KR20140048822A - 규소 산화물―탄소 복합체 및 이의 제조방법 - Google Patents

규소 산화물―탄소 복합체 및 이의 제조방법 Download PDF

Info

Publication number
KR20140048822A
KR20140048822A KR1020130122146A KR20130122146A KR20140048822A KR 20140048822 A KR20140048822 A KR 20140048822A KR 1020130122146 A KR1020130122146 A KR 1020130122146A KR 20130122146 A KR20130122146 A KR 20130122146A KR 20140048822 A KR20140048822 A KR 20140048822A
Authority
KR
South Korea
Prior art keywords
silicon oxide
carbon composite
silicon
carbon
producing
Prior art date
Application number
KR1020130122146A
Other languages
English (en)
Other versions
KR101560454B1 (ko
Inventor
박철희
정한나
정상윤
임병규
이용주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PCT/KR2013/009212 priority Critical patent/WO2014061974A1/ko
Priority to EP13847283.2A priority patent/EP2762449B1/en
Priority to CN201380004036.0A priority patent/CN103974905B/zh
Priority to TW102137329A priority patent/TWI551545B/zh
Priority to US14/109,611 priority patent/US10084183B2/en
Publication of KR20140048822A publication Critical patent/KR20140048822A/ko
Application granted granted Critical
Publication of KR101560454B1 publication Critical patent/KR101560454B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/023Preparation by reduction of silica or free silica-containing material
    • C01B33/025Preparation by reduction of silica or free silica-containing material with carbon or a solid carbonaceous material, i.e. carbo-thermal process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/181Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

본 발명은 규소 산화물―탄소 복합체 및 이의 제조방법에 관한 것으로, 더욱 구체적으로 규소 및 이산화규소를 혼합하여 반응 챔버내에 구비시키고, 상기 반응 챔버내의 내부온도를 반응온도까지 승온시키면서 상기 반응 챔버내의 압력을 고진공도에 이르도록 감압하며, 상기 규소 및 이산화규소의 혼합물을 환원 분위기하에서 반응시키고, 상기 반응으로 제조된 규소 산화물의 표면에 탄소를 코팅시키는 것을 포함하는 규소 산화물-탄소 복합체의 제조방법 및 이에 의해 제조된 규소 산화물-탄소 복합체에 관한 것이다.

Description

규소 산화물―탄소 복합체 및 이의 제조방법{Silicon oxide―carbon composite and manufacturing method thereof}
본 발명은 규소 산화물-탄소 복합체 및 이의 제조방법에 관한 것이다.
리튬 이차전지는 리튬이 방전 과정에서 음극에서 양극으로 이동하고 충전시에는 리튬 이온이 양극에서 음극으로 이동하면서, 전지 내에 전기 에너지를 저장하는 에너지 저장 장치이다. 다른 전지와 비교하여 볼 때, 높은 에너지 밀도를 가지고 자가방전이 일어나는 정도가 작아 여러 사업 전반에 사용되고 있다.
리튬 이차전지의 구성요소는 양극, 음극, 전해질 및 분리막 등으로 나눌 수 있다. 초기 리튬 이차전지에서는 음극 활물질로 리튬 금속이 사용되었지만, 충전과 방전이 반복됨에 따라 안전성 문제가 나타나면서 흑연(graphite) 등 탄소계 물질로 대체되었다. 탄소계 음극 활물질은 리튬 이온과의 전기 화학적 반응 전위가 리튬 금속과 비슷하고, 계속적인 리튬 이온의 삽입·탈리 과정 동안 결정 구조의 변화가 적어 지속적인 충전 방전이 가능하게 되었으며, 따라서 우수한 충방전 수명을 가지게 되었다.
하지만, 최근에 휴대기기에 사용하는 소형 리튬 이차전지부터 자동차에 사용되는 대형 이차전지까지 시장이 확대됨에 따라 음극 활물질의 고용량·고출력화 기술이 요구되고 있다. 따라서 탄소계 음극 활물질보다 이론 용량이 높은 규소, 주석, 게르마늄, 아연, 납 등을 중심으로 비탄소계 음극 활물질 개발이 진행되고 있다.
그러나, 이들 음극 활물질은 모두 충방전 용량을 향상시켜 에너지 밀도를 높일 수 있지만, 충방전의 반복에 따라 전극 상에 덴트라이트나 부도체 화합물이 생성되기 때문에 충방전이 열화되거나 리튬 이온의 흡장·방출시의 팽창 및 수축이 커진다. 이 때문에, 이들 음극 활물질을 이용한 이차전지는 충방전의 반복에 따른 방전 용량의 유지성(이하, 사이클 특성)이 불충분하고, 제조 후 최초의 방전 용량과 최초의 충전 용량의 비의 값(방전 용량/충전 용량; 이하, 초기 효율)도 충분하지 않은 문제가 있다.
본 발명은 규소 산화물에서의 산소량이 조절되고 규소 산화물 표면에 탄소가 코팅된 규소 산화물-탄소 복합체를 제공한다.
본 발명은 규소 및 이산화규소를 혼합하여 반응 챔버내에 구비시키고, 상기 반응 챔버내의 내부온도를 반응온도까지 승온시키면서 상기 반응 챔버내의 압력을 고진공도에 이르도록 감압하며, 상기 규소 및 이산화규소의 혼합물을 환원 분위기하에서 반응시키고, 상기 반응으로 제조된 규소 산화물의 표면에 탄소를 코팅시키는 것을 포함하는 규소 산화물-탄소 복합체의 제조방법을 제공한다.
또한, 본 발명은 규소 산화물 및 상기 규소 산화물 표면에 탄소 코팅층을 포함하며, X-선 회절(XRD)에 의해 수득된 데이터 그래프에서 2theta의 15° 내지 40°범위에서의 최대 피크 높이(h1)에 대한 40° 내지 60° 범위에서의 최대 피크 높이(h2)의 비가 0.40≤h2/h1≤1.5인 것을 특징으로 하는 규소 산화물-탄소 복합체를 제공한다.
본 발명은 환원 분위기를 조성하고 압력을 조절하여 규소 산화물에서의 산소량을 제어하여 산소량이 낮은 규소 산화물을 포함하며, 상기 산소량이 낮은 규소 산화물 표면에 탄소 코팅층을 형성함으로써 전기 전도도를 더욱 향상시킬 수 있다.
또한, 상기 규소 산화물-탄소 복합체의 X-선 회절에 의해 수득된 데이터 그래프에서 2theta의 특정 범위의 높이비를 산출하여 이차전지의 초기효율을 예측할 수 있다.
도 1은 본 발명의 일실시예에 따른 규소 산화물-탄소 복합체의 제조장치를 나타낸 모식도이다.
도 2는 본 발명에 따른 실시예 및 비교예에서 제조된 규소 산화물-탄소 복합체의 X-선 회절(XRD)에 의해 수득된 데이터 그래프에서 25°에서의 최대 피크 높이(h1) 및 52°에서의 최대 피크 높이(h2)를 나타낸 그래프이다.
본 발명은 규소 및 이산화규소를 혼합하여 반응 챔버내에 구비시키고, 상기 반응 챔버내의 내부온도를 반응온도까지 승온시키면서 상기 반응 챔버내의 압력을 고진공도에 이르도록 감압하며, 상기 규소 및 이산화규소의 혼합물을 환원 분위기하에서 반응시키고, 상기 반응으로 제조된 규소 산화물의 표면에 탄소를 코팅시키는 것을 포함하는 규소 산화물-탄소 복합체의 제조방법을 제공한다.
도 1은 본 발명의 일실시예에 따른 규소 산화물-탄소 복합체의 제조장치를 나타낸 모식도이다. 도 1을 참조하면, 본 발명의 일실시예에 따른 규소 산화물-탄소 복합체의 제조장치는 반응 챔버(1), 반응기(2), 전기로(4), 진공펌프(5) 및 콜렉터(6)를 포함한다. 반응 챔버(1) 내에 반응기(2)가 구비되며 반응기(2) 내에는 규소 및 이산화규소의 혼합물이 구비된다. 전기로(4)를 통해 반응 챔버(1)내의 내부온도를 반응온도까지 승온시킬 수 있으며, 진공펌프(5, 예를 들어, 회전 펌프, 터보 분자 펌프 등)로 반응 챔버(1)내의 진공도를 고진공도로 형성시킬 수 있다. 반응 챔버(1)내의 환원 분위기는 환원 분위기를 조성할 수 있는 기체를 가스 노즐(7)을 통해 반응 챔버(1)내로 공급하여 조성 또는 형성할 수 있으며(도 1의 (a) 참조), 반응 챔버(1)내에 별도의 용기(3)에 활성탄(active carbon), 마그네슘(Mg), 알루미늄(Al), 탄탈륨(Ta), 몰리브데늄(Mo), 칼슘(Ca) 및 아연(Zn)으로 이루어진 군으로부터 선택되는 1종 이상을 구비하여 조성 또는 형성할 수 있다(도 1의 (b) 참조). 반응 챔버(1)내에서 제조된 규소 산화물은 SiOx(0<x<1)이며, 반응 챔버(1)내에 구비된 콜렉터(6)에 수집된다.
본 발명의 일실시예에 따른 규소 산화물-탄소 복합체의 제조방법에서, 상기 규소 및 이산화규소의 혼합은 기계적 교반 장치(예를 들어, 페인트 쉐이크(paint shaker))를 이용하여 수행될 수 있으나, 규소 및 이산화규소를 균일하게 혼합할 수 있는 방법이면 이에 제한되는 것은 아니다. 상기 규소 및 이산화규소는 0.5 내지 2:2 내지 0.5의 몰비로 혼합될 수 있다. 상기 범위를 벗어나는 몰비로 혼합되는 경우에는 미반응 규소 또는 미반응 이산화규소의 양이 증가하여 규소 산화물의 생산성이 저하될 수 있다. 상기에서 혼합된 규소 및 이산화규소의 혼합물은 반응 챔버내에 구비될 수 있다.
또한, 본 발명의 일실시예에 따른 규소 산화물-탄소 복합체의 제조방법은 반응 챔버내의 내부온도를 반응온도까지 승온시키면서 상기 반응 챔버내의 압력을 고진공도에 이르도록 감압하는 것을 포함한다.
상기 반응온도는 1300 내지 1500 ℃일 수 있다. 상기 반응온도가 1300 ℃ 미만인 경우에는 규소 및 이산화규소의 반응이 저하되어 규소 산화물의 생산성이 저하될 수 있고, 1500 ℃를 초과하는 경우에는 규소 및 이산화규소가 용융될 수 있다. 또한, 상기 반응온도는 2 내지 4시간 동안 유지될 수 있고, 상기 반응온도의 유지 시간 또한 상기 반응온도의 한정이유와 동일하다.
본 발명의 일실시예에 따른 규소 산화물-탄소 복합체의 제조방법에서, 상기 고진공도는 10-4 내지 10-1 torr일 수 있다. 상기 고진공도는 회전 펌프(rotary pump)와 터보 분자 펌프(turbo molecular pump) 등을 사용하여 고진공도를 형성시킬 수 있으나, 이에 제한되는 것은 아니다. 열역학적으로 고진공도에서 반응성이 높으며, 저온 반응이 가능하기 때문에 고진공도를 유지하는 것이 유리할 수 있다. 상기 고진공도가 10-1 torr를 초과하는 경우에는 규소 및 이산화규소의 반응이 저하되어 규소 산화물의 생산성이 저하되고 규소 산화물에서의 산소량이 증가될 수 있으며, 10-4 torr 미만의 진공도는 장비 및 공정상 구현이 용이하지 않을 수 있다.
본 발명의 일실시예에 따르면, 상기 고진공도는 상기 규소 및 이산화규소의 반응이 완료될 때까지 유지되며, 상기 환원 분위기를 조성할 수 있는 기체는 상기 반응 챔버의 일측으로부터 계속적으로 주입되어 반응 챔버의 타측으로부터 계속적으로 제거될 수 있다.
상기 환원 분위기를 조성할 수 있는 기체는 상기 반응 챔버내로 1 내지 1000 sccm(standard cubic centimeter per minutes)의 유량으로 공급될 수 있다. 상기 유량이 1 sccm 미만인 경우에는 환원 분위기를 조성할 수 없어 규소 산화물에서의 산소량이 증가할 수 있고, 1000 sccm을 초과하는 경우에는 과량의 기체가 공급되어 제조공정이 비효율적일 수 있다.
또한, 상기 환원 분위기를 조성할 수 있는 기체는 H2, NH3 및 CO로 이루어진 군으로부터 선택되는 1종 이상 및 이들과 비활성 기체의 혼합기체를 포함할 수 있다. 상기 H2, NH3 또는 CO는 혼합기체에 대해 1 부피% 내지 5 부피%로 포함될 수 있다.
상기 환원 분위기를 조성할 수 있는 기체는 반응이 완료될 때까지 유지하는 것이 산소량을 낮추는데 있어 바람직할 수 있으며, 2 부피% 내지 5 부피%의 H2를 포함하는 H2 함유 기체인 것이 바람직하다. 본 발명의 일실시예에 따른 규소 산화물-탄소 복합체의 제조방법에 있어서, 상기 환원 분위기는 환원 분위기를 조성할 수 있는 기체를 챔버내에 공급함으로써 조성 또는 형성될 수 있고, 상기 챔버내에 별도의 용기에 활성탄 등과 같은 물질을 구비하여 조성 또는 형성될 수 있다.
상기 환원 분위기는 상기 반응 챔버내의 별도의 용기에 구비된 활성탄, 마그네슘, 알루미늄, 탄탈륨 및 몰리브데늄, 칼슘 및 아연으로 이루어진 군으로부터 선택되는 1종 이상에 의해 형성될 수 있다.
상기 환원 분위기를 조성할 수 있는 기체 또는 상기 반응 챔버내의 별도의 용기에 구비된 활성탄 등의 물질은 규소 및 이산화규소의 반응시 산소와 반응하여 제조되는 규소 산화물에 포함된 산소량을 낮추도록 할 수 있다.
특히, 본 발명의 일실시예에 따르면, 10-4 내지 10-1 torr의 고진공도의 압력을 H2 함유 기체를 계속해서 주입하여 흘려주면서 반응이 완료될 때까지 상기 고진공도의 압력을 유지함으로써 규소 산화물의 산소량을 Si 원자대비 1 미만으로 효과적으로 제어할 수 있다. 또한, 본 발명의 일실시예에 따른 규소 산화물-탄소 복합체의 제조방법은 상기 규소 산화물 표면에 탄소를 코팅하는 단계를 포함할 수 있다.
상기 탄소 코팅은 규소 산화물을 탄소 전구체와 혼합한 후 열처리하는 단계를 포함하여 이루질 수 있다. 상기 탄소 전구체는 열처리에 의해 탄소를 생성하는 것이라면 어느 것이나 제한 없이 사용할 수 있으며, 예를 들어 핏치(pitch) 또는 탄화수소계 물질 등을 사용할 수 있다. 상기 탄화수소계 물질은 푸르푸릴 알코올(furfuryl alcohol), 글루코스, 수크로스, 페놀계 수지, 페놀계 올리고머, 레조시놀계 수지, 레조시놀계 올리고머, 플로로글루시놀계 수지, 플로로글루시놀계 올리고머, 및 에틸렌, 프로필렌 또는 아세틸렌 등의 불포화 탄화수소 가스로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 예로 들 수 있다.
상기 탄소 코팅을 위한 열처리는 200 ℃ 내지 1000 ℃의 온도 범위에서 수행될 수 있다. 상기 탄소 코팅은 규소 산화물 총량의 1 - 30 중량%일 수 있다. 상기 탄소가 1 중량% 미만으로 피복되는 경우에는 균일한 피복층이 형성되지 않아 전기 전도성이 저하되는 문제가 있고, 30 중량%를 초과하는 경우에는 도전성 피복층으로 인해 추가적인 비가역 반응이 발생하여 방전 용량이 크게 감소되는 문제가 있다. 이와 같은 탄소 코팅은 규소 산화물 표면에 탄소를 코팅시킬 수 있는 방법이면 이에 제한되는 것은 아니다.
본 발명의 일 실시예에 따르면, 상기 방법에 의해 규소 산화물 및 상기 규소 산화물 표면에 탄소 코팅층을 포함하며, X-선 회절(XRD)에 의해 수득된 데이터 그래프에서 2theta의 15° 내지 40°범위에서의 최대 피크 높이(h1)에 대한 40° 내지 60° 범위에서의 최대 피크 높이(h2)의 비가 0.40≤h2/h1≤1.5인 규소 산화물-탄소 복합체를 제공할 수 있다.
또한, 본 발명의 일실시예에 따른 규소 산화물-탄소 복합체는 상기 규소 산화물-탄소 복합체의 X-선 회절(XRD)에 의해 수득된 데이터 그래프에서 2theta의 15° 내지 40°범위에서의 최대 피크 높이(h1)에 대한 40° 내지 60° 범위에서의 최대 피크 높이(h2)의 비가 0.45≤h2/h1≤0.8일 수 있다.
본 발명의 일 실시예에 따르면, 상기 h2/h1는 상기 규소 산화물-탄소 복합체의 산소량(x)에 영향을 미칠 수 있다. 예를 들면, 상기 15° 내지 40°범위에서의 최대 피크 높이(h1)에 대한 40° 내지 60°범위에서의 최대 피크 높이(h2)의 비가 0.40 미만인 경우에는 규소 산화물 내의 산소량이 Si 원자대비 1보다 클 수 있으며, 이에 의해 이차전지의 초기효율이 낮아지는 문제가 있을 수 있다. 1.5를 초과하는 값은 나타나지 않을 수 있다.
상기 X-선 회절의 측정 조건은 예를 들면 다음과 같다.
규소 산화물-탄소 복합체를 분쇄하여 X-선 회절 분석기(Bruker AXS D4-Endeavor XRD)로 측정할 수 있다. 인가전압을 40 kV하고 인가전류를 40 mA로 할 수 있으며, 측정한 2theta의 범위는 10° 내지 90°이고, 0.05° 간격으로 스캔하여 측정할 수 있다. 이때, 슬릿(slit)은 variable divergence slit 6 ㎜를 사용할 수 있으며, PMMA 홀더에 의한 백그라운드 노이즈(background noise)를 없애기 위해 크기가 큰 PMMA 홀더(직경=20 ㎜)를 사용할 수 있다. 15° 내지 40° 범위에서의 피크 및 40° 내지 60° 범위에서의 피크의 세기 비율은 EVA 프로그램(Bruke사)을 사용하여 얻을 수 있다.
상기 규소 산화물-탄소 복합체는 비정질일 수 있고, 비정질 규소 산화물-탄소 복합체의 X선 회절(XRD) 측정시 결정질 규소 산화물-탄소 복합체와 비교하면 결정질 규소 산화물-탄소 복합체의 구성 물질들이 피크로 나타나지만, 비정질 규소 산화물-탄소 복합체에서는 미량 포함된 물질의 피크가 나타나지 않을 수 있다. 이는, X-선 회절 측정에서 미량 포함된 물질의 피크가 나타나지 않아 불필요한 피크들이 제거되는 노이즈 제거효과가 있을 수 있다.
본 발명의 일실시예에 따른 비정질의 규소 산화물-탄소 복합체에 있어서, 상기 비정질은 X-선 회절 분석기(Bruker AXS D4-Endeavor XRD)에 의해 수득된 데이터 그래프에서 2theta(θ)의 15° 내지 40° 범위에서의 최대 피크의 반가폭 (Full Width at Half-Maximum; FWHM)이 7° 내지 15°, 바람직하게는 9 ° 내지 13 °일 수 있고, 40° 내지 60° 범위에서의 최대 피크의 반가폭 (Full Width at Half-Maximum; FWHM)이 5° 내지 13°, 바람직하게는 8 ° 내지 10 °인 것을 의미할 수 있다.
본 발명에 있어서, 상기 반가폭(FWHM)은 상기 규소 산화물-탄소 복합체의 X-선 회절에서 얻은 2theta의 15° 내지 40° 범위 및 40° 내지 60° 범위에서의 최대 피크 세기의 1/2 위치에서의 피크 폭을 수치화한 것이다.
상기 반가폭(FWHM)의 단위는 2theta의 단위인 도(°)로 나타낼 수 있으며, 결정성이 높은 규소 산화물-탄소 복합체일수록 반가폭의 수치가 작을 수 있다.
상기 규소 산화물-탄소 복합체에 있어서. 규소 산화물의 평균 입경은 100 ㎚ 내지 100 ㎛일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일실시예에 따른 규소 산화물-탄소 복합체에 있어서. 규소 산화물은 SiOx(0<x<1)일 수 있다. 또한, 규소 산화물내의 규소는 결정질 또는 비정질일 수 있다. 상기 규소 산화물 내에 존재하는 규소가 결정질인 경우 규소의 결정크기는 300 ㎚ 이하, 바람직하게는 100 nm 이하, 더욱 바람직하게는 0.05 nm 내지 50nm 일 수 있다. 이때 결정 크기는 X-선 회절(XRD) 분석 또는 전자현미경(SEM, TEM)으로 알 수 있다.
일반적으로 사용되고 있는 규소 입자는 리튬 원자를 전기화학적으로 흡수저장하고 방출하는 반응에서 매우 복잡한 결정변화를 수반한다. 리튬 원자를 전기화학적으로 흡수저장하고 방출하는 반응이 진행됨에 따라 규소 입자의 조성과 결정구조는 Si(결정구조: Fd3m), LiSi(결정구조: I41/a), Li2Si(결정구조: C2/m), Li7Si2(Pbam), Li22Si5(F23) 등으로 변화한다. 또한, 복잡한 결정구조의 변화에 따라 규소 입자의 부피는 약 4배로 팽창하는데, 본 발명의 일실시예에 따른 SiOx와 리튬 원자와의 반응은 SiOx 구조를 유지하면서 진행될 수 있고, SiOx의 x의 범위가 1 미만이므로 산소 함량이 낮아져 이차전지의 초기효율이 증가할 수 있다.
본 발명의 일실시예에 따른 규소 산화물-탄소 복합체는 규소 산화물 상에 탄소 코팅층을 포함함으로써, 이를 음극 활물질로 적용할 경우, 기계적 물성이 더욱 강화되어 압연시에도 음극 활물질의 깨짐 없이 형태를 안정적으로 유지할 수 있는 것은 물론, 규소 산화물 외벽에 전도성이 우수한 탄소 코팅층이 존재함으로써 전기 전도도를 더욱 향상시킬 수 있다.
상기 탄소 코팅층의 두께는 5 nm 내지 100 nm, 바람직하게는 5 nm 내지 50 nm일 수 있다. 상기 탄소 코팅층의 두께가 5 nm 미만인 경우 상기 탄소 코팅층으로 인한 전기 전도도의 상승 효과가 미미하고, 음극 활물질 적용시 전해액과의 반응성이 높아 초기 효율이 저하되는 문제가 있을 수 있다. 상기 탄소 코팅층의 두께가 100 nm를 초과하는 경우 비정질 탄소층의 두께가 지나치게 증가하여 리튬 이온의 이동성이 장애가 되어 저항이 증가할 수 있고, 표면이 딱딱해져 전극 공정에 있어 어려움이 있을 수 있다.
또한, 본 발명은 상기 규소 산화물-탄소 복합체를 포함하는 음극 활물질을 제공한다.
또한, 본 발명은 양극 활물질을 포함하는 양극; 분리막; 상기 음극 활물질을 포함하는 음극; 및 전해질을 포함하는 이차전지를 제공한다.
본 발명의 일실시예에 따른 이차전지는 상기 규소 산화물-탄소 복합체를 포함하는 음극 활물질을 포함함으로써, 이차전지의 초기효율을 향상시킬 수 있다. 구체적으로 상기 규소 산화물-탄소 복합체의 X-선 회절(XRD)에 의해 수득된 데이터 그래프에서 2theta의 25°에서의 최대 피크 높이(h1)에 대한 52°에서의 최대 피크 높이(h2)의 비가 0.40≤h2/h1≤1.5인 경우에는 이차전지의 초기효율이 67% 내지 85%일 수 있다. 또한, 상기 규소 산화물-탄소 복합체의 X-선 회절(XRD)에 의해 수득된 데이터 그래프에서 2theta의 25°에서의 최대 피크 높이(h1)에 대한 52°에서의 최대 피크 높이(h2)의 비가 0.45≤h2/h1≤0.8인 경우에는 이차전지의 초기효율이 72% 내지 85%일 수 있다.
음극은 예를 들어, 음극 집전체 상에 음극 활물질, 도전제 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는 충진제를 더 첨가하기도 한다. 양극은 또한 양극 집전체 상에 양극 활물질을 도포, 건조하여 제작될 수 있다.
상기 분리막은 음극과 양극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 한편, 상기 집전체, 전극 활물질, 도전제, 바인더, 충진제, 분리막, 전해질, 리튬염 등은 당업계에 공지되어 있으므로, 그에 대한 자세한 설명은 본 명세서에서 생략한다.
양극과 음극 사이에 분리막을 개재하여 전지 집전체를 형성하고, 상기 전지 집전체를 와인딩하거나 접어서 원통형 전지 케이스 또는 각형 전지 케이스에 넣은 다음, 전해질을 주입하면 이차전지가 완성된다. 다른 방법으로는 상기 전지 집전체를 바이셀 구조로 적층한 다음, 이를 전해질에 함침시키고, 얻어진 결과물을 파우치에 넣어 밀봉하면 이차전지가 완성된다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기에서 상술하는 실시예들에 한정되는 것은 아니다.
실시예 1: 규소 산화물-탄소 복합체의 제조
규소 산화물의 제조
40g의 Si와 86g의 SiO2를 병(bottle) 안에 넣고 페인트 쉐이커(paint shaker)에서 300 rpm의 속도로 3 시간 이상 교반하여 완전히 혼합하였다. 다음으로 알루미나 보트(Alumina boat)에 상기에서 혼합된 12.5g의 Si와 SiO2를 넣은 후 한쪽 끝이 막힌 알루미나 재질의 내부 튜브(inner tube)에 넣었다. 알루미나 보트가 들어있는 내부 튜브를 알루미나 재질의 승화기 외부 튜브(outer tube)에 넣은 후 회전 펌프(rotary pump)와 터보 분자 펌프(turbo molecular pump)를 가동시켜 반응기의 진공도를 높여주면서 승화기의 내부 온도를 1400 ℃로 승온시켰다. 이때, 승온 속도는 1시간 30분 동안 상온에서 800 ℃까지, 2시간 30분 동안 800 ℃에서 반응 온도인 1400 ℃까지 도달하게 하였다. 상기 반응 온도 1400 ℃에 도달부터 3시간 동안 더욱 반응시켰다. H2/N2(H2: 2%)의 혼합가스를 800 sccm의 유량으로 공급하였으며, 이때 압력은 1.2×10-1 torr이였다. 상기 H2/N2의 혼합가스는 계속적으로 공급하면서 반응이 끝날 때 까지 압력을 1.2×10-1 torr로 유지하였다. 반응이 끝난 후 자연 냉각시켜 승화기의 온도가 300 ℃ 이하가 되면 가스 공급을 중단시켜 규소 산화물을 제조하였다.
규소 산화물 표면에 탄소 코팅층 형성
상기에서 제조된 20g의 규소 산화물을 회전 관상로에 투입하고, 아르곤 가스를 0.5L/분으로 흘려준 후 온도를 5 ℃/분의 속도로 800 ℃까지 승온시켰다. 회전 관상로를 10 rpm/분의 속도로 회전시키면서 아르곤 가스를 1.8L/분, 아세틸렌 가스를 0.3L/분으로 흘려주며 5시간 동안 열처리하여 규소 산화물 표면에 탄소 코팅층을 형성시켰다.
실시예 2: 규소 산화물-탄소 복합체의 제조
H2/N2(H2: 2%)의 혼합 가스 대신 알루미나 보트에 0.83g의 활성탄을 넣고, 압력을 8.8×10-2 torr로 감압한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 규소 산화물-탄소 복합체를 제조하였다.
비교예 1:
H2/N2(H2: 2%)의 혼합가스를 공급하지 않고, 승온하면서 압력을 3.0×10-1 torr로 감압하였고, 규소 산화물 표면에 탄소 코팅층을 형성하지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 규소 산화물을 제조하였다.
<코인형 반쪽 전지의 제조>
실시예 3
음극 활물질로 상기 실시예 1에서 제조된 규소 산화물-탄소 복합체, 도전제로 아세틸렌 블랙 및 바인더로 폴리비닐리덴플루오라이드를 사용하여, 이들을 95:1:4의 중량비로 혼합하고, 이들을 용매인 N-메틸-2-피롤리돈에 혼합하여 슬러리를 제조하였다. 제조된 슬러리를 구리 집전체의 일면에 30 ㎛의 두께로 코팅하고, 건조 및 압연한 후 일정 크기로 펀칭하여 음극을 제조하였다.
에틸렌카보네이트 및 디에틸카보네이트를 30:70의 중량비로 혼합하여 제조된 유기 용매 및 1.0M의 LiPF6를 포함하는 혼합 용매에, 전해액 총량을 기준으로, 플루오로에틸렌 카보네이트 10 중량%를 첨가하여 비수성 전해액을 제조하였다.
상대 전극(counter electrode)으로 리튬 금속 호일(foil)을 사용하였으며, 양 전극 사이에 폴리올레핀 분리막을 개재시킨 후 상기 전해액을 주입하여 코인형 반쪽 전지를 제조하였다.
실시예 4
상기 실시예 2에서 제조된 규소 산화물-탄소 복합체를 음극 활물질로 사용한 것을 제외하고는, 실시예 3과 동일한 방법으로 코인형 반쪽 전지를 제조하였다.
비교예 2
상기 비교예 1에서 제조된 규소 산화물을 음극 활물질로 사용한 것을 제외하고는, 실시예 3과 동일한 방법으로 코인형 반쪽 전지를 제조하였다.
실험예 1 : X-선 회절분석
상기 실시예 1과 2에서 제조된 규소 산화물-탄소 복합체, 및 비교예 1에서 제조된 규소 산화물을 분쇄하여 X-선 회절 분석기(Bruker AXS D4-Endeavor XRD)로 측정하였다. 인가전압을 40 kV하고 인가전류를 40 mA로 하였으며, 측정한 2theta의 범위는 10° 내지 90°이고, 0.05° 간격으로 스캔하여 측정하였다. 이때, 슬릿(slit)은 variable divergence slit 6 ㎜를 사용하였고, PMMA 홀더에 의한 백그라운드 노이즈(background noise)를 없애기 위해 크기가 큰 PMMA 홀더(직경=20 ㎜)를 사용하였다. 25°에서의 피크 및 52°에서의 피크의 세기 비율은 EVA 프로그램(Bruke사)을 얻었다. 또한, 상기 실시예 1과 2에서 제조된 규소 산화물-탄소 복합체, 및 비교예 1에서 제조된 규소 산화물의 결정성을 확인하였고, X-선 회절(XRD)에 의해 수득된 데이터 그래프에서 2θ의 15° 내지 40° 범위에서의 최대 피크 및 40° 내지 60° 범위에서의 최대 피크의 반가폭 (Full Width at Half-Maximum; FWHM)을 각각 하기 표 1에 나타내었다.
h2/h1 최대 피크의 반가폭
(15° 내지 40° )
최대 피크의 반가폭
(40° 내지 60° )
실시예 1 0.45 11.22 8.55
실시예 2 0.45 10.79 8.64
비교예 1 0.24 9.65 7.50
도 2는 본 발명에 따른 실시예 1과 2, 및 비교예 1에서 제조된 규소 산화물-탄소 복합체 및 규소 산화물의 X-선 회절(XRD)에 의해 수득된 데이터 그래프에서 25°에서의 최대 피크 높이(h1) 및 52°에서의 최대 피크 높이(h2)를 나타낸 그래프이다.
실험예 2: 초기 효율 측정
상기 실시예 3과 4, 및 비교예 2에서 제조된 코인형 반쪽 전지의 초기 효율을 알아보기 위해, 상기 실시예 3과 4, 및 비교예 2에서 제조된 코인형 반쪽전지를 23℃에서 정전류/정전압(CC/CV) 조건에서 5mV, 0.005C까지 0.1C로 충전한 다음, 정전류(CC) 조건에서 1.5 V 까지 0.1C로 방전하여, 초기 효율을 측정하였다. 그 결과를 하기 표 2에 나타내었다.
효율(1st Efficiency)

실시예 3 72.65%
실시예 4 72.65%
비교예 2 59.72%
상기 실시예 3, 4 및 비교예 2의 초기효율을 측정한 결과 2θ의 25°에서의 최대 피크 높이에 대한 52°에서의 최대 피크 높이의 비가 0.45인 실시예 3, 4에서는 이차전지의 초기효율이 72.65%로 나타났으며, 높이비가 0.24인 비교예 2에서는 초기효율이 59.72%로 나타났다. 따라서, 높이비가 0.45인 실시예 3, 4의 이차전지가 비교예 2보다 초기 효율이 현저히 우수한 것을 알 수 있다.
1: 반응 챔버 2: 반응기
3: 용기 4: 전기로
5: 진공펌프 6: 콜렉터
7: 가스 노즐

Claims (25)

  1. 규소 및 이산화규소를 혼합하여 반응 챔버내에 구비시키고,
    상기 반응 챔버내의 내부온도를 반응온도까지 승온시키면서 상기 반응 챔버내의 압력을 고진공도에 이르도록 감압하며,
    상기 규소 및 이산화규소의 혼합물을 환원 분위기하에서 반응시키고,
    상기 반응으로 제조된 규소 산화물의 표면에 탄소를 코팅시키는 것을 포함하는 규소 산화물-탄소 복합체의 제조방법.
  2. 청구항 1에 있어서,
    상기 환원 분위기는 환원 분위기를 조성할 수 있는 기체에 의해 형성되고, 상기 환원 분위기를 조성할 수 있는 기체는 상기 반응 챔버내로 공급되는 것을 특징으로 하는 규소 산화물-탄소 복합체의 제조방법.
  3. 청구항 2에 있어서,
    상기 환원 분위기를 조성할 수 있는 기체는 상기 반응 챔버내로 1 내지 1000 sccm의 유량으로 공급되는 것을 특징으로 하는 규소 산화물-탄소 복합체의 제조방법.
  4. 청구항 2에 있어서,
    상기 환원 분위기를 조성할 수 있는 기체는 H2, NH3 및 CO로 이루어진 군으로부터 선택되는 1종 이상 또는 이들과 비활성 기체의 혼합기체를 포함하는 것을 특징으로 하는 규소 산화물-탄소 복합체의 제조방법.
  5. 청구항 1에 있어서,
    상기 환원 분위기는 상기 반응 챔버내의 별도의 용기에 구비된 활성탄, 마그네슘, 알루미늄, 탄탈륨, 몰리브덴, 칼슘 및 아연으로 이루어진 군으로부터 선택되는 1종 이상에 의해 형성되는 것을 특징으로 하는 규소 산화물-탄소 복합체의 제조방법.
  6. 청구항 1에 있어서,
    상기 반응온도는 1300 내지 1500 ℃에서 2 내지 4시간 동안 유지되는 것을 특징으로 하는 규소 산화물-탄소 복합체의 제조방법.
  7. 청구항 1에 있어서,
    상기 고진공도는 10-4 내지 10-1 torr인 것을 특징으로 하는 규소 산화물-탄소 복합체의 제조방법.
  8. 청구항 2에 있어서,
    상기 고진공도는 상기 규소 및 이산화규소의 반응이 완료될 때까지 유지되며, 상기 환원 분위기를 조성할 수 있는 기체는 상기 반응 챔버의 일측으로부터 계속적으로 주입되어 반응 챔버의 타측으로부터 계속적으로 제거되는 것을 특징으로 하는 규소 산화물-탄소 복합체의 제조방법.
  9. 청구항 8에 있어서,
    상기 환원 분위기를 조성할 수 있는 기체는 2 부피% 내지 5 부피%의 H2를 포함하는 H2 함유 기체인 것을 특징으로 하는 규소 산화물-탄소 복합체의 제조방법.
  10. 청구항 1에 있어서,
    상기 탄소 코팅은 규소 산화물을 탄소 전구체와 혼합한 후 열처리하는 것을 포함하여 이루어지는 것을 특징으로 하는 규소 산화물-탄소 복합체의 제조방법.
  11. 청구항 10에 있어서,
    상기 탄소 전구체는 핏치(pitch) 또는 탄화수소계 물질인 것을 특징으로 하는 규소 산화물-탄소 복합체의 제조방법.
  12. 청구항 11에 있어서,
    상기 탄화수소계 물질은 푸르푸릴 알코올(furfuryl alcohol), 글루코스, 수크로스, 페놀계 수지, 페놀계 올리고머, 레조시놀계 수지, 레조시놀계 올리고머, 플로로글루시놀계 수지, 플로로글루시놀계 올리고머 및 불포화 탄화수소 가스로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 규소 산화물-탄소 복합체의 제조방법.
  13. 청구항 10에 있어서,
    상기 열처리는 200 ℃ 내지 1000 ℃의 온도 범위에서 수행되는 것을 특징으로 하는 규소 산화물-탄소 복합체의 제조방법.
  14. 규소 산화물 및 상기 규소 산화물 표면에 탄소 코팅층을 포함하며,
    X-선 회절(XRD)에 의해 수득된 데이터 그래프에서 2theta의 15° 내지 40°범위에서의 최대 피크 높이(h1)에 대한 40° 내지 60° 범위에서의 최대 피크 높이(h2)의 비가 0.40≤h2/h1≤1.5인 것을 특징으로 하는 규소 산화물-탄소 복합체.
  15. 청구항 14에 있어서,
    상기 X-선 회절(XRD)에 의해 수득된 데이터 그래프에서 2theta의 15° 내지 40°범위에서의 최대 피크 높이(h1)에 대한 40° 내지 60° 범위에서의 최대 피크 높이(h2)의 비가 0.45≤h2/h1≤0.8인 규소 산화물-탄소 복합체.
  16. 청구항 14에 있어서,
    상기 규소 산화물-탄소 복합체는 비정질인 것을 특징으로 하는 규소 산화물-탄소 복합체.
  17. 청구항 14에 있어서,
    상기 X-선 회절(XRD)에 의해 수득된 데이터 그래프에서 2theta의 15° 내지 40° 범위에서의 최대 피크의 반가폭 (Full Width at Half-Maximum; FWHM)은 7° 내지 15°인 것을 특징으로 하는 규소 산화물-탄소 복합체.
  18. 청구항 14에 있어서,
    상기 X-선 회절(XRD)에 의해 수득된 데이터 그래프에서 2theta의 40° 내지 60° 범위에서의 최대 피크의 반가폭 (Full Width at Half-Maximum; FWHM)은 5° 내지 13°인 것을 특징으로 하는 규소 산화물-탄소 복합체.
  19. 청구항 14에 있어서,
    상기 규소 산화물은 SiOx(0<x<1)인 것을 특징으로 하는 규소 산화물-탄소 복합체.
  20. 청구항 14에 있어서,
    상기 규소 산화물내의 규소는 결정질 또는 비정질인 것을 특징으로 하는 규소 산화물-탄소 복합체.
  21. 청구항 20에 있어서,
    상기 규소가 결정질인 경우 규소의 결정크기는 300 ㎚ 이하인 것을 특징으로 하는 규소 산화물-탄소 복합체.
  22. 청구항 14에 있어서,
    상기 탄소 코팅층의 두께는 5 nm 내지 100 nm인 것을 특징으로 하는 규소 산화물-탄소 복합체.
  23. 청구항 14의 규소 산화물-탄소 복합체를 포함하는 음극 활물질.
  24. 양극 활물질을 포함하는 양극; 분리막; 청구항 23의 음극 활물질을 포함하는 음극; 및 전해질을 포함하는 이차전지.
  25. 청구항 24에 있어서,
    상기 이차전지의 초기효율은 67% 내지 85%인 것을 특징으로 하는 이차전지.
KR1020130122146A 2012-10-16 2013-10-14 규소 산화물―탄소 복합체 및 이의 제조방법 KR101560454B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/KR2013/009212 WO2014061974A1 (ko) 2012-10-16 2013-10-15 규소 산화물-탄소 복합체 및 이의 제조방법
EP13847283.2A EP2762449B1 (en) 2012-10-16 2013-10-15 Method of manufacturing a silicon oxide-carbon composite
CN201380004036.0A CN103974905B (zh) 2012-10-16 2013-10-15 氧化硅-碳复合物及其制备方法
TW102137329A TWI551545B (zh) 2012-10-16 2013-10-16 氧化矽-碳複合材料及其製法
US14/109,611 US10084183B2 (en) 2012-10-16 2013-12-17 Silicon oxide-carbon composite and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120114841 2012-10-16
KR20120114841 2012-10-16

Publications (2)

Publication Number Publication Date
KR20140048822A true KR20140048822A (ko) 2014-04-24
KR101560454B1 KR101560454B1 (ko) 2015-10-15

Family

ID=50654742

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130122146A KR101560454B1 (ko) 2012-10-16 2013-10-14 규소 산화물―탄소 복합체 및 이의 제조방법

Country Status (6)

Country Link
US (1) US10084183B2 (ko)
EP (1) EP2762449B1 (ko)
KR (1) KR101560454B1 (ko)
CN (1) CN103974905B (ko)
TW (1) TWI551545B (ko)
WO (1) WO2014061974A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170036637A (ko) * 2015-09-24 2017-04-03 주식회사 엘지화학 리튬 이차전지용 음극활물질 및 그 제조방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210143418A1 (en) * 2019-11-12 2021-05-13 Enevate Corporation Carbon additives for direct coating of silicon-dominant anodes
KR102104492B1 (ko) * 2016-06-02 2020-04-24 주식회사 엘지화학 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이를 포함하는 리튬이차전지
CN108232145B (zh) * 2017-10-23 2020-09-15 中航锂电(洛阳)有限公司 一种空间缓冲、掺杂锂的硅氧化物复合材料及其制备方法、锂离子电池
CN113213483B (zh) * 2021-04-14 2022-07-19 三峡大学 一种用于锂离子电池负极材料的非晶硅粉制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3852579B2 (ja) * 2001-12-26 2006-11-29 信越化学工業株式会社 金属元素ドープ酸化珪素粉末の製造方法及び製造装置
JP2004063433A (ja) * 2001-12-26 2004-02-26 Shin Etsu Chem Co Ltd 導電性酸化珪素粉末、その製造方法及び該粉末を用いた非水電解質二次電池用負極材
US7432015B2 (en) * 2004-02-25 2008-10-07 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
KR100570651B1 (ko) * 2004-02-25 2006-04-12 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지
US8105718B2 (en) * 2008-03-17 2012-01-31 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
CN101381083B (zh) * 2008-10-22 2010-10-13 昆明理工大学 真空碳热还原制备高纯球形二氧化硅的方法
US8337795B2 (en) * 2009-08-25 2012-12-25 Process Research Ortech Inc. Production of high purity silicon from amorphous silica
JP5379026B2 (ja) * 2010-01-07 2013-12-25 信越化学工業株式会社 非水電解質二次電池負極材用珪素酸化物及び非水電解質二次電池負極材用珪素酸化物の製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
CN103329313B (zh) 2011-02-15 2015-12-02 株式会社Lg化学 制备负极活性材料的方法
KR101201807B1 (ko) * 2011-08-31 2012-11-15 삼성에스디아이 주식회사 리튬 이차 전지
US9139441B2 (en) * 2012-01-19 2015-09-22 Envia Systems, Inc. Porous silicon based anode material formed using metal reduction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170036637A (ko) * 2015-09-24 2017-04-03 주식회사 엘지화학 리튬 이차전지용 음극활물질 및 그 제조방법
US11075369B2 (en) 2015-09-24 2021-07-27 Lg Chem, Ltd. Negative electrode active material for lithium secondary battery and method of preparing the same

Also Published As

Publication number Publication date
US20140106231A1 (en) 2014-04-17
EP2762449A4 (en) 2016-03-09
EP2762449A1 (en) 2014-08-06
CN103974905B (zh) 2016-06-22
CN103974905A (zh) 2014-08-06
US10084183B2 (en) 2018-09-25
EP2762449B1 (en) 2018-08-01
WO2014061974A1 (ko) 2014-04-24
KR101560454B1 (ko) 2015-10-15
TW201429872A (zh) 2014-08-01
TWI551545B (zh) 2016-10-01

Similar Documents

Publication Publication Date Title
KR102293359B1 (ko) 리튬 이차전지용 음극 활물질 및 이의 제조방법
KR101586816B1 (ko) 비수전해질 이차전지용 음극재, 이의 제조방법, 및 이를 포함하는 비수전해질 이차전지
Fang et al. Graphene-oxide-coated LiNi 0.5 Mn 1.5 O 4 as high voltage cathode for lithium ion batteries with high energy density and long cycle life
JP7180532B2 (ja) リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
Zhang et al. Hierarchical hollow microspheres assembled from N-doped carbon coated Li 4 Ti 5 O 12 nanosheets with enhanced lithium storage properties
KR101971498B1 (ko) 리튬 이차전지용 음극활물질 및 그 제조방법
KR101563788B1 (ko) 규소 산화물 및 이의 제조방법
WO2015182116A1 (ja) ナノシリコン材料とその製造方法及び二次電池の負極
KR101560454B1 (ko) 규소 산화물―탄소 복합체 및 이의 제조방법
KR20160085998A (ko) 이차전지 음극물질로 유용한 Si/C/CNT 복합소재의 제조방법
US10164255B2 (en) Silicon material and negative electrode of secondary battery
KR101539856B1 (ko) 규소 산화물의 제조방법
KR20140070162A (ko) 리튬 이차전지용 고용량 음극 활물질, 이의 제조 방법 및 이를 포함한 리튬이차전지
KR101627396B1 (ko) 이차전지의 음극 활물질용 규소 산화물
EP3150554B1 (en) Negative electrode of a secondary battery composed of a silicon material
Zhu et al. A layered/spinel heterostructured cathode for Li-ion batteries prepared by ultrafast Joule heating
KR102635060B1 (ko) 음극 활물질, 음극 및 이차 전지
WO2024004902A1 (ja) Liイオン二次電池用正極活物質及びその製造方法
KR101721332B1 (ko) 리튬 이온 전지용 양극 활물질 및 이의 제조 방법
KR20230165525A (ko) 황화물계 고체전해질의 제조방법, 황화물계 고체전해질, 고체 전해질막 및 전고체 전지
KR20240044921A (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 이의 제조방법
KR20240092338A (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 이의 제조방법
KR20230169021A (ko) 음극 활물질, 음극 및 이차 전지
KR20240046066A (ko) 양극재, 양극 및 이차전지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181002

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191001

Year of fee payment: 5