340117B2 (en) Ion beam device and sample observation method
US10651005B2 (en) Innovative source assembly for ion beam production
EP3358598B1 (en) Collision ionization source
JP5976147B2 (ja) 荷電粒子線装置、荷電粒子線装置の調整方法、および試料の検査若しくは試料の観察方法。
JP5993356B2 (ja) 走査型電子顕微鏡
CN111383877B (zh) 用于观察样本的设备和方法
EP4117013A1 (en) Scanning electron microscope and objective lens
KR20230048511A (ko) 액추에이터 배열체 및 전자-광학 컬럼
JPH08250058A (ja) 走査形電子顕微鏡
WO2022175000A1 (en) Charged particle beam apparatus, scanning electron microscope, and method of operating a charged particle beam apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190306

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200303

Year of fee payment: 5