WO2024004902A1 - Liイオン二次電池用正極活物質及びその製造方法 - Google Patents

Liイオン二次電池用正極活物質及びその製造方法 Download PDF

Info

Publication number
WO2024004902A1
WO2024004902A1 PCT/JP2023/023469 JP2023023469W WO2024004902A1 WO 2024004902 A1 WO2024004902 A1 WO 2024004902A1 JP 2023023469 W JP2023023469 W JP 2023023469W WO 2024004902 A1 WO2024004902 A1 WO 2024004902A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode active
active material
ruo
composite oxide
Prior art date
Application number
PCT/JP2023/023469
Other languages
English (en)
French (fr)
Inventor
泰 政広
直明 藪内
Original Assignee
田中貴金属工業株式会社
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社, 国立大学法人横浜国立大学 filed Critical 田中貴金属工業株式会社
Publication of WO2024004902A1 publication Critical patent/WO2024004902A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for Li-ion secondary batteries and a method for manufacturing the same. Specifically, the present invention relates to a positive electrode active material containing Li 2 RuO 3 which is a Li-excessive transition metal composite oxide, and which has high recyclability and high durability.
  • a Li (lithium) ion secondary battery has a higher energy density than secondary batteries such as a nickel-hydrogen storage battery or a nickel-cadmium storage battery, and can be easily made smaller and lighter. For this reason, the scope of use of Li-ion secondary batteries is expanding, including small batteries used in portable electronic devices, and in-vehicle batteries such as hybrid vehicles (HV, PHV) and electric vehicles (EV). There is.
  • secondary batteries such as a nickel-hydrogen storage battery or a nickel-cadmium storage battery
  • Li-ion secondary batteries One of the factors that influences the battery characteristics of Li-ion secondary batteries is the positive electrode active material that is responsible for the electrochemical reaction of the positive electrode.
  • a Li transition metal composite oxide represented by LiMeO 2 (Me: a metal element such as Co, Ni, Mn, etc.) has been the mainstream so far.
  • LiMeO 2 Li transition metal composite oxide represented by LiMeO 2
  • LiMnO 3 -LiMO 2 Li transition metal composite oxides
  • Patent Document 1 Li transition metal composite oxides such as 2MnO 3 -LiMO 2 (M: a metal element such as Co, Ni, Mn, etc.) is being considered (Patent Document 1, etc.).
  • Li-excess type Li-excess type
  • a Li 2 RuO 3 composite oxide containing Ru (ruthenium) as a constituent element is considered to be promising.
  • Ru is a metal element with high electronic conductivity, and causes reversible oxygen anion redox through electron transfer. Since this anion redox acts as charge compensation, it cooperates with charge compensation due to a change in the valence of Ru ions (Ru 4+ ⁇ Ru 5+ ) and contributes to high capacity as a positive electrode active material.
  • the advantageous characteristics of the Li 2 RuO 3 composite oxide include high cycle performance in which capacity deterioration due to increased charge/discharge cycles is suppressed.
  • a charge/discharge cycle of a positive electrode active material made of a Li transition metal composite oxide is achieved by repeating desorption and insertion of Li ions from the composite oxide.
  • the crystal structure may collapse due to the desorption of oxygen, resulting in a decrease in battery performance. This collapse of the crystal structure leads to a decrease in cycleability.
  • Ru clearly has stronger covalent bonding properties than Ni, Co, and the like. Therefore, in the Li 2 RuO 3 composite oxide, oxygen desorption is difficult to proceed due to the strong covalent bond between Ru ions and oxide ions. This makes it difficult for oxygen desorption, which occurs in Li transition metal composite oxides composed of Mn and the like, to occur.
  • Non-Patent Document 2 also points out the movement (migration) of Ru ions during charging and discharging as a factor for the high cycleability of Li 2 RuO 3 composite oxide.
  • the Li 2 RuO 3 composite oxide to which Ru is applied as the transition metal is expected to be a positive electrode active material that can achieve not only a high capacity but also a high energy density due to high cycleability.
  • the mechanism by which the above-mentioned favorable characteristics are exhibited has not been fully elucidated.
  • the structure and manufacturing process of Li 2 RuO 3 composite oxide to fully exhibit its characteristics have not been established.
  • the present invention was made against the above background, and relates to a positive electrode active material containing Li 2 RuO 3 as a Li transition metal composite oxide, which can exhibit suitable charge/discharge capacity and high cycle performance.
  • the purpose is to clarify the composition and manufacturing process.
  • the present invention relates to a positive electrode active material for Li ion secondary batteries that has a Li 2 RuO 3 composite oxide as a main component.
  • Li 2 RuO 3 is a composite oxide having a layered rock salt crystal structure (O3 layered rock salt crystal structure).
  • the O3 type layered rock salt crystal structure has a crystal structure consisting of regularly continuous layers such as O layer - Ru layer - O layer - Li layer - O layer - Ru layer - O layer, and Li is easily moved between the layers. It has a structure suitable as a positive electrode active material in which ions are present.
  • Li 2 RuO 3 composite oxide In order for the Li 2 RuO 3 composite oxide to exhibit its properties as expected, it is necessary to form a composite oxide that forms the above-mentioned regular layer structure over a wide range.
  • the present inventors have diligently studied methods for synthesizing Li 2 RuO 3 composite oxide, and as a result, have discovered a Li 2 RuO 3 composite oxide with suitable characteristics.
  • the present inventors discovered that this Li 2 RuO 3 composite oxide has a unique tendency in its X-ray diffraction pattern when it is fully charged for the first time from the state after manufacture.
  • a positive electrode active material for a Li ion secondary battery comprising a Li 2 RuO 3 composite oxide having a layered rock salt type crystal structure, wherein the Li 2 RuO 3 composite oxide satisfies the following conditions.
  • a positive electrode active material for a Li-ion secondary battery is characterized by comprising (i) and (ii).
  • ii) During initial full charging After full charging, 20% or more and 50% or less of the Ru ions constituting the Li 2 RuO 3 composite oxide have moved to Li ion sites.
  • the positive electrode active material for Li-ion secondary batteries according to the present invention has a diffraction peak of the (003) plane of the ilmenite structure in the X-ray diffraction pattern after the first full charge. It is expressed and maintains a layered structure.
  • the positive electrode active material for a Li ion secondary battery made of the Li 2 RuO 3 composite oxide according to the present invention further satisfies the following condition (iii).
  • the crystal structure before the first full charge is a layered rock salt type crystal structure, and the diffraction peak of the (002) plane appears in the X-ray diffraction pattern at that time.
  • the crystal structure When 1 mol of Li ions are desorbed by initial charging, the crystal structure includes an ilmenite structure, and the X-ray diffraction pattern at that time shows the diffraction peak of the (002) plane, and Diffraction peak of Cu The peak position (2 ⁇ ) of the K ⁇ rays is shifted by 1° or less with respect to the peak position (2 ⁇ ) of the (002) plane before the first full charge.
  • the distance between Ru ions that have moved after the first full charge is 0.7 ⁇ or more and 1.3 ⁇ or less.
  • the ratio (I 113 /I 110 ) of the diffraction intensity I 113 of the (113) plane to the diffraction intensity I 110 of the (110) plane in the X-ray diffraction pattern after the first full charge is 0.5. It is preferable that the value is 1.0 or less.
  • the present invention also provides a method for producing the above-described positive electrode active material for Li-ion secondary batteries.
  • This method for producing a positive electrode active material includes a mixing step of mixing a Li compound and a Ru compound to produce a precursor material, and a baking step of heating and baking the precursor material to form a Li 2 RuO 3 composite oxide.
  • the mixing step the Li compound and the Ru compound are mixed until both the coefficient of variation CV O of the O concentration and the coefficient of variation CV Ru of the Ru concentration become 10% or less when a plurality of arbitrary locations of the precursor are analyzed for composition.
  • the firing step is a step of heating the precursor at a temperature of 700° C. or more and 1000° C. or less.
  • the present invention is a positive electrode active material for Li ion secondary batteries, which is made of a Li 2 RuO 3 composite oxide.
  • the Li 2 RuO 3 composite oxide of the present invention causes appropriate migration of Ru ions during the charging and discharging process, suppresses structural collapse due to oxygen desorption, etc., and has excellent cyclability.
  • FIG. 3 is a diagram showing a constant current charge/discharge curve (first cycle) of a Li 2 RuO 3 composite oxide according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an XRD diffraction pattern (Cu K ⁇ ray) of a Li 2 RuO 3 composite oxide according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing the results of in-situ X-ray diffraction analysis performed on the Li 2 RuO 3 composite oxide of the embodiment of the present invention.
  • FIG. 3 is a diagram showing synchrotron radiation XRD diffraction patterns at each stage of initial full charging of the Li 2 RuO 3 composite oxide according to the embodiment of the present invention.
  • FIG. 2 is a model diagram illustrating a phase change from a host state to a 1 mol desorption state of the Li 2 RuO 3 composite oxide according to an embodiment of the present invention.
  • FIG. 2 is a model diagram illustrating vacancy positions in a 2 mol desorption state (after full charge) of the Li 2 RuO 3 composite oxide of the embodiment of the present invention.
  • FIG. 3 is a diagram showing simulation results of a diffraction pattern in a 2 mol desorption state of the Li 2 RuO 3 composite oxide according to the embodiment of the present invention.
  • FIG. 2 is a model diagram illustrating a structural change due to the movement of Ru ions in a 2 mol desorption state of the Li 2 RuO 3 composite oxide according to the embodiment of the present invention.
  • FIG. 3 is a model diagram explaining the mode of movement of Ru ions in a 2 mol desorption state.
  • FIG. 3 is a model diagram illustrating changes in the crystal structure of the Li 2 RuO 3 composite oxide of the present invention at each stage of initial full charging.
  • FIG. 3 is a diagram showing XRD diffraction patterns (Cu K ⁇ rays) of Li 2 RuO 3 composite oxides of Examples 1 and 2.
  • FIG. 3 is a diagram showing constant current charge/discharge curves (room temperature) of Li 2 RuO 3 composite oxides of Examples 1 and 2.
  • 2 is a graph showing the relationship between the number of charge/discharge cycles and the discharge capacity of the Li 2 RuO 3 composite oxides of Examples 1 and 2.
  • 3 is a diagram showing a constant current charge/discharge curve (50° C.) of the Li 2 RuO 3 composite oxide of Example 2.
  • FIG. 3 is a graph showing the relationship between the discharge capacity and energy density with respect to the number of charge/discharge cycles of the Li 2 RuO 3 composite oxide of Example 2.
  • FIG. 3 is a diagram showing constant current charge/discharge curves (room temperature) of Li 2 RuO 3 composite oxides of Comparative Examples 1 and 2.
  • FIG. 3 is a diagram showing a synchrotron radiation XRD diffraction pattern of the Li 2 RuO 3 composite oxide of Comparative Example 1 after the first full charge.
  • the potential increases around the voltage of 4.0 V at the time of initial charging, and a potential plateau is observed around the voltage of 4.2 V.
  • the former potential rise around 4.0 V indicates desorption of 1 mol of Li ions, and the latter potential flatness is considered to be due to anion redox.
  • the state of the positive electrode active material made of Li 2 RuO 3 composite oxide is determined by (i) charging with reference to FIG. It is divided into four stages: before discharge (positive electrode active material after manufacturing), (ii) initial charging, (iii) when 1 mol of Li ions are desorbed, and (iv) after the first full charge.
  • the structure was analyzed by in-situ X-ray diffraction analysis and synchrotron radiation X-ray diffraction analysis.
  • the Li 2 RuO 3 composite oxide of the present invention has Nevertheless, it shows that the change in the interlayer distance is small.As will be described later, the interlayer distance changes when 1 mol of Li is further desorbed from this state in which 1 mol of Li has been desorbed (i.e., after full charge). There is very little change in distance.
  • the positive electrode active material according to the present invention exhibits high characteristics is that the interlayer distance is maintained even when Li is desorbed.
  • the crystal structure of the positive electrode active material changes from around a voltage of 4.0 V at which 1 mol of Li is desorbed (FIG. 4 (iii)).
  • the positive electrode active material (LiRuO 3 composite oxide) from which 1 mol of Li has been desorbed a peak of Li 2 RuO 3 with an O3 type structure is partially observed, and a diffraction peak (14°) belonging to an O1 type structure is observed. (110) peak near 16°, (113) peak near 21°, and (116) peak near 21°) were observed. Furthermore, a (003) peak indicating a layered structure was observed.
  • the positive electrode active material (LiRuO 3 composite oxide) from which 1 mol of Li has been desorbed may be referred to as a "1 mol desorbed state.”
  • the crystal structure of the positive electrode active material in the 2 mol desorption state in which Li is completely desorbed is analyzed.
  • the arrangement of cations (Ru) in a normal ilmenite-type O1 stacked structure is such that the vacancy positions all occupy different sites as 1 ⁇ 2 ⁇ 3 ⁇ 1 ⁇ 2 ⁇ 3... It has become.
  • a diffraction pattern simulated based on this hole model is shown in the middle part of FIG.
  • the main peak of the diffraction pattern based on the hole model shown in the upper part of FIG. 7 matches the actually measured diffraction pattern, it cannot reproduce the diffraction peaks of the superlattice structure that should appear around 7° and around 13°.
  • the upper limit of the Ru ion migration rate is assumed to be 50% or less. From these, it is considered that in the positive electrode active material of the present invention, Ru ion migration occurs at a migration rate of 20% or more and 50% or less when fully charged.
  • FIG. 13 shows a summary of changes in the crystal structure of RuO 3 ) at each stage before charging (host state), during the charging process (1 mol desorption state), and after full charge (2 mol desorption state).
  • the positive electrode active material of the present invention has an O3 type structure (rock salt type layered structure) before the first charge (after manufacture), and changes to an ilmenite type O1 type layered structure at the stage when 1 mol of Li ions are desorbed from the start of charging. Become. Then, due to the initial full charge, 1 mol of Li ions is further desorbed, causing migration of Ru ions. This migration of Ru ions suppresses the reduction in the interlayer distance and suppresses the collapse of the crystal structure due to oxygen desorption. The fact that the battery exhibits an ilmenite structure after the first full charge is confirmed by the appearance of a (003) peak in its X-ray diffraction pattern.
  • the Li 2 RuO 3 composite oxide which is the positive electrode active material of the present invention
  • the Li 2 RuO 3 composite oxide of the present invention includes an ilmenite structure as a crystal structure in a 1 mol desorption state, and also exhibits the (002) peak of the O3 structure.
  • This (002) peak is shifted by 1° or less (Cu K ⁇ line) with respect to the peak position (2 ⁇ ) of the (002) peak before the first charge.
  • the above-mentioned condition (iii) becomes clear as a preferable condition.
  • the reduction width of the interlayer distance based on this peak shift of 1° or less is preferably 0.23 ⁇ or more and 0.25 ⁇ or less.
  • the interlayer distance maintained by the movement of Ru ions as described above is preferably 4.55 ⁇ or more and 4.60 ⁇ or less.
  • the Li 2 RuO 3 composite oxide, which is the positive electrode active material according to the present invention can maintain a wider interlayer distance than LiCoO 2 , which has been known as a positive electrode active material for Li-ion secondary batteries. , which is considered to be associated with favorable properties.
  • the average particle diameter of the Li 2 RuO 3 composite oxide is 0.
  • the thickness is preferably 1 ⁇ m or more and 30 ⁇ m or less. Since a fine positive electrode active material with a diameter of less than 0.1 ⁇ m has an excessively large surface area, it is necessary to increase the amount of a binder when forming an electrode.
  • the binder is a material that binds the positive electrode active material particles to each other or the positive electrode active material particles and the conductive material.
  • the particle size of the positive electrode active material is preferably 0.1 ⁇ m or more.
  • the resistance component of particle bulk resistance and interparticle resistance becomes large due to an increase in particle size and a decrease in surface area.
  • the discharge capacity and the capacity retention rate due to charge/discharge cycles decrease, so it is preferable to use a positive electrode active material with a thickness of 30 ⁇ m or less.
  • the average particle size of the positive electrode active material is 0.5 ⁇ m or more.
  • the Li 2 RuO 3 composite oxide applied in the present invention has a basic process similar to the known manufacturing process of Li 2 RuO 3 composite oxide.
  • a preferred method for producing the Li 2 RuO 3 composite oxide includes a method of producing a precursor by mixing a Li compound and a Ru compound, and producing a composite oxide by heating and baking the precursor at a high temperature.
  • the Li 2 RuO 3 composite oxide according to the present invention is required to have an appropriate layered crystal structure in order to exhibit the above-mentioned structural stability when charged and discharged as a positive electrode active material.
  • the method for producing a positive electrode active material according to the present invention includes a mixing step of mixing a Li compound and a Ru compound to produce a precursor, and heating and baking the precursor to produce a Li 2 RuO 3 composite oxide.
  • the mixing step includes a firing step, and the mixing step includes adding Li until both the coefficient of variation CV O of the O concentration and the coefficient of variation CV Ru of the Ru concentration become 10% or less when the composition of arbitrary plural locations of the precursor material is analyzed.
  • This is a step of mixing a compound and a Ru compound
  • the firing step is a step of heating the precursor at a temperature of 700° C. or more and 1000° C. or less.
  • Li compounds include Li carbonate, Li acetate, Li nitrate, Li hydroxide, Li chloride, Li sulfate, Li oxide, and the like. Among these, Li carbonate and Li oxide are preferred in consideration of stability and cost.
  • Ru compound Ru carbonate, Ru hydroxide, Ru oxyhydroxide, Ru acetate, Ru citric acid, Ru oxide, etc. can be used. For reasons of cost and stability, it is preferable to use an oxide as the Ru compound.
  • both a non-hydrate (RuO 2 ) and a hydrate (RuO 2 .nH 2 O) can be used as the Ru oxide.
  • pulverization and mixing can be performed as necessary.
  • a powdered raw material compound if the particle size is large (15 ⁇ m or more), pulverization is performed to ensure uniformity of the precursor.
  • a pulverizing device such as a ball mill, jet mill, rod mill, or sand mill can be used.
  • the pulverization may be carried out by either dry pulverization or wet pulverization.
  • wet pulverization is carried out using water or an organic solvent as a dispersion medium.
  • the precursor material after the mixing step may be subjected to granulation, pelletizing, etc., if necessary.
  • the composition uniformity of the precursor material consisting of a mixture of Li compound and Ru compound in the above mixing step. required.
  • Specific indicators of this compositional uniformity include the coefficient of variation of oxygen concentration CV O and the coefficient of variation of Ru concentration CV Ru Both must be 10% or less.
  • the present invention requires that both CV O and CV Ru be 10% or less. When at least one of CV 2 O and CV Ru exceeds 10%, the composition uniformity of the precursor is insufficient, making it difficult to obtain a suitable positive electrode active material according to the present invention.
  • composition analysis of the precursor can be performed using various analytical methods such as electron probe microanalysis (EPMA), energy dispersive X-ray analysis (EDX), fluorescent X-ray analysis (FRX), and X-ray photoelectron spectroscopy (XPS). is applicable, and the concentrations of O and Ru are analyzed using a scheme according to each analysis method. Furthermore, when a plurality of arbitrary locations of the precursor are analyzed, it is preferable to set five or more locations for analysis.
  • EPMA electron probe microanalysis
  • EDX energy dispersive X-ray analysis
  • FRX fluorescent X-ray analysis
  • XPS X-ray photoelectron spectroscopy
  • a Li 2 RuO 3 composite oxide which becomes the positive electrode active material of the present invention, is produced.
  • the heating temperature in the firing step is 700°C or more and 1000°C or less. At temperatures below 700°C, solid phase reactions for producing composite oxides are difficult to proceed. Moreover, when the temperature exceeds 1000° C., synthesis of Li 2 RuO 3 composite oxide is possible, but the positive electrode active material may have poor cycleability.
  • This heating temperature is more preferably 800°C or more and 1000°C or less.
  • the heat treatment time is preferably 1 hour or more and 48 hours or less.
  • heating means for the firing step general heat treatment equipment such as a fixed furnace such as an electric furnace or a batch furnace, a rotary furnace such as a rotary kiln, or a continuous furnace such as a roller hearth kiln can be used.
  • a fixed furnace such as an electric furnace or a batch furnace
  • a rotary furnace such as a rotary kiln
  • a continuous furnace such as a roller hearth kiln
  • This firing step may be performed in the air or in a non-oxidizing atmosphere. However, if fired in a non-oxidizing atmosphere, stacking faults may be introduced into the Li 2 RuO 3 composite oxide depending on temperature conditions and the like. Therefore, the preferred atmosphere for the firing step is air or an oxygen-containing atmosphere.
  • a positive electrode active material containing the Li 2 RuO 3 composite oxide can be manufactured.
  • This Li transition metal composite oxide may be washed with deionized water and dried as appropriate. Further, in order to make the manufactured positive electrode active material into powder with a suitable particle size for use as a positive electrode of a Li secondary battery, post-treatment such as crushing and classification of the Li 2 RuO 3 composite oxide may be performed.
  • the positive electrode active material according to the present invention has the same configuration as a general Li-ion secondary battery, It can be used as a positive electrode for a Li-ion secondary battery and a Li-ion secondary battery.
  • a positive electrode for a Li-ion secondary battery is composed of components such as a conductive material and a binder in addition to the positive electrode active material according to the present invention.
  • the conductive material include carbon powders such as graphite, acetylene black, and furnace black, and one or more conductive materials such as carbon whiskers, carbon fibers, metal powders, metal fibers, and conductive ceramic materials.
  • the binder include one or two of polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyethylene, polypropylene polyhexafluoropropylene, styrene-butadiene rubber, polyacrylonitrile, modified polyacrylonitrile, etc. There are more than one species.
  • the positive electrode is prepared by mixing each of these components with a solvent such as N-methylpyrrolidone, toluene, and water to prepare an electrode mixture, and applying the electrode mixture to a current collector (substrate) such as aluminum foil to form an electrode. It is manufactured by forming a mixture layer and then pressure-molding an electrode mixture layer.
  • a solvent such as N-methylpyrrolidone, toluene, and water
  • a current collector substrate
  • It is manufactured by forming a mixture layer and then pressure-molding an electrode mixture layer.
  • the Li ion secondary battery is constructed with the positive electrode containing the above-described positive electrode active material of the present invention, a negative electrode, an electrolyte, and a separator as main elements.
  • the negative electrode is composed of components such as a negative electrode active material, a conductive material, and a binder.
  • a negative electrode active material known materials such as carbon materials such as graphite and hard carbon, titanium-based materials such as Li titanate, and silicon-based materials such as silicon oxide can be used.
  • the negative electrode active material is not particularly limited as long as it has a material and form that can absorb and release Li ions during charging and discharging. Further, other components constituting the negative electrode (negative electrode active material, conductive material, binder, etc.) can be the same as those of the positive electrode.
  • the manufacturing process for the negative electrode is also similar to that for the positive electrode.
  • the electrolytic solution is composed of an electrolyte and a solvent, and the electrolyte includes LiPF 6 (lithium hexafluorophosphate), LiFSA (LiFSI: lithium bis(fluorosulfonyl)amide), and LiTFSI (lithium bis(trifluoromethanesulfonyl)imide). , LiClO 4 (lithium perchlorate), LiBF 4 (lithium tetrafluoroborate), etc. can be applied.
  • LiPF 6 lithium hexafluorophosphate
  • LiFSA LiFSI: lithium bis(fluorosulfonyl)amide
  • LiTFSI lithium bis(trifluoromethanesulfonyl)imide
  • LiClO 4 lithium perchlorate
  • LiBF 4 lithium tetrafluoroborate
  • examples of the solvent include EC (ethylene carbonate), PC (propylene carbonate), DMC (dimethyl carbonate), EMC (ethyl methyl carbonate), DEC (diethyl carbonate), TMP (trimethyl phosphate), etc.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • TMP trimethyl phosphate
  • Li-ion secondary battery other components of the Li-ion secondary battery include separators, terminals, insulating plates, battery cases (battery cans, battery lids), etc., but commonly used parts can be used for these parts. It is.
  • the manufacturing process of the positive electrode active material according to the above-described embodiment, and the evaluation results of the electrical characteristics and recyclability of a Li-ion secondary battery using the positive electrode active material will be described.
  • a precursor was prepared by mixing Li carbonate (Li 2 CO 3 ) powder and Ru oxide (hydrate: RuO 2 .nH 2 O) powder. In this example, only the Li carbonate powder is mixed in an amount 3% larger than the theoretical mass.
  • the precursor was produced by pulverizing and mixing using a pestle and mortar for 10 minutes. In this example, five observation areas for compositional analysis by SEM-EDX were arbitrarily set, and the composition analysis was performed over the entire field of view of each observation area.
  • FIG. 14 is a SEM image of the precursor material of this example.
  • both the coefficients of variation of O concentration and Ru concentration are 10% or less.
  • the precursor produced by the above mixing step was compressed into pellets. Then, the pellet-shaped precursor was fired to produce a Li 2 RuO 3 composite oxide.
  • the heating conditions for the firing step were as follows: heating in the air at a temperature increase rate of 10° C./min until the temperature reached 900° C., and after reaching 900° C., heating was maintained for 12 hours. After heating for 12 hours, it was cooled to room temperature in a furnace and the Li 2 RuO 3 composite oxide was taken out.
  • FIG. 15 is a SEM image of these Li 2 RuO 3 composite oxides.
  • Composite oxides with different particle sizes can be produced depending on the firing conditions, and when the firing conditions are 950° C. in the air for 24 hours, a Li 2 RuO 3 composite oxide with an average size of 2 ⁇ m is obtained (Example 1).
  • the firing conditions were 1000° C. in the air for 24 hours, a Li 2 RuO 3 composite oxide with an average thickness of 5 ⁇ m was synthesized (Example 2).
  • FIG. 16 shows the X-ray diffraction patterns (X-ray source: Cu K ⁇ ray) of the Li 2 RuO 3 composite oxides of Examples 1 and 2.
  • X-ray source Cu K ⁇ ray
  • the Li 2 RuO 3 composite oxides of Examples 1 and 2 have different particle sizes, there is no large difference in peak position and peak intensity, and both are diffraction patterns of a single phase of Li 2 RuO 3 originating from an O3 type structure. It showed a pattern.
  • a constant current charge/discharge curve was measured for the positive electrode active material of this example, and the electrochemical characteristics were evaluated.
  • the positive electrode was subjected to carbon composite treatment by mixing the positive electrode active material (AM) of this example, a conductive material (acetylene black: AB), and a binder (polyvinylidene fluoride: PVDF). using something.
  • the configuration of the test equipment is as follows.
  • ⁇ Cell type Bipolar electrochemical cell (TJ-AC: manufactured by Nippon Tomcell Co., Ltd.)
  • ⁇ Counter electrode Lithium metal
  • ⁇ Separator Polyolefin porous membrane (Celgard 2500) + glass filter (GB-100R)
  • ⁇ Electrolyte 1M-LiPF 6
  • the discharge capacity was measured at room temperature with a voltage range of 2.2 V to 4.6 V and a current density of 30 mA/cm 2 at the first charge. Then, charging and discharging were performed for 5 cycles, 15 cycles, and 30 cycles, and the potential-capacity curve was measured.
  • FIG. 17 shows a constant current charge/discharge curve of the positive electrode active material (Li 2 RuO 3 composite oxide) of the present example (Examples 1 and 2).
  • FIG. 18 shows a graph showing the relationship between the number of cycles and the discharge capacity obtained from the results of the constant current charge/discharge test.
  • the positive electrode active materials of Examples 1 and 2 have initial discharge capacities exceeding 225 mAhg ⁇ 1 and exhibit sufficient capacity. It can also be said that the capacity retention rate is at a high level.
  • Example 1 which has a relatively small particle size, exhibits a high initial discharge capacity exceeding 250 mAhg ⁇ 1 .
  • Example 2 which had a larger particle size, was lower than that of Example 1, it was confirmed that the capacity did not deteriorate at all up to 30 cycles and had excellent cycle characteristics. It can be said that the Li 2 RuO 3 composite oxide of the present invention exhibits sufficient discharge capacity and cycleability, although there are some differences in tendency depending on the particle size.
  • FIG. 19 shows the results of the galvanostatic charge-discharge curve of Li 1.2 Ni 0.13 Co 0.13 Mn 0.54 O 2 , which is a Mn-based lithium-excess positive electrode active material, measured under the same conditions. There is.
  • FIG. 20 also shows the cyclability of the Ni-based positive electrode active material LiNi 0.815 Co 0.15 Al 0.035 O 2 measured under the same conditions. The results are shown below.
  • the positive electrode active material of this example exhibits a high capacity approaching the theoretical capacity based on lithium under a high temperature condition of 50°C. Furthermore, the positive electrode active material of this example shows no capacity deterioration even after 100 cycles of charging and discharging, indicating that it exhibits extremely excellent recyclability.
  • the Mn-based lithium-excess positive electrode active material Li 1.2 Ni 0.13 Co 0.13 Mn 0.54 O 2 ) has the highest energy density at the first full charge, but the increase in the number of cycles It is not possible to avoid a decrease in the emitted energy density due to .
  • Ni-based positive electrode active material (LiNi 0.815 Co 0.15 Al 0.035 O 2 ) is a positive electrode active material for Li-ion secondary batteries that has already been put into practical use. It can be seen that this conventional positive electrode active material is significantly inferior to the positive electrode active material of this example in terms of initial discharge capacity and cyclability at 50°C.
  • LiNi-based LiNiO 2 etc.
  • oxygen elimination NiO formation occurs at 250°C to 300°C.
  • the Li 2 RuO 3 composite oxide of this example has a decomposition temperature 200° C. or more higher than that of the LiNi-based oxide, and can be said to be a cathode active material with extremely high thermal stability and durability.
  • the positive electrode active material made of the Li 2 RuO 3 composite oxide according to the present invention has a suitable discharge capacity and high cyclability even at high temperatures.
  • the reason why such excellent characteristics are exhibited is that, as mentioned above, the Li 2 RuO 3 composite oxide according to the present invention is capable of producing Ru ions even when 2 mol of Li is desorbed during the charging process. This is thought to be due to the fact that the decrease in interlayer distance is suppressed while maintaining the layered structure due to appropriate movement of , and collapse due to desorption of oxygen ions is suppressed.
  • the following positive electrode active material was manufactured and its electrochemical properties were measured.
  • Comparative Example 1 A precursor was produced by mixing the same Li carbonate powder and Ru oxide powder as in the example. In this comparative example, the same pestle and mortar as in the example were used in the mixing step, and the grinding and mixing time was set to 1 minute. The composition of the produced precursor was analyzed by SEM-EDX in the same manner as in the examples. The average value (A O , A Ru ) and standard deviation ( ⁇ O , ⁇ Ru ) of the oxygen concentration of the precursor and the coefficient of variation of the O concentration and Ru concentration (CV O , CV Ru ) obtained from the results of composition analysis. are shown in Table 2.
  • the precursor of Comparative Example 1 had both CV O and CV Ru exceeding 10%. Then, this precursor material was fired in the same manner as in Example 1 to produce a Li 2 RuO 3 composite oxide that would become the positive electrode active material of Comparative Example 1.
  • Comparative Example 2 Using the same raw materials and mixing conditions as in the example, a precursor containing 10% or less of both CV O and CV Ru was produced. This precursor material was heated in the air at 1050° C. for 24 hours to produce a Li 2 RuO 3 composite oxide that would become the positive electrode active material of Comparative Example 1.
  • the positive electrode active material of Comparative Example 1 has an initial discharge capacity of less than 225 mAhg ⁇ 1 , which is lower than that of the positive electrode active material of the example of the present application.
  • both CV O and CV Ru were over 10% in the precursor material before firing to produce the Li 2 RuO 3 composite oxide, but the uniformity of this composition was poor. This is considered to be the result of
  • Comparative Example 2 is a Li 2 RuO 3 composite oxide manufactured at a firing temperature of over 1000°C.
  • the positive electrode active material of Comparative Example 2 has a lower initial discharge capacity than Comparative Example 1, and is also inferior in cycle characteristics.
  • FIG. 23 is a diffraction pattern of the positive electrode active material (Li 2 RuO 3 composite oxide) of Comparative Example 1 obtained by synchrotron radiation XRD after the first full charge.
  • the Li 2 RuO 3 composite oxide of Comparative Example 1 has an O1 type structure after being fully charged, which is similar to the present invention.
  • the intensity (I 110 ) of the ( 110 ) peak is lower than the intensity (I 113 ) of the ( 113 ) peak (I 113 /I 110 >1.0), which is the opposite of the present invention.
  • FIG. 10 which examines the migration rate of Ru ions
  • the relationship between the peak intensities of (110) and (113) observed in Comparative Example 1 indicates that the migration rate of Ru ions is 0% or less than 20%. It suggests.
  • Li 2 RuO 3 has excellent cyclability due to structural changes during charging and discharging.
  • the positive electrode active material according to the present invention can suitably be used as a positive electrode of a Li-ion secondary battery, and can be widely used in various small batteries, household power sources, vehicle batteries, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明は、層状岩塩型結晶構造を有するLi2RuO3複合酸化物からなるLiイオン二次電池用正極活物質に関する。本発明で適用されるLi2RuO3複合酸化物は、(i)初回満充電後のX線回折パターンに、イルメナイト型構造の(003)面の回折ピークが発現すること、(ii)初回満充電後において前記Li2RuO3複合酸化物を構成するRuイオンの20%以上50%以下のRuイオンがLiイオンサイトへ移動すること、の2つの条件を具備する。前記のRuイオンの好適な移動が層間距離の維持に寄与し、高サイクル性を発揮させる。このRuイオンの移動は、初回充電過程における各段階のX線回折パターンに基づく結晶構造解析から明らかにされた。

Description

Liイオン二次電池用正極活物質及びその製造方法
 本発明は、Liイオン二次電池用の正極活物質及びその製造方法に関する。詳しくは、Li過剰型遷移金属複合酸化物であるLiRuOを含む正極活物質であって、高リサイクル性及び高耐久性を有するものに関する。
 Li(リチウム)イオン二次電池は、ニッケル・水素蓄電池や、ニッケル・カドミウム蓄電池等の二次電池に対してエネルギー密度が高く、小型・軽量化が容易である。このことから、Liイオン二次電池は、携帯電子機器等で使用される小型バッテリーや、ハイブリッド車(HV、PHV)、電気自動車(EV)等の車載用バッテリー等、その利用範囲が拡大している。
 Liイオン二次電池の電池特性を左右する要素の一つが、正極の電気化学反応を担う正極活物質である。Liイオン二次電池の正極に含まれる正極活物質としては、LiMeO(Me:Co、Ni、Mn等の金属元素)で表わされるLi遷移金属複合酸化物がこれまで主流であった。そして、近年においては、携帯型電子機器等や車載用のLiイオン二次電池に対し、更なる小型・軽量化の要求や放電容量増大の要求があることから、Liの含有率を高めたLiMnO-LiMO(M:Co、Ni、Mn等の金属元素)等のLi遷移金属複合酸化物の利用が検討されている(特許文献1等)。そして、Liイオン二次電池の更なる放電容量の増大のため、Li遷移金属複合酸化物を構成する遷移金属の改良も提案されている。尚、このようなLi含有率が高いLi遷移金属複合酸化物は、「Li過剰型」と称されることがある。
 このLi過剰型の遷移金属複合酸化物の一つとして、Ru(ルテニウム)を構成元素とするLiRuO複合酸化物が有望視されている。Ruは、高電子伝導性を有する金属元素であり、電子授受によって可逆的な酸素のアニオンレドックスを発現させる。このアニオンレドックスは電荷補償として作用することから、Ruイオンの価数変化(Ru4+→Ru5+)による電荷補償と協働して正極活物質としての高容量化に寄与している。
 また、LiRuO複合酸化物が優位となる特性として、充放電サイクルの増大による容量劣化が抑制され高いサイクル性能が挙げられる。Li遷移金属複合酸化物からなる正極活物質の充放電サイクルは、複合酸化物からのLiイオンの脱離・挿入の反復によって達成される。しかし、充電時のLiイオンの脱離の際に、酸素の脱離による結晶構造の崩壊が生じ電池性能は低下することがある。こうした結晶構造の崩壊は、サイクル性の低下に繋がる。Ruは、共有結合性がNi、Co等に対して明確に強い。そのため、LiRuO複合酸化物においては、Ruイオンと酸化物イオンとの強固な共有結合性により酸素脱離が進行し難くなっている。これにより、Mn等で構成されるLi遷移金属複合酸化物でみられる酸素脱離が生じ難くなっている。
 また、LiRuO複合酸化物の高サイクル性の要因として、非特許文献2では、充放電時のRuイオンの移動(マイグレーション)も指摘されている。
特開2016-51504号公報
Chemistry of Materials Vol.25(No.7),p1121-1131(2013). J.Phys.Chem.C2019,123,13491-13499
 上記したように、遷移金属としてRuを適用するLiRuO複合酸化物は、高容量化と共に高サイクル性による高エネルギー密度化を達成できる正極活物質として期待されている。もっとも、LiRuO複合酸化物の正極活物質への適用についての検討例はいまだ少なく、前記好適特性を発揮するメカニズムについては十分に解明されていない。そして、その特性を十分に発揮するためのLiRuO複合酸化物の構成及び製造プロセスについても確立されていない。
 本発明は以上のような背景のもとになされたものであり、Li遷移金属複合酸化物としてLiRuOを含む正極活物質に関し、好適な充放電容量及び高サイクル性を発揮し得るものの構成と製造プロセスを明らかにすることを目的とする。
 本発明は、LiRuO複合酸化物を主成分とするLiイオン二次電池用正極活物質に関する。LiRuOは、層状岩塩型結晶構造(O3型層状岩塩型結晶構造)を有する複合酸化物である。O3型層状岩塩型結晶構造は、O層-Ru層-O層-Li層-O層-Ru層-O層と規則的に連続した層からなる結晶構造を有し、移動し易い層間にLiイオンが存在する正極活物質として好適な構造を有する。
 LiRuO複合酸化物において、その特性を期待通りに発揮させるためには、上述した規則的な層構造を広範囲で形成する複合酸化物を形成することが必要となる。本発明者等は、LiRuO複合酸化物の合成方法を鋭意検討しつつ、その結果として好適特性のLiRuO複合酸化物を見出した。そして、このLiRuO複合酸化物においては、製造後の状態から初回満充電を行ったときのX線回折パターンについて、特異な傾向があることを見出し本発明に想到した。
 即ち、上記課題を解決する本発明は、層状岩塩型結晶構造を有するLiRuO複合酸化物からなるLiイオン二次電池用正極活物質において、前記LiRuO複合酸化物は、下記条件(i)、(ii)を具備することを特徴とするLiイオン二次電池用正極活物質である。
(i)初回満充電後のX線回折パターンに、イルメナイト型構造の(003)面の回折ピークが発現すること。
(ii)初回満充電時満充電後において、前記LiRuO複合酸化物を構成するRuイオンの20%以上50%以下のRuイオンがLiイオンサイトへ移動していること。
 また、上記(i)の条件にあるように、本発明に係るLiイオン二次電池用正極活物質は、初回満充電後のX線回折パターンにイルメナイト型構造の(003)面の回折ピークが発現しており、層状構造を維持している。このとき、本発明に係るLiRuO複合酸化物からなるLiイオン二次電池用正極活物質は、更に、下記条件(iii)を具備することが好ましい。
(iii)初回満充電前の結晶構造は層状岩塩型結晶構造であり、そのときのX線回折パターンに(002)面の回折ピークが発現しており、
 初回充電により1molのLiイオンが脱離したときの結晶構造がイルメナイト型構造を含み、そのときのX線回折パターンに前記(002)面の回折ピークが発現していると共に当該(002)面の回折ピークのCu
Kα線によるピーク位置(2θ)が、初回満充電前の前記(002)面のピーク位置(2θ)に対して1°以下シフトしていること。
 更に、上記の条件(ii)に関連して、本発明では、初回満充電後に移動したRuイオン同士の間隔が0.7Å以上1.3Å以下であるものが好ましい。
 そして、本発明では、初回満充電後のX線回折パターンにおける(113)面の回折強度I113と(110)面の回折強度I110との比(I113/I110)が、0.5以上1.0以下であるものが好ましい。
 また、本発明は、上記したLiイオン二次電池用正極活物質の製造方法を提供する。この正極活物質の製造方法は、Li化合物とRu化合物とを混合して前駆物質を製造する混合工程、前記前駆物質を加熱焼成することでLiRuO複合酸化物とする焼成工程、を含み、前記混合工程は、前記前駆物質の任意の複数箇所を組成分析したとき、O濃度の変動係数CV及びRu濃度の変動係数CVRuの双方が10%以下となるまでLi化合物とRu化合物とを混合する工程であり、前記焼成工程は、前記前駆物質を700℃以上1000℃以下の温度で加熱する工程である。
 以上説明したように、本発明は、Liイオン二次電池用の正極活物質であって、LiRuO複合酸化物からなるものである。本発明のLiRuO複合酸化物は、充放電過程におけるRuイオンの適切なマイグレーションを生ぜしめ、酸素脱離等による構造崩壊が抑制されており優れたサイクル性を有する。
本発明の実施形態のLiRuO複合酸化物の定電流充放電曲線(初回サイクル)を示す図。 本発明の実施形態のLiRuO複合酸化物のXRD回折パターン(Cu Kα線)を示す図。 本発明の実施形態のLiRuO複合酸化物について行ったin-situX線回折分析の結果を示す図。 本発明の実施形態のLiRuO複合酸化物の初回満充電の各段階における放射光XRD回折パターンを示す図。 本発明の実施形態のLiRuO複合酸化物のホスト状態から1mol脱離状態への相変化を説明するモデル図。 本発明の実施形態のLiRuO複合酸化物の1mol脱離状態の回折パターンのシミュレーション結果を示す図。 本発明の実施形態のLiRuO複合酸化物の2mol脱離状態(満充電後)における空孔位置を説明するモデル図。 本発明の実施形態のLiRuO複合酸化物の2mol脱離状態の回折パターンのシミュレーション結果を示す図。 本発明の実施形態のLiRuO複合酸化物の2mol脱離状態におけるRuイオンの移動による構造変化を説明するモデル図。 2mol脱離状態におけるRuイオンの移動率を変化させたときのXRD回折パターンのシミュレーション結果を示する図。 2mol脱離状態におけるRuイオンの移動の態様を説明するモデル図。 2mol脱離状態におけるRuイオンの移動距離を変化させたときのXRD回折パターンのシミュレーション結果を示する図。 本発明のLiRuO複合酸化物の初回満充電の各段階における結晶構造の変化を説明するモデル図。 実施例のLiRuO複合酸化物の製造のための前駆物質のSEM写真。 実施例1、2のLiRuO複合酸化物のSEM像。 実施例1、2のLiRuO複合酸化物のXRD回折パターン(Cu Kα線)を示す図。 実施例1、2のLiRuO複合酸化物の定電流充放電曲線(室温)を示す図。 実施例1、2のLiRuO複合酸化物の充放電サイクル数と放電容量との関係を示すグラフ。 実施例2のLiRuO複合酸化物の定電流充放電曲線(50℃)を示す図。 実施例2のLiRuO複合酸化物の充放電サイクル数に対する放電容量及びエネルギー密度との関係を示すグラフ。 実施例のLiRuO複合酸化物を室温から500℃まで加熱したときのXRD回折パターン(Cu Kα線)を示す図。 比較例1、2のLiRuO複合酸化物の定電流充放電曲線(室温)を示す図。 比較例1のLiRuO複合酸化物の初回満充電後の放射光XRD回折パターンを示す図。
(A)本発明に係るLiイオン二次電池用正極活物質
(A-1)本発明に係る正極活物質の電気的特性
 以下、本発明に係るLiイオン二次電池用正極活物質に関して好適な実施形態を説明する。図1は、本発明の一例となる実施形態(後述する実施例2)として製造されたLiRuO複合酸化物を正極活物質として電極にした電気化学セルにて測定した初回サイクルの定電流充放電曲線(電圧2.2V-4.6V)である。尚、本発明に係るLiRuO複合酸化物からなる正極活物質の製造方法及び定電流充放電曲線の測定方法・条件については後に詳述する。
 図1において、本実施形態のLiRuO複合酸化物からなる正極活物質では、初回充電時において、電圧4.0V付近で電位上昇し、電圧4.2V付近に電位平坦部がみられる。この電位変化については、前者の電圧4.0V付近の電位上昇で1molのLiイオンの脱離を示し、後者の電位平坦はアニオンレドックス由来のものと考えられる。
(A-2)本発明に係る正極活物質のin-situX線回折分析
 本実施形態ではLiRuO複合酸化物からなる正極活物質の状態を、図1を参照しつつ、(i)充放電前(製造後の正極活物質)、(ii)充電初期、(iii)1molのLiイオン脱離時、(iv)初回満充電後、の4段階に区分し、各段階における正極活物質の構造をin-situX線回折分析及び放射光X線回折分析により解析することとした。
 この解析において、in-situX線回折分析は、リガク製in-situXRD用セル(Be窓使用)を用い、X線源Cu Kα線(波長1.54Å)とし、上限電位を4.5Vとして製造直後段階(図1(i))から1molのLiイオン脱離段階(図1(iii))までの正極活物質をin-situで分析した。
図2は、本実施形態の正極活物質であるLiRuO複合酸化物の充電前(製造後)のXRD回折パターンである。そして、図3は、充電中の正極活物質のin-situX線回折分析の結果である。図中の縦軸のxとは、Liイオンの脱モル数である。充電の進行に伴い、発現するピークが相違することが分かるが、回折ピークの帰属に基づく構造解析は、後述する放射線X線回折に基づく解析結果で詳細に説明する。ここで着目すべきは、層間距離に対応する(002)ピークのピーク位置である。図3から、充電によるLiイオンの脱離が進行しても(002)ピークのピーク位置のシフト量は極めて少ない。具体的には、1molのLiが脱離したとき(図1(iii)の(002)ピークのシフト量は、充電前(製造直後)の状態の(002)のピーク位置に対して2θ=1°以下(Cu Kα線基準)と僅かである。このピークシフトは、層間距離にして0.24Å程度の変化である。本発明のLiRuO複合酸化物は、1molのLiが脱離したにもかかわらず、層間距離の変化が少ないことを示している。後述するが、この1molのLiが脱離した状態から、更に1molのLiが脱離したとき(即ち、満充電後)の層間距離の変化が極めて少ない。本発明に係る正極活物質が高特性を示す要因の一つとして、このLiの脱離があっても層間距離を維持していることが挙げられる。
(A-3)放射線X線回折及びそのシミュレーションによる構造解析
 そこで、放射線X線回折による精密な分析と解析により、本発明に係る正極活物質を構成するLiRuO複合酸化物の構造を明確にする。 放射光X線回折分析では、(i)~(iv)の各段階の電極を回収及び洗浄後、Ar雰囲気下でガラスキャピラリーに封入した後、波長0.62Åとした放射光X線を照射して回折パターンを測定した。
 図4(i)~(iv)は、本実施形態の正極活物質の図1の(i)~(iv)の各段階における、放射線X線回折による実測の回折パターンである。図4において、充電前(製造後)のLiRuO複合酸化物においては、2θ=7°付近にO3型構造(層状岩塩型結晶構造)の層状構造に対応する(002)ピークが観られる(図4(i))。尚、以下において初回充電前の正極活物質(LiRuO複合酸化物)について、「ホスト状態」と称することがある。そして、充電初期(図4(ii))では、正極活物質の結晶構造に大きな変化は観られない。
 正極活物質の結晶構造が変化するのは、1molのLiが脱離する電圧4.0V付近からとなる(図4(iii))。1molのLiが脱離した正極活物質(LiRuO複合酸化物)には、部分的にO3型構造のLiRuOのピークが観察されるもの、O1型構造に帰属する回折ピーク(14°付近の(110)ピーク、16°付近の(113)ピーク、21°付近の(116)ピーク)が観察された。更に、層状構造を示す(003)ピークが観察された。尚、本明細書では、この1molのLiが脱離した正極活物質(LiRuO複合酸化物)について、「1mol脱離状態」と称することがある。
 そして、満充電後の正極活物質(図4(iv))においては、上記1mol脱離状態と同様に、O1型構造に帰属する回折ピークと層状構造に基づく(003)ピークが観察される。更に、満充電後の正極活物質の回折パターンでは、7°付近及び13°付近において超格子構造に由来する回折ピークが観察されている。以下、この完全にLiが脱離した正極活物質(RuO酸化物)について、「2mol脱離状態」と称することがある。
 次に、上記した各段階で実測された回折パターンを基にして、ホスト状態から1mol脱離状態を経て2mol脱離状態までの各段階における結晶構造について検討する。この検討においては、結晶・分子構造解析ソフトウエアであるCrystalMaker(登録商標:株式会社ヒューリンクス)を使用した。結晶構造の解析は、推定される結晶構造に基づき回折パターンを前記ソフトウエアでシミュレーションし、上記実測データと対比して解析結果の妥当性を評価した。
 まず、1mol脱離状態の正極活物質の結晶構造について検討する。文献(H. Kobayashi et al.,
Solid State Ionics, 82, 25 (1995).)によれば、LiRuOからLi脱離したLi0.9RuOは、イルメナイト型をとることが報告されている。
 この報告例を参照し、ホスト状態から1mol脱離状態への相変化を図5に示すモデルで考察する。イルメナイト型構造をとる1mol脱離状態では、6配位している2つのRuとLiとが面共有しているため、静電反発によってLiが理想位置からずれて空孔の近傍に存在する構造をとっている。このとき、酸素の充填様式も変化し、結晶構造をO3型構造からO1型構造に変化させている。このモデルで示される1mol脱離状態の正極活物質の回折パターンをシミュレーションすると、図6のようになる。このシミュレーション結果は、実測された回折パターンに良く一致している。このことから本実施形態の正極活物質(LiRuO複合酸化物)の初回充電時における1mol脱離状態の結晶構造は、イルメナイト型O1型構造であることが確認される。そして、上述のとおり、本実施形態の正極活物質の1mol脱離状態は、(003)ピークを示す層状構造を有し、層間にLiが保持されており層間距離が広くなっている。
 上記の1mol脱離状態の解析結果に基づき、Liが完全に脱離する2mol脱離状態の正極活物質の結晶構造を解析する。
 通常のイルメナイト型O1積層構造におけるカチオン(Ru)の配列は、図7上段に示すように、空孔位置が1→2→3→1→2→3・・・と全て異なるサイトを占有するようになっている。この空孔モデルに基づきシミュレーションされる回折パターンを図8中段に示す。図7上段の空孔モデルによる回折パターンは、実測の回折パターンに対し、メインピークは一致するものの、7°付近及び13°付近で発現すべき超格子線構造の回折ピークを再現できていない。
 そこで、空孔位置を修正し、図7下段のように1→2→2→1→2→2・・・に変更してシミュレーションを行った。その結果、図8下段で示すように、超格子ピークが再現され実測データと合致する。但し、実測の回折パターンでは、(110)ピーク強度と(113)ピーク強度とを対比すると前者の方が大きくなっている。一方、シミュレーション結果による回折パターンでは、(110)ピーク強度と(113)ピーク強度との大小関係が逆となっている。(110)ピーク及び(113)ピークは、O1型構造に由来する特有のピークであるが、これらのピーク強度の大小関係は、正極活物質の2mol脱離状態における結晶構造に加えて、Ruの移動というLiRuO複合酸化物に特有の変化に起因すると考えられる。
 このことから、2mol脱離状態の正極活物質の結晶構造の検討には、Ruイオンの移動(マイグレーション)を考慮することの必要性が明らかとなる。つまり、2mol脱離状態の正極活物質は、図9下段で示すように、2mol脱離状態の正極活物質は、イルメナイト型O1型構造からのLiの脱離に伴ったRuイオンが移動した状態にあると仮定する。図9下段においては、RuイオンがLi層の6配位サイトに平均的に移動すると仮定している。このRuイオンのLiサイトへの移動により層間の反発が低減されて構造が安定化し高いリサイクル性に寄与する。
 そして、本発明のLiRuO複合酸化物を構成するRuイオンの総数に対する移動したRuイオンの割合を移動率としたとき、移動率を0%~50%としてシミュレーションを行うと、図10で示すXRD回折パターンが得られる。図10を参照すると、Ruイオンの移動率を25%で、(110)ピーク強度が(113)ピーク強度より大幅に大きくなっている。このことから、(110)ピーク強度と(113)ピーク強度との大小関係が実測の回折パターンと同じくなるのは20%以上と想定され、これがRuイオンの移動率の下限となる。一方、Ruイオンの移動率が50%となると(003)ピークが微弱となる。これは層構造の崩壊の開始を示していると解される。よって、Ruイオンの移動率の上限は50%以下と想定される。これらから、本発明の正極活物質では、満充電時に20%以上50%以下の移動率でRuイオンのマイグレーションが生じていると考えられる。
 また、このとき移動したRuイオンの移動後の配置は、1mol脱離状態で残存するLiイオンの位置に関する検討結果を参照することができる。上記のとおり、1mol脱離状態におけるイルメナイト型のO1型構造では、残る1molのLiがRuとの面共有による静電反発を受けてその理想位置から歪んだ位置に配位する。2mol脱離状態でLiサイトへ移動するRuの配置も同様に、面共有による静電反発を受けると考えられる。つまり、移動後のRuイオンも、Liサイトの理想位置に対し、ズレがある歪んだ位置に移動すると考察される。この考察によるRuイオンの位置状態のモデルを図11に示す。
 そこで、この歪みによって理想位置から上下動した位置にあるRuイオンについて、2つのRuイオン間の間隔(相対距離)dを調整しながらシミュレーションすることで、実測データにより近い回折パターンを得ることができる。図12は、Ruイオンの移動率を40%と仮定し、移動したRuイオン同士の間隔dを0Å、0.55Å、1.10Åとしたときのシミュレーション結果である。
 図10と図12とを参照すると、図10からRuイオンの移動率は(110)ピークの強度との関連が強く、図12から静電反発によるRuイオン同士の間隔dは(113)ピークの強度との関連が強い。そして、本実施形態の正極活物質では、Ru間の間隔dを1.10Åとすることで(113)ピーク強度を実測データに近似することができ、(110)ピークとの強度比も実測データに近似される。つまり、本実施形態の正極活物質は、2mol脱離状態におけるRuイオンの移動率を40%としたとき、移動したRuイオン同士の間隔dが1.10Åとなる状態にあると推定される。
(A-4)本発明に係る正極活物質の構造変化のまとめ
 以上説明したin-situX線回折分析及び放射光X線回折分岐性の結果を踏まえて、本発明に係る正極活物質(LiRuO)の、充電前(ホスト状態)、充電過程(1mol脱離状態)、及び満充電後(2mol脱離状態)の各段階における結晶構造の変化を纏めたものを図13に示す。
 本発明の正極活物質は、初回充電前(製造後)でO3型構造(岩塩型層状構造)を有し、充電開始から1molのLiイオンが脱離した段階でイルメナイト型のO1型層状構造となる。そして、初回満充電により更に1molのLiイオンが脱離することで、Ruイオンのマイグレーションが生じる。このRuイオンのマイグレーションにより層間距離の縮小が抑制され、酸素脱離による結晶構造の崩壊が抑制されている。初回満充電後にイルメナイト型構造を示すことは、そのX線回折パターンで(003)ピークの発現で確認される。また、Ruイオンの移動率は、(110)ピーク強度と(113)ピーク強度との大小関係((110)>(113))から25%以上50%以下であることが推定される。これらから、上述の条件(i)、(ii)が明らかになる。尚、本発明者等による検討では、条件(ii)におけRuの移動率は、25%以上45%以下がより好ましい。
 また、本発明の正極活物質であるLiRuO複合酸化物における層間距離の維持は、1mol脱離状態における(002)ピークのシフト量からも推認される。即ち、本発明のLiRuO複合酸化物は、1mol脱離状態の結晶構造としてイルメナイト型構造を含みつつ、O3構造の(002)ピークも示す。この(002)ピークは、初回充電前の(002)ピークのピーク位置(2θ)に対して1°以下(Cu Kα線)シフトしていること。このことから、好ましい条件として上述の条件(iii)が明らかになる。尚、この1°以下のピークシフトに基づく層間距離の減少幅としては、0.23Å以上0.25Å以下であるものが好ましい。
 また、本発明では、1mol脱離状態のO1型構造を維持したまま、20%以上50%以下の移動率でRuイオンがLiサイトに移動している。Ruイオンが移動することで、層間の静電反発が大きくなって構造の安定化に寄与していると考えられる。更に、移動したRuイオンは、Liサイトの理論位置に対して歪んだ位置にある。これらのRuイオンの移動は、回折パターンにおける(113)ピーク及び(110)ピークの強度から推定される。本発明者等による検討では、(113)面の回折強度I113と(110)面の回折強度I110との比(I113/I110)は、0.5以上1.0以下となっていることが好ましい。そして、この(113)ピークの強度比(I110/I113)の範囲に基づき規定される、移動したRu同士の間隔dの範囲としては、0.7Å以上1.3Å以下であるものが好ましい。
 尚、上記のようにしてRuイオンの移動によって維持された層間距離については、4.55Å以上4.60Å以下であるものが好ましい。本発明に係る正極活物質であるLiRuO複合酸化物は、これまでLiイオン二次電池用の正極活物質として知られているLiCoO等に対して広い層間距離を維持することができ、これが好適な特性に関連すると考えられる。
(A-5)本発明に係る正極活物質(LiRuO複合酸化物)の結晶粒径
 本発明に係る正極活物質においては、LiRuO複合酸化物の平均粒径は、0.1μm以上30μm以下のものが好ましい。0.1μm未満の微細な正極活物質は、表面積が過大となるので、電極を形成する際に結着剤の量も増加させることが必要となる。結着剤は、正極活物質粒子同士、或いは、正極活物質粒子と導電材とを結合させる材料である。結着剤の量が増大すると、単位電極重量当たりの容量が低下することとなるので、表面積を適切にする上で正極活物質の粒径は0.1μm以上とすることが好ましい。一方、30μmを超える粒径の正極活物質は、粒径サイズの上昇と表面積の低下により、粒子バルクの抵抗や粒子間抵抗の抵抗成分が大きくなる。これにより、放電容量及び充放電サイクルに伴う容量維持率は低下することとなるため30μm以下の正極活物質の適用が好ましい。以上の理由に加えてサイクル特性を考慮するとき、正極活物質の平均粒径は0.5μm以上とするのがより好ましい。
(B)本発明に係るLiイオン二次電池用正極活物質の製造方法
 次に、本発明に係る正極活物質を構成するLiRuO複合酸化物の製造方法について説明する。本発明で適用されるLiRuO複合酸化物は、基本的工程としては公知のLiRuO複合酸化物の製造工程と同様である。LiRuO複合酸化物の好ましい製造方法としては、Li化合物とRu化合物とを混合して前駆物質を製造し、前記前駆物質を高温で加熱焼成することで複合酸化物にする方法が挙げられる。但し、本発明に係るLiRuO複合酸化物は、正極活物質として充放電したとき、上述した構造的安定性を発揮すべく適切な層状結晶構造とすることが求められる。即ち、本発明に係る正極活物質の製造方法は、Li化合物とRu化合物とを混合して前駆物質を製造する混合工程、前記前駆物質を加熱焼成することでLiRuO複合酸化物とする焼成工程、を含み、前記混合工程は、前記前駆物質の任意の複数箇所を組成分析したとき、O濃度の変動係数CV及びRu濃度の変動係数CVRuの双方が10%以下となるまでLi化合物とRu化合物とを混合する工程であり、前記焼成工程は、前記前駆物質を700℃以上1000℃以下の温度で加熱する工程である。以下、本発明に係る正極活物質の製造方法では、上記前駆物質の製造工程及び焼成工程について詳細に説明しつつ、好適な結晶構造のLiRuO複合酸化物を形成するための手段について言及する。
 複合酸化物の前駆体を形成するための原料としては、Li化合物としては、炭酸Li、酢酸Li、硝酸Li、水酸化Li、塩化Li、硫酸Li、酸化Li等が挙げられる。これらのうち、安定性やコスト面を考慮して炭酸Li、酸化Liが好ましい。Ru化合物は、炭酸Ru、水酸化Ru、オキシ水酸化Ru、酢酸Ru、クエン酸Ru、酸化Ru等が使用できる。コストと安定性の理由から、Ru化合物としては酸化物を適用するのが好ましい。尚、Ru酸化物には、非水和物(RuO)及び水和物(RuO・nHO)の双方が使用できる。
 本発明の製造方法では、まず、上記原料となる各化合物を混合し、これらが混和した前駆物質を製造する。本発明に係る正極活物質は、LiRuO複合酸化物からなるので、Li化合物及びRu化合物の混合比は、複合酸化物の両論組成に従ったモル比で混合することが好ましい。但し、Li化合物については、その種類によっては焼成工程における加熱により揮発する場合がある。そのため、Li化合物の混合量については、目的組成に対応する質量に対し、1%以上10%以下を増量して混合することが好ましい。Li化合物の増量については、1%以上8%以下とするのがより好ましい。Li化合物を過剰に混合すると、電気的に不活性なLiRuOが部分的に生成することがあり、正極活物質として特性低下に繋がるからである。
混合工程では、必要に応じて、粉砕と混合を行うことができる。粉末状の原料化合物を使用する場合において、粒径が大きい場合(15μm以上)、前駆物質の均一性確保のために粉砕が行われる。混合工程で粉砕を行う場合には、ボールミル、ジェットミル、ロッドミル、サンドミル等の粉砕装置を用いることができる。また、粉砕は乾式粉砕、湿式粉砕いずれで行っても良い。好ましくは、水、有機溶媒を分散媒体とする湿式粉砕にて行う。また、混合工程後の前駆物質については、必要に応じて造粒、ペレタイジング等を行っても良い。
 そして、本発明に係る正極活物質となるLiRuO複合酸化物を製造するには、上記の混合工程において、Li化合物とRu化合物との混合物からなる前駆物質の組成均一性を高めることが要求される。この組成均一性の具体的な指標としては、Li化合物とRu化合物との混合物からなる前駆物質の任意の複数箇所を組成分析したとき、酸素濃度の変動係数CV及びRu濃度の変動係数CVRuの双方が10%以下であることである。
 前駆物質の酸素濃度の変動係数CVは、前駆物質の複数箇所で測定されるO濃度(C)に基づき、平均値(A)と標準偏差(σ)を算出し、CV=(ρ/A)×100で算出できる。同様にしてRu濃度の変動係数CVRuは、前駆物質の複数箇所で測定されるRu濃度(CRu)から平均値(ARu)と標準偏差(σRu)を算出し、CVRu=(ρRu/ARu)×100で算出できる。本発明では、CV及びCVRuの双方が10%以下であることを要する。CV及びCVRuの少なくともいずれかが10%を超えるとき、前駆物質の組成均一性が不十分であり、本発明に係る好適な正極活物質を得ることが困難となる。
 尚、前駆物質の組成分析は、電子線プローブマイクロ分析(EPMA)、エネルギー分散型X線分析(EDX)、蛍光X線分析(FRX)、X線光電子分光分析(XPS)等の各種の分析方法が適用可能であり、各分析方法に応じたスキームでO及びRuの濃度を分析する。また、前駆物質の任意に複数個所分析するとき、分析箇所は5箇所以上設定することが好ましい。
  以上の工程で製造した前駆物質を加熱し焼成することで、本発明の正極活物質となるLiRuO複合酸化物が製造される。焼成工程における加熱温度は、700℃以上1000℃以下とする。700℃以下では複合酸化物生成のための固相反応が進行し難い。また、1000℃を超えたときはLiRuO複合酸化物の合成は可能であるが、サイクル性に乏しい正極活物質となることがある。この加熱温度は、800℃以上1000℃以下がより好ましい。未反応の原料化合物(例えば、炭酸Li等)の残留を防止するため、熱処理時間としては、1時間以上48時間以下とするのが好ましい。焼成工程の加熱手段として、電気炉、バッチ炉等の固定炉、ロータリーキルン等の回転炉、ローラーハースキルン等の連続炉といった一般的な熱処理装置を用いることができる。
 そして、この焼成工程は、大気中でも良いし、非酸化雰囲気で行っても良い。但し、非酸化性雰囲気で焼成すると、温度条件等によっては、LiRuO複合酸化物に積層欠陥が導入されることがある。そのため、焼成工程の好ましい雰囲気としては、大気中或いは酸素含有雰囲気が好ましい。
  以上の混合工程と焼成工程を経て、LiRuO複合酸化物を含む正極活物質を製造することができる。このLi遷移金属複合酸化物は、適宜に脱イオン水等による洗浄及び乾燥を行っても良い。また、製造した正極活物質をLi2次電池の正極とするために好適な粒径の粉末にするため、LiRuO複合酸化物を解砕し分級する等の後処理を行っても良い。
(C)本発明に係る正極活物質を適用するLiイオン二次電池用の正極及びLiイオン二次電池
 本発明に係る正極活物質は、一般的なLiイオン二次電池と同様の構成で、Liイオン二次電池用の正極及びLiイオン二次電池とすることができる。
 Liイオン二次電池用の正極は、本発明に係る正極活物質に加えて、導電材や結着剤等の成分により構成される。導電材としては、例えば、黒鉛、アセチレンブラック、ファーネスブラック等の炭素粉末や、カーボンウイスカー、炭素繊維、金属粉末、金属繊維、導電性セラミックス材料等の導電性材料の1種又は2種以上が挙げられる。また、結着剤には、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリプロピレンポリヘキサフルオロプロピレン、スチレン-ブタジエンゴム、ポリアクリロニトリル、変性ポリアクリロニトリル等の1種又は2種以上が挙げられる。
 正極は、これらの各成分をN-メチルピロリドン、トルエン、水等の溶媒に混合して電極合剤を調製し、電極合剤をアルミニウム箔等の集電体(基材)に塗布して電極合剤層を形成し、更に、電極合剤層を加圧成形することで製造される。
 また、Liイオン二次電池は、上記した本発明の正極活物質を含む正極、負極、電解質、セパレータを主要要素として構成される。
 負極は、負極活物質、導電材、結着剤等の成分により構成される。
負極活物質としては、グラファイト、ハードカーボン等の炭素材料の他、チタン酸Li等のチタン系材料、酸化ケイ素等のシリコン系材料等の公知の材料が使用できる。負極活物質は、充放電時にLiイオンを吸蔵・放出可能な材料・形態であれば特に限定されない。また、負極を構成する他の成分(負極活物質、導電材、結着剤等)は正極と同様とすることができる。そして、負極の製造プロセスも正極と同様となる。
 電解液についても、公知の構成の材料を使用することができる。電解液は、電解質と溶媒とで構成され、電解質としては、LiPF(ヘキサフルオロリン酸リチウム)、LiFSA(LiFSI:リチウムビス(フルオロスルホニル)アミド)、LiTFSI(リチウムビス(トリフルオロメタンスルホニル)イミド)、LiClO(過塩素酸リチウム)、LiBF(四フッ化ホウ酸リチウム)等が適用できる。また、溶媒としては、EC(エチレンカーボネート)、PC(プロピレンカーボネート)、DMC(ジメチルカーボネート)、EMC(エチルメチルカーボネート)、DEC(ジエチルカーボネート)、TMP(リン酸トリメチル)等が挙げられ、これらを単独或いは混合した溶媒を用いることができる。
 また、Liイオン二次電池その他の構成要素としては、セパレータ、端子、絶縁板、電池ケース(電池缶、電池蓋)等が挙げられるが、これらの部品も一般的に使用されるものが適用可能である。
 本発明の実施例として、上記した実施形態に係る正極活物質の製造工程と、前記正極活物質によるLiイオン二次電池の電気特性、リサイクル性の評価結果について説明する。
[正極活物質の製造]
 炭酸Li(LiCO)粉末と酸化Ru(水和物:RuO・nHO)粉末とを混合して前駆物質6gを製造した。この実施例では、炭酸Li粉末のみ理論質量に対して3%多い量を混合している。炭酸Liと酸化Ruとの混合粉末からなる前駆物質を製造するための混合工程として、乳棒・乳鉢による粉砕・混合処理を10分間行い、前駆物質を製造した。この実施例では、SEM-EDXによる組成分析を行う観察領域を任意に5箇所設定し、それぞれの観察領域の視野全体での組成分析を行った。そして、5箇所の領域で得られた組成分析結果(O濃度(C)、Ru濃度(CRu):質量%)をもとに平均値(A、ARu:質量%)と標準偏差(ρ、ρRu)を求め、それらからO濃度及びRu濃度の変動係数(CV、CVRu)を算出した。この測定結果を表1に示す。また、図14は、本実施例の前駆物質のSEM像である。

 
Figure JPOXMLDOC01-appb-T000001
 表1で確認されるとおり、実施例の前駆物資においては、O濃度及びRu濃度の変動係数(CV、CVRu)のいずれもが10%以下となっている。
 次に、上記の混合工程により製造した前駆物質を圧縮してペレットとした。そして、ペレット状の前駆物質を焼成してLiRuO複合酸化物を製造した。焼成工程の加熱条件は、大気中で昇温速度10℃/minで900℃になるまで加熱して900℃に到達後12時間加熱保持した。12時間の加熱後、炉冷にて室温まで冷却してLiRuO複合酸化物を取り出した。
 本実施例では、焼成条件として、大気雰囲気下、加熱温度950℃又は1000℃、加熱時間をいずれも24時間とした2種のLiRuO複合酸化物を合成した。図15は、これらLiRuO複合酸化物のSEM像である。焼成条件によって粒径が異なる複合酸化物が製造可能であり、焼成条件を大気中950℃、24時間としたときは平均で2μmのLiRuO複合酸化物となる(実施例1)。一方、焼成条件を大気中1000℃、24時間としたときは平均で5μmのLiRuO複合酸化物が合成された(実施例2)。
 図16は、実施例1、2のLiRuO複合酸化物のX線回折パターン(X線源:Cu Kα線)を示す。実施例1、2のLiRuO複合酸化物は、粒径は異なっているが、ピーク位置・ピーク強度に大きな差はなく、いずれもO3型構造に由来するLiRuO単相の回折パターンを示していた。
[電気化学的特性の評価]
 本実施例の正極活物質について定電流充放電曲線を測定し、電気化学的特性を評価した。この評価試験においては、正極に、本実施例の正極活物質(AM)と導電材(アセチレンブラック:AB)と結着剤(ポリフッ化ビニリデン:PVDF)とを混合し炭素複合化処理を行ったものを使用している。試験装置の構成は下記のとおりである。
・セルタイプ:二極式電気化学セル(TJ-AC:有限会社日本トムセル製)
・正極:AM:AB:PVDF=80:10:10(wt%)
・対極:リチウム金属
・セパレータ:ポリオレフィン多孔膜(セルガード2500)+ガラスフィルター(GB-100R)
・電解液:1M-LiPF
 定電流充放電試験は、室温で電圧範囲2.2V-4.6V、電流密度30mA/cmとして初回充電で放電容量を測定した。そして、充放電を5サイクル、15サイクル、30サイクル行って電位-容量曲線を測定した。
 図17は、本実施例(実施例1、2)の正極活物質(LiRuO複合酸化物)の定電流充放電曲線を示す。また、図18は、定電流充放電試験結果の結果から得られた、サイクル数と放電容量との関係を示すグラフを示す。これらの結果を参照すると、実施例1、2の正極活物質は、初回放電容量が225mAhg-1を超えており十分な容量を発揮する。また、容量維持率も高水準にあるといえる。粒子径が比較的小さい実施例1は、初回放電容量250mAhg-1を超える高容量を示す。そして、15サイクルまではわずかな容量劣化はみられるものの、それ以降は容量低下なく30サイクルまで安定的に充放電できることが確認できる。一方、粒径が大きい実施例2も、初回放電容量は実施例1より低いものの、30サイクルまで容量が全く劣化することはなくサイクル特性に優れていることが確認された。本発明のLiRuO複合酸化物は、粒径によって多少の傾向の相違はあるが、十分な放電容量とサイクル性を示すといえる。
 次に、実施例2の正極活物質(LiRuO複合酸化物)について、試験温度を50℃としたときの定電流充放電曲線を測定した。その結果を図19に示し、この結果を基にしたサイクル数に対する放電容量とエネルギー密度との関係を図20に示す。尚、図19には、同条件で測定したMn系リチウム過剰正極活物質であるLi1.2Ni0.13Co0.13Mn0.54の定電流充放電曲線の結果を示している。また、図20には、Mn系リチウム過剰正極活物質に加えて、更に、同条件で測定したNi系正極活物質であるLiNi0.815Co0.15Al0.035のサイクル性についての結果を示している。
 図19、20から、本実施例の正極活物質は、50℃の高温条件でリチウム基準の理論容量に迫る高容量を示す。また、本実施例の正極活物質は、100サイクルの充放電によっても容量劣化はみられず、極めて優れたリサイクル性を示すことが分かる。これに対して、Mn系リチウム過剰正極活物質(Li1.2Ni0.13Co0.13Mn0.54)は、初回満充電時のエネルギー密度は最も高いが、サイクル数の増加に従う放エネルギー密度の低下を回避することはできない。また、Ni系正極活物質(LiNi0.815Co0.15Al0.035)は、現在、既に実用化されているLiイオン二次電池用正極活物質である。この従来の正極活物質は、50℃における初回放電容量及びサイクル性において、本実施例の正極活物質に対して大きく劣っていることが分かる。
[熱安定性の評価]
 本実施例の正極活物質を構成するLiRuO複合酸化物の高温下における安定性をより詳細に検討するため、加熱試験を行った。加熱試験では、窒素ガス吹付け型装置にて試料を加熱しつつin situ放射光X線回折をした。室温での分析後、100℃~500℃まで100℃間隔で加熱及び分析を行った。
 図21は、本実施例のLiRuO複合酸化物を室温から500℃まで加熱したときの回折パターンを示す。図21から、LiRuO複合酸化物は、室温から300℃までの間ではO3型層構造を維持していることが分かる。400℃では、(003)ピークと超格子が消失していることから、この温度でO1型構造をベースとしつつカチオンの不規則配列が生じている。そして、500℃ではRuOのピークが明瞭に観察されることから、ここで酸素脱離に伴う分解が生じていると考えられる。以上のような本実施例のLiRuO複合酸化物の挙動について、例えば、LiNi系(LiNiO等)は、酸素脱離による分解(NiO形成が250℃~300℃で生じることが確認されている。本実施例のLiRuO複合酸化物は、LiNi系酸化物に対し、分解温度が200℃以上高く、熱安定性・耐久性が極めて高い正極活物質となるといえる。
 以上の検討結果から、本発明に係るLiRuO複合酸化物からなる正極活物質は、高温下にあっても好適な放電容量と高いサイクル性を有することが確認された。このように優れた特性が発現するのは、これまで述べたように、本発明に係るLiRuO複合酸化物は、充電過程で2molのLiが脱離する状態であっても、Ruイオンの適切な移動により層状構造を維持しつつ層間距離の減少が抑制されており、酸素イオンの脱離等による崩壊が抑制されていることによるものと考えられる。
比較例
 本願発明の正極活物質と対比する比較例として、以下の比較例の正極活物質を製造し、電気化学的特性を測定した。
比較例1:実施例と同じ炭酸Li粉末と酸化Ru粉末とを混合して前駆物質を製造した。この比較例では、混合工程で実施例と同じ乳棒・乳鉢を使用しつつ粉砕・混合処理の時間を1分間とした。製造した前駆物質について、実施例と同様の方法でSEM-EDXによる組成分析を行った。組成分析の結果から得られた、前駆物質の酸素濃度の平均値(A、ARu)及び標準偏差(ρ、ρRu)とO濃度及びRu濃度の変動係数(CV、CVRu)を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2で示すとおり、比較例1の前駆物質は、CV及びCVRuのいずれもが10%を超えていた。そして、この前駆物質を実施例1と同様にして焼成処理して比較例1の正極活物質となるLiRuO複合酸化物を製造した。
比較例2:実施例と同じ原料及び混合条件により、CV及びCVRuのいずれもが10%以下の前駆物質を製造した。この前駆物質を大気中、1050℃で24時間加熱し比較例1の正極活物質となるLiRuO複合酸化物を製造した。
[電気化学的特性の評価]
 比較例1、2の正極活物質についての定電流充放電曲線を測定した。測定装置は上記実施例1と同じとし、測定条件として室温で電圧範囲2.2V-4.6V、電流密度30mA/cmとして初回満充電で放電容量を測定した。そして、充放電を13サイクル行って電位-容量曲線を測定した。この測定結果を図22に示す。図22には、同じ条件で測定した実施例1の定電流充放電曲線も示している。
 図22から、比較例1の正極活物質は、初回放電容量が225mAhg-1を下回っており、本願実施例の正極活物質よりも低放電容量となっている。比較例1は、LiRuO複合酸化物を製造する焼成前の前駆物質において、CV及びCVRuのいずれもが10%超となっていたが、この組成の均一性が劣っていたことによる結果と考えられる。一方、比較例2は、焼成温度を1000℃超として製造したLiRuO複合酸化物である。比較例2の正極活物質は、初回放電容量が比較例1よりも低い上、サイクル特性においても劣っている。
 図23は、比較例1の正極活物質(LiRuO複合酸化物)の初回満充電後の放射光XRDによる回折パターンである。比較例1のLiRuO複合酸化物は、満充電後においてO1型構造を有し、この点は本発明と同様である。しかし、(110)ピークの強度(I110)が(113)ピークの強度(I113)よりも低く(I113/I110>1.0)、本発明とは逆となっている。Ruイオンの移動率について検討した図10を参照すると、比較例1でみられた(110)、(113)のピーク強度の関係は、Ruイオンの移動率が0%或いは20%未満であることを示唆している。比較例の正極活物質の特性が本実施形態より劣るのは、このRuイオンの移動が生じていないか、不十分であるかによると考えられる。このXRD回折パターンの傾向は、比較例2でも同様にみられた。本願実施例に係るLiRuO複合酸化物では、上述した初回充電過程での結晶構造の変化及びRuイオンの適切な移動による層間距離の維持が発現しており、これによる高容量且つサイクル性に優れた正極活物質となっているといえる。
 以上説明したように、本発明に係るLiイオン二次電池用の正極活物質は、LiRuOは充放電時の構造変化に起因してサイクル性に優れている。本発明に係る正極活物質は、Liイオン二次電池の正極に好適に対応することができ、各種の小型バッテリー、家庭用電源、車載用バッテリー等に広く利用可能である。

Claims (5)

  1.  層状岩塩型結晶構造を有するLiRuO複合酸化物からなるLiイオン二次電池用正極活物質において、前記LiRuO複合酸化物は、下記条件(i)及び(ii)を具備することを特徴とするLiイオン二次電池用正極活物質。
    (i)初回満充電後のX線回折パターンに、イルメナイト型構造の(003)面の回折ピークが発現すること。
    (ii)初回満充電後において前記LiRuO複合酸化物を構成するRuイオンの20%以上50%以下のRuイオンがLiイオンサイトへ移動すること。
  2.  LiRuO複合酸化物が、更に、下記条件(iii)を具備する請求項1記載のLiイオン二次電池用正極活物質。
    (iii)初回満充電前の結晶構造は層状岩塩型結晶構造であり、そのときのX線回折パターンに(002)面の回折ピークが発現しており、
     初回充電により1molのLiイオンが脱離したときの結晶構造がイルメナイト型構造を含み、そのときのX線回折パターンに前記(002)面の回折ピークが発現していると共に当該(002)面の回折ピークのCu Kα線によるピーク位置(2θ)が、初回充電前の前記(002)面のピーク位置(2θ)に対して1°以下シフトしていること。
  3.  条件(ii)において、初回満充電後に移動したRuイオン同士の間隔が0.7Å以上1.3Å以下である請求項1又は請求項2記載のLiイオン二次電池用正極活物質。
  4.  初回満充電後のX線回折パターンにおける(113)面の回折強度I113と(110)面の回折強度I110との比(I113/I110)が、0.5以上1.0以下である請求項1又は請求項2記載のLiイオン二次電池用正極活物質。
  5.  請求項1記載のLiイオン二次電池用正極活物質の製造方法であって、
     Li化合物とRu化合物とを混合して前駆物質を製造する混合工程、
    前記前駆物質を加熱焼成することでLiRuO複合酸化物とする焼成工程、を含み、
     前記混合工程は、前記前駆物質の任意の複数箇所を組成分析したとき、O濃度の変動係数CV及びRu濃度の変動係数CVRuの双方が10%以下となるまでLi化合物とRu化合物とを混合する工程であり、
     前記焼成工程は、前記前駆物質を700℃以上1000℃以下の温度で加熱する工程であるLiイオン二次電池用正極活物質の製造方法。
     

     
PCT/JP2023/023469 2022-06-30 2023-06-26 Liイオン二次電池用正極活物質及びその製造方法 WO2024004902A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-105730 2022-06-30
JP2022105730A JP2024005520A (ja) 2022-06-30 2022-06-30 Liイオン二次電池用正極活物質及びその製造方法

Publications (1)

Publication Number Publication Date
WO2024004902A1 true WO2024004902A1 (ja) 2024-01-04

Family

ID=89383051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023469 WO2024004902A1 (ja) 2022-06-30 2023-06-26 Liイオン二次電池用正極活物質及びその製造方法

Country Status (2)

Country Link
JP (1) JP2024005520A (ja)
WO (1) WO2024004902A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104134781A (zh) * 2014-07-30 2014-11-05 吉林大学 锂离子二次电池正极材料、制备方法及锂离子电池
CN104495959A (zh) * 2014-12-12 2015-04-08 吉林大学 一种钠离子二次电池正极材料、制备方法及锂钠混合电池
JP2016110817A (ja) * 2014-12-05 2016-06-20 ソニー株式会社 電極活物質、負極、二次電池、電池パック、電子機器及び電極活物質の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104134781A (zh) * 2014-07-30 2014-11-05 吉林大学 锂离子二次电池正极材料、制备方法及锂离子电池
JP2016110817A (ja) * 2014-12-05 2016-06-20 ソニー株式会社 電極活物質、負極、二次電池、電池パック、電子機器及び電極活物質の製造方法
CN104495959A (zh) * 2014-12-12 2015-04-08 吉林大学 一种钠离子二次电池正极材料、制备方法及锂钠混合电池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAN MIAO, LIU ZEPENG, SHEN XING, YANG LU, SHEN XI, ZHANG QINGHUA, LIU XIAOZHI, WANG JUNYANG, LIN HONG‐JI, CHEN CHIEN‐TE, PAO CHIH‐: "Stacking Faults Hinder Lithium Insertion in Li 2 RuO 3", ADVANCED ENERGY MATERIALS, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 10, no. 48, 1 December 2020 (2020-12-01), DE , XP093122679, ISSN: 1614-6832, DOI: 10.1002/aenm.202002631 *
HESTENES JULIA C., ELLS ANDREW W., NAVARRO GOLDARAZ MATEO, SERGEYEV IVAN V., ITIN BORIS, MARBELLA LAUREN E.: "Reversible Deposition and Stripping of the Cathode Electrolyte Interphase on Li2RuO3", FRONTIERS IN CHEMISTRY, FRONTIERS MEDIA, LAUSANNE, vol. 8, Lausanne , XP093122681, ISSN: 2296-2646, DOI: 10.3389/fchem.2020.00681 *
ZHENG FENG, ZHENG SHIYAO, ZHANG PENG, ZHANG XIAOFENG, WU SHUNQING, YANG YONG, ZHU ZI-ZHONG: "Impact of Structural Transformation on Electrochemical Performances of Li-Rich Cathode Materials: The Case of Li 2 RuO 3", THE JOURNAL OF PHYSICAL CHEMISTRY C, AMERICAN CHEMICAL SOCIETY, US, vol. 123, no. 22, 6 June 2019 (2019-06-06), US , pages 13491 - 13499, XP093122683, ISSN: 1932-7447, DOI: 10.1021/acs.jpcc.9b02887 *

Also Published As

Publication number Publication date
JP2024005520A (ja) 2024-01-17

Similar Documents

Publication Publication Date Title
US11108043B2 (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
Fang et al. Graphene-oxide-coated LiNi 0.5 Mn 1.5 O 4 as high voltage cathode for lithium ion batteries with high energy density and long cycle life
JP6397007B2 (ja) リチウムイオン電池用の活性材料
JP7180532B2 (ja) リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
EP2940762B1 (en) Anode active material coated with manganese potassium oxide for lithium secondary battery and method for manufacturing same
JP5590337B2 (ja) マンガン複合水酸化物粒子、非水系電解質二次電池用正極活物質、および非水系電解質二次電池と、それらの製造方法
Sattar et al. Effect of Mg-doping on the electrochemical performance of LiNi0. 84Co0. 11Mn0. 05O2 cathode for lithium ion batteries
JP7272345B2 (ja) リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
EP3267517A1 (en) Positive electrode active substance for non-aqueous electrolyte secondary battery, and method for producing same
US10347910B2 (en) Nano silicon material, method for producing same, and negative electrode of secondary battery
KR20200056235A (ko) 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20170008164A (ko) 리튬전지용 복합 양극 활물질, 이를 포함하는 리튬전지용 양극 및 리튬전지
JP7262419B2 (ja) 非水系電解質二次電池用正極活物質、および非水系電解質二次電池
RU2656241C1 (ru) Кремниевый материал и отрицательный электрод вторичной батареи
KR101431879B1 (ko) 리튬 이차전지용 양극활물질 및 그 제조방법
KR20200036324A (ko) 포타슘이온 이차전지용 양극 활물질 제조방법, 이를 포함하여 제조되는 양극 및 이를 포함하는 포타슘이온 이차전지
JP2019212365A (ja) リチウムイオン二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いたリチウムイオン二次電池
WO2024004902A1 (ja) Liイオン二次電池用正極活物質及びその製造方法
KR100358799B1 (ko) 리튬 이차 전지용 양극 활물질의 제조 방법
JP7194493B2 (ja) 非水系電解質二次電池用正極活物質
KR101693711B1 (ko) 탄소, 질소 코팅된 리튬티타늄산화물 입자의 제조방법, 전극 활물질 및 리튬이차전지
EP3150554B1 (en) Negative electrode of a secondary battery composed of a silicon material
TW202412364A (zh) Li離子二次電池用正極活性物質及其製造方法
Akhilash et al. A comparative study of aqueous-and non-aqueous-processed Li-rich Li 1.5 Ni 0.25 Mn 0.75 O 2.5 cathodes for advanced lithium-ion cells
WO2022202356A1 (ja) Liイオン二次電池用正極活物質及びその製造方法、並びにLiイオン二次電池用正極及びLiイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831344

Country of ref document: EP

Kind code of ref document: A1