KR20130111485A - 유기전자소자용 기판 - Google Patents

유기전자소자용 기판 Download PDF

Info

Publication number
KR20130111485A
KR20130111485A KR1020130035487A KR20130035487A KR20130111485A KR 20130111485 A KR20130111485 A KR 20130111485A KR 1020130035487 A KR1020130035487 A KR 1020130035487A KR 20130035487 A KR20130035487 A KR 20130035487A KR 20130111485 A KR20130111485 A KR 20130111485A
Authority
KR
South Korea
Prior art keywords
layer
substrate
electrode layer
organic
electronic device
Prior art date
Application number
KR1020130035487A
Other languages
English (en)
Other versions
KR101589343B1 (ko
Inventor
이정형
최준례
오덕수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20130111485A publication Critical patent/KR20130111485A/ko
Application granted granted Critical
Publication of KR101589343B1 publication Critical patent/KR101589343B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

본 출원은 유기전자소자용 기판 등에 대한 것이다. 본 출원에서는, 유기발광소자 등과 같은 유기전자장치의 광추출 효율 등의 기능을 개선할 수 있으면서, 기판과 우수한 밀착력을 나타내어 소자의 안정성을 개선할 수 있는 기능성층이 형성된 유기전자소자용 기판이 제공될 수 있다. 본 출원에서는 또한 상기 기판을 포함하는 유기전자장치 및 그 용도가 제공될 수 있다.

Description

유기전자소자용 기판{SUBSTRATE FOR ORGANIC ELECTRONIC DEVICE}
본 출원은, 유기전자소자용 기판, 유기전자장치, 상기 장치 또는 기판의 제조 방법 및 조명에 관한 것이다.
유기전자소자(OED; Organic Electronic Device)는, 전류를 전도할 수 있는 유기 재료의 층을 하나 이상 포함하는 소자이다. 유기전자소자의 종류에는 유기발광소자(OLED), 유기태양전지, 유기 감광체(OPC) 또는 유기 트랜지스터 등이 포함된다.
대표적인 유기전자소자인 유기발광소자는, 통상적으로 기판, 제 1 전극층, 유기층 및 제 2 전극층을 순차로 포함한다. 소위 하부 발광형 소자(bottom emitting device)로 호칭되는 구조에서는, 제 1 전극층이 투명 전극층으로 형성되고, 제 2 전극층이 반사 전극층으로 형성될 수 있다. 또한, 소위 상부 발광형 소자(top emitting device)로 호칭되는 구조에서는 제 1 전극층이 반사 전극층으로 형성되고, 제 2 전극층이 투명 전극층으로 형성되기도 한다. 전극층에 의해서 주입된 전자(electron)와 정공(hole)이 유기층에 존재하는 발광층에서 재결합(recombination)되어 광이 생성될 수 있다. 광은 하부 발광형 소자에서는 기판측으로 상부 발광형 소자에서는 제 2 전극층측으로 방출될 수 있다. 유기발광소자의 구조에서 투명 전극층으로 일반적으로 사용되는 ITO(Indium Tin Oxide), 유기층 및 통상적으로 유리인 기판의 굴절률은 각각 대략적으로 2.0, 1.8 및 1.5 정도이다. 이러한 굴절률의 관계에 의해서, 예를 들어, 하부 발광형의 소자의 발광층에서 생성된 광은 유기층과 제 1 전극층의 계면 또는 기판 내에서 전반사(total internal reflection) 현상 등에 의해 트랩(trap)되고, 매우 소량의 광만이 방출된다.
본 출원은, 유기전자소자용 기판, 유기전자장치, 상기 기판 또는 장치의 제조 방법 및 조명을 제공한다.
예시적인 유기전자소자용 기판은, 유리 기판 및 상기 유리 기판상에 형성되어 있고, 글래스 프릿(glass frit)의 소성체와 그 내부에 존재하는 산란 입자를 포함하는 층(이하, 단순히 기능성층이라 호칭할 수 있다.)을 포함할 수 있다. 하나의 예시에서 상기 기능성층은, 필요한 경우 후술하는 고굴절층 또는 전극층과 함께 입사되는 광을 산란, 회절 또는 굴절시키는 역할을 할 수 있다. 도 1은, 유리 기판(101)상에 상기 소성체(1021)와 산란 입자(1022)를 포함하는 기능성층이 형성되어 있는 경우를 예시적으로 보여준다.
상기 유리 기판으로는 특별한 제한 없이 공지의 소재를 사용할 수 있다. 예를 들면, 유리 기판으로는, 소다석회 유리, 바륨/스트론튬 함유 유리, 납 유리, 알루미노 규산 유리, 붕규산 유리, 바륨 붕규산 유리 또는 석영 등으로 되는 기판이 예시될 수 있으나, 이에 제한되는 것은 아니다. 또한, 필요한 경우 기재층의 표면 등에는 알루미늄 등을 사용한 반사층이 형성되어 있을 수도 있다.
유리 기판상에 형성되는 기능성층에 포함되는 소성체는 상기 유리 기판과 동일하거나 유사한 굴절률을 가질 수 있다. 예를 들면, 상기 소성체는, 예를 들면, 상기 유리 기판과의 굴절률의 차이의 절대값이 약 1.5 이하, 약 1 이하, 0.7 이하, 0.5 이하 또는 0.3 이하일 수 있다. 본 명세서에서 언급되는 굴절률은, 약 550 nm의 파장에 대하여 측정된 굴절률일 수 있다. 통상적으로 유리 기판의 굴절률은 약 1.3 내지 1.7 또는 약 1.3 내지 1.6 정도의 수준이므로, 상기 소성체도 약 1.3 내지 1.7 또는 약 1.3 내지 1.6 정도의 굴절률을 가질 수 있다. 이와 같이 유리 기판과 유사한 수준의 굴절률을 가지는 소성체는 상기 산란 입자 및/또는 후술하는 고굴절층 또는 전극층과 조합되어 광을 효율적으로 산란, 굴절 및/또는 회절시킬 수 있다.
소성체 내에는 산란 입자가 포함되어 있다. 본 명세서에서 용어 「산란 입자」는, 예를 들면, 상기 소성체 또는 후술하는 고굴절층, 전극층 등과 같은 주위 물질과는 다른 굴절률을 가지면서, 광을 산란시킬 수 있을 정도의 적절한 크기를 가져서 입사광을 산란, 굴절 또는 회절시킬 수 있는 모든 종류의 입자를 의미할 수 있다. 산란 입자는, 예를 들면, 상기와 같은 굴절률 및 크기를 가지는 입자일 수 있다. 산란 입자는 상기 소성체에 비하여 높은 굴절률을 가질 수 있다. 또한, 예를 들면, 산란 입자는 후술하는 평탄층과의 굴절률의 차이가 0.3을 초과하거나 또는 0.3 이상일 수 있다. 예를 들면, 산란 입자는, 2.0 내지 3.5 또는 2.2 내지 3.0 정도의 굴절률을 가질 수 있다. 산란 입자는, 광을 산란시키기 위해 적절한 입경을 가질 필요가 있다. 예를 들면, 상기 산란 입자의 평균 입경은 50 nm 이상, 100 nm 이상, 500 nm 이상 또는 1,000 nm 이상 정도일 수 있다. 산란 입자의 평균 입경은, 예를 들면, 10,000 nm 이하일 수 있다.
하나의 예시에서 상기 산란 입자 중 적어도 하나는 상기 기능성층의 두께에 비하여 큰 입경을 가질 수 있다. 상기에서 기능성층의 두께는, 상기 산란 입자를 제외한 기능성층, 예를 들면, 상기 소성체에 의해 형성되어 있는 층의 두께일 수 있다. 이와 같이 기능성층의 두께에 비하여 큰 입경을 가지는 산란 입자를 사용하여 기능성층의 표면에 요철 구조 내지 굴곡을 형성할 수 있다. 이와 같이 형성된 굴곡은 후술하는 고굴절층 또는 전극층 등과 함께 기능성층의 기능을 보다 높일 수 있다.
산란 입자는, 구형, 타원형, 다면체 또는 무정형과 같은 형상을 가질 수 있으나, 상기 광을 산란, 굴절 및/또는 회절시킬 수 있다면, 그 형태는 특별히 제한되는 것은 아니다. 산란 입자로는, 예를 들면, 폴리스티렌 또는 그 유도체, 아크릴 수지 또는 그 유도체, 실리콘 수지 또는 그 유도체, 또는 노볼락 수지 또는 그 유도체 등과 같은 유기 재료, 또는 실리카, 알루미나, 산화 티탄 또는 산화 지르코늄과 같은 무기 재료를 포함하는 입자 등이 예시될 수 있다. 산란 입자는, 상기 재료 중에 어느 하나의 재료만을 포함하거나, 상기 중 2종 이상의 재료를 포함하여 형성될 수 있다. 예를 들면, 산란 입자로 중공 실리카(hollow silica) 등과 같은 중공 입자 또는 코어/셀 구조의 입자도 사용할 수 있다.
기능성층 내에 산란 입자의 비율은 목적하는 기능이 적절하게 발현될 수 있는 한 특별히 제한되는 것은 아니다. 예를 들면, 상기 산란 입자는 기능성층 내에 약 5 중량% 내지 50 중량%의 비율로 포함될 수 있다. 본 명세서에서 단위 중량부는 특별히 달리 규정하지 않는 한, 성분들간의 중량의 비율을 의미할 수 있다.
필요한 경우 상기 기능성층의 상부에는 고굴절층이 형성될 수 있다. 본 명세서에서 용어 고굴절층은 550 nm의 파장에 대한 굴절률이 1.7 이상, 1.8 내지 3.5 또는 2.2 내지 3.0 정도인 층을 의미할 수 있다. 상기 고굴절층은, 예를 들면, 후술하는 전극층 등 다른 요소가 형성될 수 있는 평탄한 표면을 제공하는 평탄층일 수 있다.
도 2는, 도 1에서 언급한 기능성층상에 고굴절층(201)이 형성되어 있는 경우를 나타내는 예시적인 도면이다.
고굴절층은, 예를 들면, 높은 굴절률을 가지는 매트릭스 물질 또는 매트릭스 물질과 고굴절 입자를 혼합한 소재를 사용하여 형성할 수 있다.
매트릭스 물질로는, 예를 들면, 폴리이미드, 플루오렌 고리를 가지는 카도계 수지(caldo resin), 우레탄, 에폭시드, 폴리에스테르 또는 아크릴레이트 계열의 열 또는 광경화성의 단량체성, 올리고머성 또는 고분자성 유기 재료나 산화 규소, 질화 규소(silicon nitride), 옥시질화 규소(silicon oxynitride) 또는 폴리실록산 등의 무기 재료 또는 유무기 복합 재료 등을 사용할 수 있다.
매트릭스 물질은, 폴리실록산, 폴리아믹산 또는 폴리이미드를 포함할 수 있다. 상기에서 폴리실록산은, 예를 들면, 축합성 실란 화합물 또는 실록산 올리고머 등을 중축합시켜서 형성할 수 있으며, 상기를 통해 규소와 산소의 결합(Si-O)에 기반한 매트릭스 물질을 형성할 수 있다. 매트릭스 물질의 형성 과정에서 축합 조건 등을 조절하여 폴리실록산이 실록산 결합(Si-O)만을 기반으로 하도록 하거나, 혹은 알킬기 등과 같은 유기기나 알콕시기 등과 같은 축합성 관능기 등이 일부 잔존하도록 하는 것도 가능하다.
폴리아믹산 또는 폴리이미드로는, 예를 들면, 633 nm의 파장의 광에 대한 굴절률이 약 1.5 이상, 약 1.6 이상, 약 1.65 이상 또는 약 1.7 이상인 폴리아믹산 또는 폴리이미드를 사용할 수 있다. 이러한 고굴절의 폴리아믹산 또는 폴리이미드는, 예를 들면, 불소 이외의 할로겐 원자, 황 원자 또는 인 원자 등이 도입된 단량체를 사용하여 제조할 수 있다. 예를 들면, 카복실기 등과 같이 입자와 결합할 수 있는 부위가 존재하여 입자의 분산 안정성을 향상시킬 수 있는 폴리아믹산을 사용할 수 있다. 폴리아믹산으로는, 예를 들면, 하기 화학식 1의 반복 단위를 포함하는 화합물을 사용할 수 있다.
[화학식 1]
Figure pat00001
화학식 1에서 n은 양의 수이다.
상기 반복 단위는 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다. 치환기로는, 불소 외의 할로겐 원자, 페닐기, 벤질기, 나프틸기 또는 티오페닐기 등과 같은 할로겐 원자, 황 원자 또는 인 원자 등을 포함하는 관능기가 예시될 수 있다.
폴리아믹산은, 상기 화학식 1의 반복 단위만으로 형성되는 단독 중합체이거나, 화학식 1의 반복 단위 외의 다른 단위를 함께 포함하는 블록 또는 랜덤 공중합체일 수 있다. 공중합체의 경우에 다른 반복 단위의 종류나 비율은 예를 들면, 목적하는 굴절률, 내열성이나 투광율 등을 저해하지 않는 범위에서 적절하게 선택될 수 있다.
화학식 1의 반복 단위의 구체적인 예로는, 하기 화학식 2의 반복 단위를 들 수 있다.
[화학식 2]
Figure pat00002
화학식 2에서 n은 양의 수이다.
상기 폴리아믹산은 예를 들면, GPC(Gel Permeation Chromatograph)로 측정한 표준 폴리스티렌 환산 중량평균분자량이 10,000 내지 100,000 또는 약 10,000 내지 50,000 정도일 수 있다. 화학식 1의 반복 단위를 가지는 폴리아믹산은 또한, 가시 광선 영역에서의 광 투과율이 80% 이상, 85% 이상 또는 90% 이상이며, 내열성이 우수하다.
고굴절층은 고굴절 입자를 포함할 수 있다. 본 명세서에서 용어 「고굴절 입자」는, 예를 들면, 굴절률이 1.5 이상, 2.0 이상 2.5 이상, 2.6 이상 또는 2.7 이상인 입자를 의미할 수 있다. 고굴절 입자의 굴절률의 상한은, 예를 들면, 목적하는 굴절률을 만족시킬 수 있는 범위에서 선택될 수 있다. 고굴절 입자는, 예를 들면, 상기 산란 입자보다는 작은 평균 입경을 가질 수 있다. 고굴절 입자는, 예를 들면, 1 nm 내지 100 nm, 10 nm 내지 90 nm, 10 nm 내지 80 nm, 10 nm 내지 70 nm, 10 nm 내지 60 nm, 10 nm 내지 50 nm 또는 10 nm 내지 45 nm 정도의 평균 입경을 가질 수 있다. 고굴절 입자로는, 알루미나, 알루미노 실리케이트, 산화 티탄 또는 산화 지르코늄 등이 예시될 수 있다. 고굴절 입자로는, 예를 들면, 굴절률이 2.5 이상인 입자로서, 루틸형 산화 티탄을 사용할 수 있다. 루틸형의 산화 티탄은 여타의 입자에 비하여 높은 굴절률을 가지고, 따라서 상대적으로 적은 비율로도 목적하는 굴절률로의 조절이 가능할 수 있다.
고굴절층은, 지르코늄, 티탄 또는 세륨 등의 금속의 알콕시드 또는 아실레이트(acylate) 등의 화합물을 카복실기 또는 히드록시기 등의 극성기를 가지는 바인더와 배합한 소재를 사용하여 형성할 수도 있다. 상기 알콕시드 또는 아실레이트 등의 화합물은 바인더에 있는 극성기와 축합 반응하고, 바인더의 골격 내에 상기 금속을 포함시켜 고굴절률을 구현할 수 있다. 상기 알콕시드 또는 아실레이트 화합물의 예로는, 테트라-n-부톡시 티탄, 테트라이소프로폭시 티탄, 테트라-n-프로폭시 티탄 또는 테트라에톡시 티탄 등의 티탄 알콕시드, 티탄 스테아레이트(stearate) 등의 티탄 아실레이트, 티탄 킬레이트류, 테트라-n-부톡시지르코늄, 테트라-n-프로폭시 지르코늄, 테트라이소프로폭시 지르코늄 또는 테트라에톡시 지르코늄 등의 지르코늄 알콕시드, 지르코늄 트리부톡시스테아레이트 등의 지르코늄 아실레이트, 지르코늄 킬레이트류 등이 예시될 수 있다. 고굴절층은, 또한 티탄 알콕시드 또는 지르코늄 알콕시드 등의 금속 알콕시드 및 알코올 또는 물 등의 용매를 배합하여 코팅액을 제조하고, 이를 도포한 후에 적정한 온도에서 소성하는 졸겔 코팅 방식으로 형성할 수도 있다.
유기전자소자용 기판은, 상기 기능성층 또는 기능성층과 고굴절층의 상부에 형성되는 전극층을 또한 포함할 수 있다.
도 3 및 4는, 기재층(101)상에 상기 소성체와 산란 입자를 포함하는 기능성층(301)과 전극층(302)이 순차로 형성되어 있는 구조를 포함하는 예시적인 기판을 나타낸다. 도면에서와 같이 기능성층(301)은, 상기 기재층(101)에 비하여 작은 투영 면적을 가지고, 전극층(302)은 상기 기능성층(301)에 비하여 넓은 투영 면적을 가질 수 있다. 본 명세서에서 용어 「투영 면적」은, 기판을 상기 기판 표면의 법선 방향의 상부에서 관찰하였을 때에 인지되는 대상물의 투영의 면적, 예를 들면, 상기 기재층, 기능성층 또는 전극층 등의 면적을 의미한다. 따라서, 예를 들어, 기능성층의 표면이 상기 언급한 것처럼 요철 형상으로 형성되어 있는 등의 이유로 실질적인 표면적은 전극층에 비하여 넓은 경우에도 기능성층을 상부에서 관찰하였을 경우에 인지되는 면적이 상기 전극층을 상부에서 관찰하였을 경우에 인지되는 면적에 비하여 작다면 기능성층은 전극층에 비하여 작은 투영 면적을 가지는 것으로 해석된다.
기능성층은 기재층에 비하여 투영 면적이 작고, 또한 전극층에 비하여 투영 면적이 작게 된다면 다양한 형태로 존재할 수 있다. 예를 들면, 기능성층(301)은 도 3과 같이 기재층(101)의 테두리를 제외한 부분에만 형성되어 있거나, 도 4와 같이 기재층(101)의 테두리에 기능성층(302)이 일부 잔존할 수도 있다.
도 5은, 도 3의 기판을 상부에서 관찰한 경우를 예시적으로 보여주는 도면이다. 도 5에 나타난 바와 같이 기판을 상부에서 관찰할 때에 인지되는 전극층(302)의 면적(A), 즉 전극층(302)의 투영 면적(A)은 그 하부에 있는 기능성층(301)의 투영 면적(B)에 비하여 넓다. 전극층의 투영 면적(A) 및 상기 기능성층의 투영 면적(B)의 비율(A/B)은, 예를 들면, 1.04 이상, 1.06 이상, 1.08 이상, 1.1 이상 또는 1.15 이상일 수 있다. 기능성층의 투영 면적이 전극층의 투영 면적에 비하여 작다면, 후술하는 기능성층이 외부로 노출되지 않는 구조의 구현이 가능하기 때문에 상기 투영 면적의 비율(A/B)의 상한은 특별히 제한되지 않는다. 일반적인 기판의 제작 환경을 고려하면 상기 비율(A/B)의 상한은, 예를 들면, 약 2.0, 약 1.5, 약 1.4, 약 1.3 또는 약 1.25일 수 있다. 기판에서 전극층은 기능성층이 형성되어 있지 않은 상기 기재층의 상부에도 형성되어 있을 수 있다. 상기 전극층은 상기 기재층과 접하여 형성되어 있거나, 혹은 추가적인 요소를 포함하여 형성되어 있을 수 있다. 이러한 구조에 의하여 유기전자소자의 구현 시에 기능성층이 외부로 노출되지 않은 구조를 구현할 수 있다.
예를 들어, 도 5와 같이 전극층(302)은, 상부에서 관찰한 때에 기능성층(301)의 모든 주변부를 벗어난 영역을 포함하는 영역까지 형성되어 있을 수 있다. 이 경우, 예를 들어, 도 4와 같이 기재층상에 복수의 기능성층이 존재할 경우에는 상기 기능성층 중에서 적어도 하나의 기능성층, 예를 들면, 후술하는 바와 같이 적어도 그 상부에 유기층이 형성될 기능성층의 모든 주변부를 벗어난 영역을 포함하는 영역까지 전극층이 형성될 수 있다. 예를 들어, 도 4의 구조에서 우측과 좌측의 테두리에 존재하는 기능성층의 상부에도 유기층이 형성된다면, 도 4의 구조는 좌측과 우측으로 연장되어 상기 우측과 좌측의 테두리에 존재하는 기능성층의 모든 주변주를 벗어난 영역까지 전극층이 형성되도록 구조가 변경될 수 있다. 상기와 같은 구조에서 하부에 기능성층이 형성되어 있지 않은 전극층에 후술하는 봉지 구조를 부착하면, 기능성층이 외부로 노출되지 않는 구조를 형성할 수 있다.
전극층은, 유기전자소자의 제작에 사용되는 통상적인 정공 주입성 또는 전자 주입성 전극층일 수 있다.
정공 주입성인 전극층은, 예를 들면, 상대적으로 높은 일 함수(work function)를 가지는 재료를 사용하여 형성할 수 있고, 필요한 경우에 투명 재료를 사용하여 형성할 수 있다. 예를 들면, 정공 주입성 전극층은, 일 함수가 약 4.0 eV 이상인 금속, 합금, 전기 전도성 화합물 또는 상기 중 2종 이상의 혼합물을 포함할 수 있다. 이러한 재료로는, 금 등의 금속, CuI, ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), ZTO(Zinc Tin Oxide), 알루미늄 또는 인듐이 도핑된 아연 옥사이드, 마그네슘 인듐 옥사이드, 니켈 텅스텐 옥사이드, ZnO, SnO2 또는 In2O3 등의 산화물 재료나, 갈륨 니트라이드와 같은 금속 니트라이드, 아연 세레나이드 등과 같은 금속 세레나이드, 아연 설파이드와 같은 금속 설파이드 등이 예시될 수 있다. 투명한 정공 주입성 전극층은, 또한, Au, Ag 또는 Cu 등의 금속 박막과 ZnS, TiO2 또는 ITO 등과 같은 고굴절의 투명 물질의 적층체 등을 사용하여서도 형성할 수 있다.
정공 주입성 전극층은, 증착, 스퍼터링, 화학 증착 또는 전기화학적 수단 등의 임의의 수단으로 형성될 수 있다. 또한, 필요에 따라서 형성된 전극층은 공지된 포토리소그래피나 새도우 마스크 등을 사용한 공정을 통하여 패턴화될 수도 있다.
전자 주입성 투명 전극층은, 예를 들면, 상대적으로 작은 일 함수를 가지는 투명 재료를 사용하여 형성할 수 있으며, 예를 들면, 상기 정공 주입성 전극층의 형성을 위해 사용되는 소재 중에서 적절한 소재를 사용하여 형성할 수 있으나, 이에 제한되는 것은 아니다. 전자 주입성 전극층도, 예를 들면, 증착법 또는 스퍼터링법 등을 사용하여 형성할 수 있으며, 필요한 경우에 적절히 패터닝될 수 있다. 전극층의 두께는 특별히 제한되는 것은 아니지만, 상기 언급한 전극층간의 저항 등을 고려하여, 예를 들면, 약 90 nm 내지 200 nm, 90 nm 내지 180 nm 또는 약 90 nm 내지 150 nm 정도의 두께를 가지도록 형성될 수 있다.
본 출원은 또한 유기전자장치에 관한 것이다. 본 출원의 예시적인 유기전자장치는, 상기 기술한 유기전자소자용 기판; 및 상기 기판상, 예를 들면, 상기 기능성층, 고굴절층 또는 전극층상에 형성되어 있는 유기층; 및 상기 유기층상에 형성되어 있는 전극층을 포함할 수 있다. 이하에서는 구별을 위하여 기판상에 형성되는 전극층을 제 1 전극층으로 호칭하고, 상기 유기층상에 형성되어 있는 전극층을 제 2 전극층이라고 호칭할 수 있다. 상기 유기전자장치에서 제 1 전극층의 투영 면적은 상기 기판의 기능성층의 투영 면적보다 넓으며, 상기 전극층은 상기 기능성층이 형성되어 있지 않은 상기 기재층의 면상에도 형성되어 있을 수 있다.
유기층은 적어도 발광층을 포함할 수 있다. 예를 들어, 제 1 전극층을 투명하게 구현하고, 제 2 전극층을 반사성 전극층으로 하면 유기층의 발광층에서 발생한 광이 기능성층을 거쳐서 기재층측으로 방사되는 하부 발광형 소자를 구현할 수 있다.
유기전자장치에서 기능성층은, 예를 들면, 발광층의 발광 영역에 대응되거나 발광 영역보다 큰 투영 면적을 가질 수 있다. 예를 들어, 기능성층의 형성 영역의 길이(B)와 발광층의 발광 영역의 길이(C)의 차이(B-C)는 약 10 ㎛ 내지 약 2 mm 정도일 수 있다. 상기에서 기능성층의 형성 영역의 길이(B)는 기능성층을 상부에서 관찰할 때에 인지되는 영역에서 임의의 방향에서의 길이이고, 이 경우 발광 영역의 길이(C)는 역시 발광 영역을 상부에서 관찰할 때에 인지되는 영역을 기준으로 상기 기능성층의 형성 영역의 길이(B)를 측정할 때에 동일한 방향에서 측정한 길이를 의미할 수 있다. 기능성층은 또한 상기 발광 영역에 대응되는 위치에 형성될 수 있다. 발광 영역에 대응되는 위치에 기능성층이 형성되어 있다는 것은, 예를 들면, 유기전자장치를 상부 또는 하부에서 관찰하는 경우에 발광 영역과 기능성층이 실질적으로 서로 겹쳐지는 경우를 의미할 수 있다.
하나의 예시에서 유기전자소자는 유기발광소자(OLED)일 수 있다. 유기발광소자인 경우, 상기 유기전자소자는, 예를 들면, 발광층을 적어도 포함하는 유기층이 정공 주입 전극층과 전자 주입 전극층의 사이에 개재된 구조를 가질 수 있다. 예를 들어, 기판에 포함되는 전극층이 정공 주입 전극층이면, 제 2 전극층은 전자 주입 전극층이고, 반대로 기판에 포함되는 전극층이 전자 주입 전극층이면, 제 2 전극층은 정공 주입성 전극층일 수 있다.
전자 및 정공 주입성 전극층의 사이에 존재하는 유기층은, 적어도 1층 이상의 발광층을 포함할 수 있다. 유기층은 2층 이상의 복수의 발광층을 포함할 수도 있다. 2층 이상의 발광층을 포함되는 경우에는, 발광층들은 전하 발생 특성을 가지는 중간 전극층이나 전하 발생층(CGL; Charge Generating Layer) 등에 의해 분할되어 있는 구조를 가질 수도 있다.
발광층은, 예를 들면, 이 분야에 공지된 다양한 형광 또는 인광 유기 재료를 사용하여 형성할 수 있다. 발광층에 사용될 수 있는 재료로는, 트리스(4-메틸-8-퀴놀리놀레이트)알루미늄(III)(tris(4-methyl-8-quinolinolate)aluminum(III))(Alg3), 4-MAlq3 또는 Gaq3 등의 Alq 계열의 재료, C-545T(C26H26N2O2S), DSA-아민, TBSA, BTP, PAP-NPA, 스피로-FPA, Ph3Si(PhTDAOXD), PPCP(1,2,3,4,5-pentaphenyl-1,3-cyclopentadiene) 등과 같은 시클로페나디엔(cyclopenadiene) 유도체, DPVBi(4,4'-bis(2,2'-diphenylyinyl)-1,1'-biphenyl), 디스티릴 벤젠 또는 그 유도체 또는 DCJTB(4-(Dicyanomethylene)-2-tert-butyl-6-(1,1,7,7,-tetramethyljulolidyl-9-enyl)-4H-pyran), DDP, AAAP, NPAMLI; 또는 Firpic, m-Firpic, N-Firpic, bon2Ir(acac), (C6)2Ir(acac), bt2Ir(acac), dp2Ir(acac), bzq2Ir(acac), bo2Ir(acac), F2Ir(bpy), F2Ir(acac), op2Ir(acac), ppy2Ir(acac), tpy2Ir(acac), FIrppy(fac-tris[2-(4,5'-difluorophenyl)pyridine-C'2,N] iridium(III)) 또는 Btp2Ir(acac)(bis(2-(2'-benzo[4,5-a]thienyl)pyridinato-N,C3'-)iridium(acetylactonate)) 등과 같은 인광 재료 등이 예시될 수 있지만, 이에 제한되는 것은 아니다. 발광층은, 상기 재료를 호스트(host)로 포함하고, 또한 페릴렌(perylene), 디스티릴비페닐(distyrylbiphenyl), DPT, 퀴나크리돈(quinacridone), 루브렌(rubrene), BTX, ABTX 또는 DCJTB 등을 도펀트로 포함하는 호스트-도펀트 시스템(Host-Dopant system)을 가질 수도 있다.
발광층은 또한 후술하는 전자 수용성 유기 화합물 또는 전자 공여성 유기 화합물 중에서 발광 특성을 나타내는 종류를 적절히 채용하여 형성할 수 있다.
유기층은, 발광층을 포함하는 한, 이 분야에 공지된 다른 다양한 기능성층을 추가로 포함하는 다양한 구조로 형성될 수 있다. 유기층에 포함될 수 있는 층으로는, 전자 주입층, 정공 저지층, 전자 수송층, 정공 수송층 및 정공 주입층 등이 예시될 수 있다.
전자 주입층 또는 전자 수송층은, 예를 들면, 전자 수용성 유기 화합물(electron accepting organic compound)을 사용하여 형성할 수 있다. 상기에서 전자 수용성 유기 화합물로는, 특별한 제한 없이 공지된 임의의 화합물이 사용될 수 있다. 이러한 유기 화합물로는, p-테르페닐(p-terphenyl) 또는 쿠아테르페닐(quaterphenyl) 등과 같은 다환 화합물 또는 그 유도체, 나프탈렌(naphthalene), 테트라센(tetracene), 피렌(pyrene), 코로넨(coronene), 크리센(chrysene), 안트라센(anthracene), 디페닐안트라센(diphenylanthracene), 나프타센(naphthacene) 또는 페난트렌(phenanthrene) 등과 같은 다환 탄화수소 화합물 또는 그 유도체, 페난트롤린(phenanthroline), 바소페난트롤린(bathophenanthroline), 페난트리딘(phenanthridine), 아크리딘(acridine), 퀴놀린(quinoline), 키노사린(quinoxaline) 또는 페나진(phenazine) 등의 복소환화합물 또는 그 유도체 등이 예시될 수 있다. 또한, 플루오르세인(fluoroceine), 페리렌(perylene), 프타로페리렌(phthaloperylene), 나프타로페리렌(naphthaloperylene), 페리논(perynone), 프타로페리논, 나프타로페리논, 디페닐부타디엔(diphenylbutadiene), 테트라페닐부타디엔(tetraphenylbutadiene), 옥사디아졸(oxadiazole), 아르다진(aldazine), 비스벤조옥사조린(bisbenzoxazoline), 비스스티릴(bisstyryl), 피라진(pyrazine), 사이크로펜타디엔(cyclopentadiene), 옥신(oxine), 아미노퀴놀린(aminoquinoline), 이민(imine), 디페닐에틸렌, 비닐안트라센, 디아미노카르바졸(diaminocarbazole), 피란(pyrane), 티오피란(thiopyrane), 폴리메틴(polymethine), 메로시아닌(merocyanine), 퀴나크리돈(quinacridone) 또는 루부렌(rubrene) 등이나 그 유도체, 일본특허공개 제1988-295695호, 일본특허공개 제1996-22557호, 일본특허공개 제1996-81472호, 일본특허공개 제1993-009470호 또는 일본특허공개 제1993-017764호 등의 공보에서 개시하는 금속 킬레이트 착체 화합물, 예를 들면, 금속 킬레이트화 옥사노이드화합물인 트리스(8-퀴놀리노라토)알루미늄[tris(8-quinolinolato)aluminium], 비스(8-퀴놀리노라토)마그네슘, 비스[벤조(에프)-8-퀴놀뤼노라토]아연{bis[benzo(f)-8-quinolinolato]zinc}, 비스(2-메틸-8-퀴놀리노라토)알루미늄, 트리스(8-퀴놀리노라토)인디엄[tris(8-quinolinolato)indium], 트리스(5-메틸-8-퀴놀리노라토)알루미늄, 8-퀴놀리노라토리튬, 트리스(5-클로로-8-퀴놀리노라토)갈륨, 비스(5-클로로-8-퀴놀리노라토)칼슘 등의 8-퀴놀리노라토 또는 그 유도체를 배립자로 하나 이상 가지는 금속 착체, 일본특허공개 제1993-202011호, 일본특허공개 제1995-179394호, 일본특허공개 제1995-278124호 또는 일본특허공개 제1995-228579호 등의 공보에 개시된 옥사디아졸(oxadiazole) 화합물, 일본특허공개 제1995-157473호 공보 등에 개시된 트리아진(triazine) 화합물, 일본특허공개 제1994-203963호 공보 등에 개시된 스틸벤(stilbene) 유도체나, 디스티릴아릴렌(distyrylarylene) 유도체, 일본특허공개 제1994-132080호 또는 일본특허공개 제1994-88072호 공보 등에 개시된 스티릴 유도체, 일본특허공개 제1994-100857호나 일본특허공개 제1994-207170호 공보 등에 개시된 디올레핀 유도체; 벤조옥사졸(benzooxazole) 화합물, 벤조티아졸(benzothiazole) 화합물 또는 벤조이미다졸(benzoimidazole) 화합물 등의 형광 증백제; 1,4-비스(2-메틸스티릴)벤젠, 1,4-비스(3-메틸스티릴)벤젠, 1,4-비스(4-메틸스티릴)벤젠, 디스티릴벤젠, 1,4-비스(2-에틸스티릴)벤질, 1,4-비스(3-에틸스티릴)벤젠, 1,4-비스(2-메틸스티릴)-2-메틸벤젠 또는 1,4-비스(2-메틸스티릴)-2-에틸벤젠 등과 같은 디스티릴벤젠(distyrylbenzene) 화합물; 2,5-비스(4-메틸스티릴)피라진, 2,5-비스(4-에틸스티릴)피라진, 2,5-비스[2-(1-나프틸)비닐]피라진, 2,5-비스(4-메톡시스티릴)피라진, 2,5-비스[2-(4-비페닐)비닐]피라진 또는 2,5-비스[2-(1-피레닐)비닐]피라진 등의 디스티릴피라진(distyrylpyrazine) 화합물, 1,4-페닐렌디메틸리딘, 4,4'-페닐렌디메틸리딘, 2,5-크실렌디메틸리딘, 2,6-나프틸렌디메틸리딘, 1,4-비페닐렌디메틸리딘, 1,4-파라-테레페닐렌디메텔리딘, 9,10-안트라센디일디메틸리딘(9,10-anthracenediyldimethylidine) 또는 4,4'-(2,2-디-티-부틸페닐비닐)비페닐, 4,4'-(2,2-디페닐비닐)비페닐 등과 같은 디메틸리딘(dimethylidine) 화합물 또는 그 유도체, 일본특허공개 제1994-49079호 또는 일본특허공개 제1994-293778호 공보 등에 개시된 실라나민(silanamine) 유도체, 일본특허공개 제1994-279322호 또는 일본특허공개 제1994-279323호 공보 등에 개시된 다관능 스티릴 화합물, 일본특허공개 제1994-107648호 또는 일본특허공개 제1994-092947호 공보 등에 개시되어 있는 옥사디아졸 유도체, 일본특허공개 제1994-206865호 공보 등에 개시된 안트라센 화합물, 일본특허공개 제1994-145146호 공보 등에 개시된 옥시네이트(oxynate) 유도체, 일본특허공개 제1992-96990호 공보 등에 개시된 테트라페닐부타디엔 화합물, 일본특허공개 제1991-296595호 공보 등에 개시된 유기 삼관능 화합물, 일본특허공개 제1990-191694호 공보 등에 개시된 쿠마린(coumarin)유도체, 일본특허공개 제1990-196885호 공보 등에 개시된 페리렌(perylene) 유도체, 일본특허공개 제1990-255789호 공보 등에 개시된 나프탈렌 유도체, 일본특허공개 제1990-289676호나 일본특허공개 제1990-88689호 공보 등에 개시된 프탈로페리논(phthaloperynone) 유도체 또는 일본특허공개 제1990-250292호 공보 등에 개시된 스티릴아민 유도체 등도 저굴절층에 포함되는 전자 수용성 유기 화합물로서 사용될 수 있다. 또한, 상기에서 전자 주입층은, 예를 들면, LiF 또는 CsF 등과 같은 재료를 사용하여 형성할 수도 있다.
정공 저지층은, 주입된 정공이 발광층을 지나 전자 주입성 전극층으로 진입하는 것을 방지하여 소자의 수명과 효율을 향상시킬 수 있는 층이고, 필요한 경우에 공지의 재료를 사용하여 발광층과 전자 주입성 전극층의 사이에 적절한 부분에 형성될 수 있다.
정공 주입층 또는 정공 수송층은, 예를 들면, 전자 공여성 유기 화합물(electron donating organic compound)을 포함할 수 있다. 전자 공여성 유기 화합물로는, N,N',N'-테트라페닐-4,4'-디아미노페닐, N,N'-디페닐-N,N'-디(3-메틸페닐)-4,4'-디아미노비페닐, 2,2-비스(4-디-p-톨릴아미노페닐)프로판, N,N,N',N'-테트라-p-톨릴-4,4'-디아미노비페닐, 비스(4-디-p-톨릴아미노페닐)페닐메탄, N,N'-디페닐-N,N'-디(4-메톡시페닐)-4,4'-디아미노비페닐, N,N,N',N'-테트라페닐-4,4'-디아미노디페닐에테르, 4,4'-비스(디페닐아미노)쿠아드리페닐[4,4'-bis(diphenylamino)quadriphenyl], 4-N,N-디페닐아미노-(2-디페닐비닐)벤젠, 3-메톡시-4'-N,N-디페닐아미노스틸벤젠, N-페닐카르바졸, 1,1-비스(4-디-p-트리아미노페닐)시크로헥산, 1,1-비스(4-디-p-트리아미노페닐)-4-페닐시크로헥산, 비스(4-디메틸아미노-2-메틸페닐)페닐메탄, N,N,N-트리(p-톨릴)아민, 4-(디-p-톨릴아미노)-4'-[4-(디-p-톨릴아미노)스티릴]스틸벤, N,N,N',N'-테트라페닐-4,4'-디아미노비페닐 N-페닐카르바졸, 4,4'-비스[N-(1-나프틸)-N-페닐-아미노]비페닐, 4,4'-비스[N-(1-나프틸)-N-페닐아미노]p-테르페닐, 4,4'-비스[N-(2-나프틸)-N-페닐아미노]비페닐, 4,4'-비스[N-(3-아세나프테닐)-N-페닐아미노]비페닐, 1,5-비스[N-(1-나프틸)-N-페닐아미노]나프탈렌, 4,4'-비스[N-(9-안트릴)-N-페닐아미노]비페닐페닐아미노]비페닐, 4,4'-비스[N-(1-안트릴)-N-페닐아미노]-p-테르페닐, 4,4'-비스[N-(2-페난트릴)-N-페닐아미노]비페닐, 4,4'-비스[N-(8-플루오란테닐)-N-페닐아미노]비페닐, 4,4'-비스[N-(2-피레닐)-N-페닐아미노]비페닐, 4,4'-비스[N-(2-페릴레닐)-N-페닐아미노]비페닐, 4,4'-비스[N-(1-코로네닐)-N-페닐아미노]비페닐(4,4'-bis[N-(1-coronenyl)-N-phenylamino]biphenyl), 2,6-비스(디-p-톨릴아미노)나프탈렌, 2,6-비스[디-(1-나프틸)아미노]나프탈렌, 2,6-비스[N-(1-나프틸)-N-(2-나프틸)아미노]나프탈렌, 4,4'-비스[N,N-디(2-나프틸)아미노]테르페닐, 4,4'-비스{N-페닐-N-[4-(1-나프틸)페닐]아미노}비페닐, 4,4'-비스[N-페닐-N-(2-피레닐)아미노]비페닐, 2,6-비스[N,N-디-(2-나프틸)아미노]플루오렌 또는 4,4'-비스(N,N-디-p-톨릴아미노)테르페닐, 및 비스(N-1-나프틸)(N-2-나프틸)아민 등과 같은 아릴 아민 화합물이 대표적으로 예시될 수 있으나, 이에 제한되는 것은 아니다.
정공 주입층이나 정공 수송층은, 상기 유기화합물을 고분자 중에 분산시키거나, 상기 유기 화합물로부터 유래한 고분자를 사용하여 형성할 수도 있다. 또한, 폴리파라페닐렌비닐렌 및 그 유도체 등과 같이 소위 π-공역 고분자(π-conjugated polymers), 폴리(N-비닐카르바졸) 등의 정공 수송성 비공역 고분자 또는 폴리실란의 σ 공역 고분자 등도 사용될 수 있다.
정공 주입층은, 구리프탈로시아닌과 같은 금속 프탈로시아닌이나 비금속 프탈로시아닌, 카본막 및 폴리아닐린 등의 전기적으로 전도성인 고분자 들을 사용하여 형성하거나, 상기 아릴 아민 화합물을 산화제로 하여 루이스산(Lewis acid)과 반응시켜서 형성할 수도 있다.
예시적으로 유기발광소자는, 순차적으로 형성된 (1) 정공 주입 전극층/유기 발광층/전자 주입 전극층의 형태; (2) 정공 주입 전극층/정공 주입층/유기 발광층/전자 주입 전극층의 형태; (3) 정공 주입 전극층/유기 발광층/전자 주입층/전자 주입 전극층의 형태; (4) 정공 주입 전극층/정공 주입층/유기 발광층/전자 주입층/전자 주입 전극층의 형태; (5) 정공 주입 전극층/유기 반도체층/유기 발광층/전자 주입 전극층의 형태; (6) 정공 주입 전극층/유기 반도체층/전자장벽층/유기 발광층/전자 주입 전극층의 형태; (7) 정공 주입 전극층/유기 반도체층/유기 발광층/부착개선층/전자 주입 전극층의 형태; (8) 정공 주입 전극층/정공 주입층/정공 수송층/유기 발광층/전자 주입층/전자 주입 전극층의 형태; (9) 정공 주입 전극층/절연층/유기 발광층/절연층/전자 주입 전극층의 형태; (10) 정공 주입 전극층/무기 반도체층/절연층/유기 발광층/절연층/전자 주입 전극층의 형태; (11) 정공 주입 전극층/유기 반도체층/절연층/유기 발광층/절연층/전자 주입 전극층의 형태; (12) 정공 주입 전극층/절연층/정공 주입층/정공 수송층/유기 발광층/절연층/전자 주입 전극층의 형태 또는 (13) 정공 주입 전극층/절연층/정공 주입층/정공 수송층/유기 발광층/전자 주입층/전자 주입 전극층의 형태를 가질 수 있으며, 경우에 따라서는 정공 주입 전극층과 전자 주입 전극층의 사이에 적어도 2개의 발광층이 전하 발생 특성을 가지는 중간 전극층 또는 전하 발생층(CGL: Charge Generating Layer)에 의해 분할되어 있는 구조의 유기층을 포함하는 형태를 가질 수도 있으나, 이에 제한되는 것은 아니다.
이 분야에서는 정공 또는 전자 주입 전극층과 유기층, 예를 들면, 발광층, 전자 주입 또는 수송층, 정공 주입 또는 수송층을 형성하기 위한 다양한 소재 및 그 형성 방법이 공지되어 있으며, 상기 유기전자장치의 제조에는 상기와 같은 방식이 모두 적용될 수 있다.
유기전자장치는, 봉지 구조를 추가로 포함할 수 있다. 상기 봉지 구조는, 유기전자장치의 유기층으로 수분이나 산소 등과 같은 외래 물질이 유입되지 않도록 하는 보호 구조일 수 있다. 봉지 구조는, 예를 들면, 글라스캔 또는 금속캔 등과 같은 캔이거나, 상기 유기층의 전면을 덮고 있는 필름일 수 있다.
도 6은, 순차 형성된 기재층(101), 기능성층(301) 및 제 1 전극층(302)을 포함하는 기판 상에 형성된 유기층(701) 및 제 2 전극층(702)이 글라스캔 또는 금속캔 등과 같은 캔 구조의 봉지 구조(703)에 의해 보호되어 있는 형태를 예시적으로 보여준다. 도 6의 봉지 구조(703)는, 예를 들면, 접착제에 의해서 부착되어 있을 수 있다. 봉지 구조(703)는, 예를 들면, 기판에서 하부에 기능성층이 존재하지 않는 전극층에 접착되어 있을 수 있다. 예를 들면, 도 6과 같이 봉지 구조(703)는, 기판의 끝단에 접착제에 의해 부착되어 있을 수 있다. 이러한 방식으로 봉지 구조를 통한 보호 효과를 극대화할 수 있다.
봉지 구조는, 예를 들면, 유기층과 제 2 전극층의 전면을 피복하고 있는 필름일 수 있다. 도 7은, 유기층(701)과 제 2 전극층(702)의 전면을 덮고 있는 필름 형태의 봉지 구조(703)를 예시적으로 나타내고 있다. 예를 들면, 필름 형태의 봉지 구조(703)는, 도 7과 같이 유기층(701)과 제 2 전극층(702)의 전면을 피복하면서, 상기 기재층(101), 기능성층(301) 및 전극층(302)을 포함하는 기판과 상부의 제 2 기판(801)을 서로 접착시키고 있는 구조를 가질 수 있다. 제 2 기판(801)으로는, 예를 들면, 유리 기판, 금속 기판, 고분자 필름 또는 배리어층 등이 예시될 수 있다. 필름 형태의 봉지 구조는, 예를 들면, 에폭시 수지 등과 같이 열 또는 자외선(UV)의 조사 등에 의해 경화되는 액상의 재료를 도포하고, 경화시켜서 형성하고나, 혹은 상기 에폭시 수지 등을 사용하여 미리 필름 형태로 제조된 접착 시트 등을 사용하여 기판과 상부 기판을 라미네이트하는 방식으로 형성할 수 있다.
봉지 구조는, 필요한 경우, 산화 칼슘, 산화 베릴륨 등의 금속 산화물, 염화 칼슘 등과 같은 금속 할로겐화물 또는 오산화 인 등과 같은 수분 흡착제 또는 게터재 등을 포함할 수 있다. 수분 흡착제 또는 게터재는, 예를 들면, 필름 형태의 봉지 구조의 내부에 포함되어 있거나, 혹은 캔 구조의 봉지 구조의 소정 위치에 존재할 수 있다. 봉지 구조는 또한 배리어 필름이나 전도성 필름 등을 추가로 포함할 수 있다.
상기 봉지 구조는, 예를 들면, 도 6 또는 7에 나타난 바와 같이, 하부에 기능성층(301)이 형성되어 있지 않은 제 1 전극층(302)의 상부에 부착되어 있을 수 있다. 이에 따라서 기능성층이 외부로 노출되지 않는 밀봉 구조를 구현할 수 있다. 상기 밀봉 구조는, 예를 들면, 기능성층의 전면이 상기 기재층, 전극층 및/또는 봉지 구조에 의해 둘러싸이거나, 또는 상기 기재층, 전극층 및/또는 봉지 구조를 포함하여 형성되는 밀봉 구조에 의해서 둘러싸여서 외부로 노출되지 않는 상태를 의미할 수 있다. 밀봉 구조는, 기재층, 전극층 및/또는 봉지 구조만으로 형성되거나, 기능성층이 외부로 노출되지 않도록 형성되는 한, 상기 기재층, 전극층 및 봉지 구조를 포함하고, 또한 다른 요소 등도 포함하여 형성될 수 있다. 예를 들면, 도 6 또는 7에서 기재층(101)과 전극층(302)이 접하는 부분 또는 전극층(302)과 봉지 구조(703)가 접하는 부분 또는 그 외의 위치에 다른 요소가 존재할 수 있다. 상기 다른 요소로는 저투습성의 유기 물질, 무기 물질 또는 유무기 복합 물질이나, 절연층 또는 보조 전극 등이 예시될 수 있다.
본 출원은 또한 유기전자소자용 기판 또는 유기전자소자의 제조 방법에 대한 것이다. 예시적인 상기 방법은, 기재층상에 상기 기능성층을 형성하는 것을 포함할 수 있다. 예를 들면, 기능성층은, 유리 기판 상에 상기 유리 기판과의 굴절률의 차이의 절대값이 1.0 이하인 소성체를 형성할 수 있는 글래스 프릿 및 550 nm의 파장의 광에 대한 굴절률이 2.0 내지 3.5이고, 평균 입경이 50 nm 이상인 상기 산란 물질을 포함하는 코팅층을 형성하고, 상기 코팅층을 소성하는 것을 포함할 수 있다.
상기에서 코팅층은, 예를 들면, 상기 글래스 프릿과 상기 산란 입자를 혼합한 코팅 재료를 적절한 방식으로 유리 기판상에 도포하여 형성할 수 있다. 이 과정에서 사용될 수 있는 글래스 프릿의 종류는 특별히 제한되지 않는다. 관련 업계에서는 다양한 범위의 굴절률을 구현할 수 있는 다양한 종류의 글래스 프릿이 알려져 있고, 이와 같은 글래스 프릿 중에서 적절한 종류가 선택되어 사용될 수 있다.
상기 코팅층을 소성하여 전술한 기능성층을 형성할 수 있다. 코팅층을 소성하는 방법은 특별히 제한되지 않으며, 예를 들면, 상기 코팅층을 열처리하거나, 혹은 레이저 블레이징 처리하여 수행할 수 있다.
상기에서 열처리 및 레이저 블레이징 처리의 조건은 적합한 소성층이 형성될 수 있다면 특별히 제한되지 않는다. 예를 들어, 상기 열처리는 상기 코팅층을 약 300℃ 내지 약 500℃의 온도에서 약 30분 내지 약 3 시간 동안 유지하여 수행할 수 있다. 또한, 상기 레이저 블레이징을 수행하는 방식도 특별히 제한되지 않으며, 예를 들면, 고출력 레이저 다이오드 등의 공지의 기기를 사용하여, 중심 파장이 약 300 nm 내지 500 nm이거나, 혹은 800 nm 이상인 레이저를 사용하여 수행할 수 있다.
소성 후에 소성된 코팅층상에 상기 언급한 고굴절층을 형성할 수 있다. 이 과정에서 고굴절층을 형성하는 방식은 특별히 제한되지 않으며, 예를 들면, 상기 언급한 형성 방식을 사용하거나 그 외에도 업계에서 공지된 다양한 방식이 적용될 수 있다.
상기 제조 방법은, 기능성층 또는 고굴절층의 형성 후에 전극층을 형성하는 것을 추가로 포함할 수 있다. 전극층을 형성하는 방식은 특별히 제한되지 않고, 공지의 증착, 스퍼터링, 화학 증착 또는 전기화학적 방식 등의 임의의 방식으로 형성할 수 있다.
유기전자소자의 제조 방법은 상기와 같이 전극층을 형성한 후에 발광층을 포함하는 유기층과 제 2 전극층을 형성하고, 추가로 봉지 구조를 형성하는 것을 포함할 수 있다. 이 경우, 유기층, 제 2 전극층 및 봉지 구조는 공지된 방식으로 형성할 수 있다.
본 출원은 또한 상기 기술한 유기전자장치, 예를 들면, 유기발광장치의 용도에 관한 것이다. 상기 유기발광장치는, 예를 들면, 액정표시장치(LCD; Liquid Crystal Display)의 백라이트, 조명, 각종 센서, 프린터, 복사기 등의 광원, 차량용 계기 광원, 신호등, 표시등, 표시장치, 면상발광체의 광원, 디스플레이, 장식 또는 각종 라이트 등에 효과적으로 적용될 수 있다. 하나의 예시에서 본 출원은, 상기 유기발광소자를 포함하는 조명 장치에 관한 것이다. 상기 조명 장치 또는 기타 다른 용도에 상기 유기발광소자가 적용될 경우에, 상기 장치 등을 구성하는 다른 부품이나 그 장치의 구성 방법은 특별히 제한되지 않고, 상기 유기발광소자가 사용되는 한, 해당 분야에 공지되어 있는 임의의 재료나 방식이 모두 채용될 수 있다.
본 출원에서는, 유기발광소자 등과 같은 유기전자장치의 광추출 효율 등의 기능을 개선할 수 있으면서, 기판과 우수한 밀착력을 나타내어 소자의 안정성을 개선할 수 있는 기능성층이 형성된 유기전자소자용 기판이 제공될 수 있다. 본 출원에서는 또한 상기 기판을 포함하는 유기전자장치 및 그 용도가 제공될 수 있다.
도 1 및 2는, 예시적인 유기전자소자용 기판을 나타내는 도면이다.
도 3 내지 5는 기능성층과 전극층간의 투영 면적의 관계를 보여주는 도면이다.
도 6 및 7은, 예시적인 유기전자장치를 나타내는 도면이다.
이하 실시예 및 비교예를 통하여 상기 유기전자소자용 기판 등을 구체적으로 설명하지만, 상기 기판 등의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
실시예 1.
유기전자소자용 기판의 제조
약 1.6 정도의 굴절률의 소성체를 형성할 수 있는 글래스 프릿 10 g에 굴절률이 약 2.7 정도이고, 평균 입경이 약 200 nm 정도인 산란 입자(TiO2) 1 g을 배합하여 코팅 재료를 제조하였다. 이어서 제조된 코팅 재료를 유리 기판에 상기 산란 입자에 의한 요철 구조가 표면에 형성될 수 있는 두께로 코팅하고, 이어서 약 400℃ 정도의 온도에서 약 1 시간 정도 동안 처리하여 소성시켰다. 이어서, 축합성 실란으로서 테트라메톡시 실란에 평균 입경이 약 10 nm이고, 굴절률이 약 2.5 정도인 고굴절 산화 티탄 입자를 배합한 코팅 재료를 상기 소성된 코팅층상에 코팅한 후에 졸겔 반응을 진행하여 굴절률이 약 1.8 정도인 고굴절층을 형성하였다. 그 후에 공지의 스퍼터링 방식으로 ITO(Indium Tin Oxide)를 포함하는 정공 주입성 전극층을 상기 유리 기판의 전면에 형성하여 기판을 제조하였다.
유기발광소자의 제조
제조된 기판의 전극층상에 증착 방식을 통해 알파-NPD(N,N'-Di-[(1-naphthyl)-N,N'-diphenyl]-1,1'-biphenyl)-4,4'-diamine)를 포함하는 정공 주입층 및 발광층(4,4',4"-tris(N-carbazolyl)-triphenylamine (TCTA):Firpic, TCTA:Fir6)을 순차 형성하였다. 이어서, 상기 발광층의 상부에 전자 수송성 화합물인 TCTA(4,4',4"-tris(N-carbazolyl)-triphenylamine)를 증착하여 전자 수송층을 약 70 nm의 두께로 형성하였다. 이어서, 전자 주입성 반사 전극으로서 알루미늄(Al) 전극을 진공 증착 방식으로 상기 전자 수송층의 상부에 형성하여 소자를 제조하였다. 이어서 Ar 가스 분위기의 글로브 박스에서 상기 소자에 봉지 구조를 부착하여 장치를 제조하였다.
비교예 1.
기능성층과 고굴절층을 형성하지 않은 것을 제외하고는 실시예 1과 동일하게 유기발광소자를 제조하였다.
상기 실시예 및 비교예에 대한 성능 평가의 결과는 하기 표 1과 같다. 하기 표 1에서 절대 양자 효율의 평가는 공지의 방식으로 수행하였다.
구동 전압(V) 절대 양자 효율(%)
실시예1 2.7 48.1
비교예1 2.8 29
101: 기재층 1021: 소성체
1022: 산란 입자 201: 고굴절층
301: 기능성층
302: 전극층, 제 1 전극층 701: 유기층
702: 제 2 전극층 703: 봉지 구조
801: 제 2 기판

Claims (14)

  1. 유리 기판; 상기 유리 기판상에 형성되어 있고, 상기 유리 기판과의 굴절률의 차이의 절대값이 1.0 이하인 글래스 프릿의 소성체와 상기 소성체 내에 존재하고, 550 nm의 파장에 대한 굴절률이 2.0 내지 3.5이며, 평균 입경이 50 nm 이상인 산란 입자를 포함하는 기능성층을 포함하는 유기전자소자용 기판.
  2. 제 1 항에 있어서, 글래스 프릿의 소성체의 550 nm의 파장에 대한 굴절률이 1.3 내지 1.7인 유기전자소자용 기판.
  3. 제 1 항에 있어서, 적어도 하나의 산란 입자의 평균 입경은, 기능성층의 두께에 비해 크고, 이에 의해 기능성층의 표면에는 요철 구조가 형성되어 있는 유기전자소자용 기판.
  4. 제 1 항에 있어서, 기능성층상에 고굴절층을 추가로 포함하는 유기전자소자용 기판.
  5. 제 4 항에 있어서, 고굴절층의 550 nm 파장의 광에 대한 굴절률은, 1.8 내지 3.5인 유기전자소자용 기판.
  6. 제 4 항에 있어서, 고굴절층과 산란 입자의 굴절률의 차이의 절대값이 0.3을 초과하는 유기전자소자용 기판.
  7. 제 1 항에 있어서, 기능성층상에 형성된 전극층을 추가로 포함하는 유기전자소자용 기판.
  8. 제 1 항의 유기전자소자용 기판; 상기 기판상에 형성된 제 1 전극층; 상기 제 1 전극층상에 형성된 유기층; 및 상기 유기층상에 형성된 제 2 전극층을 포함하는 유기전자장치.
  9. 제 8 항에 있어서, 유기층은 발광층을 포함하는 유기전자장치.
  10. 유리 기판 상에 상기 유리 기판과의 굴절률의 차이의 절대값이 1.0 이하인 소성체를 형성할 수 있는 글래스 프릿 및 550 nm의 파장의 광에 대한 굴절률이 2.0 내지 3.5이고, 평균 입경이 50 nm 이상인 산란 입자를 포함하는 코팅층을 형성하고, 상기 코팅층을 소성하는 것을 포함하는 유기전자소자용 기판의 제조 방법.
  11. 제 10 항에 있어서, 코팅층의 소성은 열처리 또는 레이저 블레이징으로 수행하는 유기전자소자용 기판의 제조 방법.
  12. 제 11 항에 있어서, 열처리는 코팅층을 300℃ 내지 500℃의 온도에서 30분 내지 3 시간 동안 유지하여 수행하는 유기전자소자용 기판의 제조 방법.
  13. 제 10 항에 있어서, 소성된 코팅층상에 550 nm 파장의 광에 대한 굴절률이 1.8 내지 3.5인 고굴절층을 형성하는 것을 추가로 수행하는 유기발광소자의 제조 방법.
  14. 제 8 항의 유기전자장치를 포함하는 조명.
KR1020130035487A 2012-03-30 2013-04-01 유기전자소자용 기판 KR101589343B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120033512 2012-03-30
KR1020120033512 2012-03-30

Publications (2)

Publication Number Publication Date
KR20130111485A true KR20130111485A (ko) 2013-10-10
KR101589343B1 KR101589343B1 (ko) 2016-01-28

Family

ID=49260733

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130035487A KR101589343B1 (ko) 2012-03-30 2013-04-01 유기전자소자용 기판

Country Status (7)

Country Link
US (1) US9368758B2 (ko)
EP (1) EP2819198B1 (ko)
JP (1) JP5956673B2 (ko)
KR (1) KR101589343B1 (ko)
CN (1) CN104221179B (ko)
TW (1) TWI523292B (ko)
WO (1) WO2013147573A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715368A (zh) * 2013-12-27 2014-04-09 京东方科技集团股份有限公司 发光器件及其制造方法和显示装置
KR20170137683A (ko) * 2017-11-30 2017-12-13 엘지디스플레이 주식회사 유기발광 표시장치
US10319948B2 (en) 2015-08-31 2019-06-11 Lg Display Co., Ltd. Organic light emitting diode display device
KR20190112256A (ko) * 2019-09-24 2019-10-04 삼성디스플레이 주식회사 다층 구조로 형성된 절연층을 포함하는 유기 발광 표시 장치

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2695052T3 (es) * 2013-05-17 2018-12-28 Saint-Gobain Glass France Sustrato OLED difusor transparente y método para producir tal sustrato
ES2693105T3 (es) * 2013-05-17 2018-12-07 Saint-Gobain Glass France Sustrato OLED difusivo transparente y método para producir semejante sustrato
KR101762642B1 (ko) * 2014-09-25 2017-07-31 코닝정밀소재 주식회사 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
WO2016160911A1 (en) * 2015-03-31 2016-10-06 Corning Incorporated Waveguides comprising light scattering surfaces and display devices comrpising the same
KR102518130B1 (ko) 2016-08-04 2023-04-06 삼성디스플레이 주식회사 유기발광 표시장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100138939A (ko) * 2008-03-18 2010-12-31 아사히 가라스 가부시키가이샤 전자 디바이스용 기판, 유기 led 소자용 적층체 및 그의 제조 방법, 유기 led 소자 및 그의 제조 방법

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
JPH0288689A (ja) 1988-09-26 1990-03-28 Mitsubishi Kasei Corp 電界発光素子
JPH02289676A (ja) 1989-01-13 1990-11-29 Ricoh Co Ltd 電界発光素子
JP2651233B2 (ja) 1989-01-20 1997-09-10 出光興産株式会社 薄膜有機el素子
JPH02196885A (ja) 1989-01-25 1990-08-03 Asahi Chem Ind Co Ltd 有機電界発光素子
JP2879080B2 (ja) 1989-03-23 1999-04-05 株式会社リコー 電界発光素子
JPH02255789A (ja) 1989-03-29 1990-10-16 Asahi Chem Ind Co Ltd 有機電場発光素子
JPH03296595A (ja) 1990-04-13 1991-12-27 Kao Corp 有機薄膜エレクトロルミネッセンス素子
JP2997021B2 (ja) 1990-08-10 2000-01-11 パイオニア株式会社 有機エレクトロルミネッセンス素子
JP2891784B2 (ja) 1991-02-06 1999-05-17 パイオニア株式会社 有機エレクトロルミネッセンス素子
JP2891783B2 (ja) 1991-02-06 1999-05-17 パイオニア株式会社 有機エレクトロルミネッセンス素子
JPH05202011A (ja) 1992-01-27 1993-08-10 Toshiba Corp オキサジアゾール誘導体
JPH0649079A (ja) 1992-04-02 1994-02-22 Idemitsu Kosan Co Ltd シラナミン誘導体およびその製造方法並びに該シラナミン誘導体を用いたel素子
JPH06107648A (ja) 1992-09-29 1994-04-19 Ricoh Co Ltd 新規なオキサジアゾール化合物
JP3341090B2 (ja) 1992-07-27 2002-11-05 株式会社リコー オキサジアゾール誘導体ならびにその製造法
JP3228301B2 (ja) 1992-09-07 2001-11-12 出光興産株式会社 有機エレクトロルミネッセンス素子
JP3163589B2 (ja) 1992-09-21 2001-05-08 出光興産株式会社 有機エレクトロルミネッセンス素子
JPH06206865A (ja) 1992-10-14 1994-07-26 Chisso Corp 新規アントラセン化合物と該化合物を用いる電界発光素子
JP3287421B2 (ja) 1992-10-19 2002-06-04 出光興産株式会社 有機エレクトロルミネッセンス素子
JPH06145146A (ja) 1992-11-06 1994-05-24 Chisso Corp オキシネイト誘導体
JP3366401B2 (ja) 1992-11-20 2003-01-14 出光興産株式会社 白色有機エレクトロルミネッセンス素子
JPH06203963A (ja) 1993-01-08 1994-07-22 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP3211994B2 (ja) 1993-03-26 2001-09-25 出光興産株式会社 4官能スチリル化合物およびその製造法
JP3214674B2 (ja) 1993-03-26 2001-10-02 出光興産株式会社 新規スチリル化合物,その製造法およびそれからなる有機エレクトロルミネッセンス素子
JPH06293778A (ja) 1993-04-05 1994-10-21 Idemitsu Kosan Co Ltd シラナミン誘導体およびその製造方法
JPH07157473A (ja) 1993-12-06 1995-06-20 Chisso Corp トリアジン誘導体、その製造法及びそれを用いた電界発光素子
JP3300827B2 (ja) 1993-12-21 2002-07-08 株式会社リコー オキサジアゾール化合物およびその製造法
JP3539995B2 (ja) 1993-12-21 2004-07-07 株式会社リコー オキサジアゾール化合物およびその製造法
JP3496080B2 (ja) 1993-12-24 2004-02-09 株式会社リコー オキサジアゾール誘導体およびその製造方法
US6064355A (en) 1994-05-24 2000-05-16 Texas Instruments Incorporated Method and apparatus for playback with a virtual reality system
EP0700917B1 (en) 1994-09-12 2002-05-08 Motorola, Inc. Light emitting devices comprising organometallic complexes
US20060065989A1 (en) * 2004-09-29 2006-03-30 Thad Druffel Lens forming systems and methods
FR2881844B1 (fr) * 2005-02-09 2007-04-13 Saint Gobain Structure diffusante a proprietes d'absorption dans l'ultraviolet
KR100703458B1 (ko) * 2006-04-20 2007-04-03 삼성에스디아이 주식회사 유기전계발광 표시 장치 및 그의 제작 방법
WO2009017035A1 (ja) * 2007-07-27 2009-02-05 Asahi Glass Co., Ltd. 透光性基板、その製造方法、有機led素子及びその製造方法
KR20110081968A (ko) * 2008-10-06 2011-07-15 아사히 가라스 가부시키가이샤 전자 디바이스용 기판, 그의 제조 방법, 이것을 이용한 전자 디바이스, 그의 제조 방법 및 유기 led 소자용 기판
JP5321010B2 (ja) * 2008-11-25 2013-10-23 住友大阪セメント株式会社 有機el素子
EP2384086B1 (en) * 2009-01-26 2018-04-11 Asahi Glass Company, Limited Substrate for electronic device and electronic device using same
KR20110113177A (ko) * 2009-01-26 2011-10-14 아사히 가라스 가부시키가이샤 유기 led 소자의 산란층용 유리 및 유기 led 소자
JP2010170969A (ja) * 2009-01-26 2010-08-05 Asahi Glass Co Ltd 電極付き基板、その製造方法、有機led素子およびその製造方法
JP2010198735A (ja) 2009-02-20 2010-09-09 Fujifilm Corp 光学部材及び該光学部材を備えた有機エレクトロルミネッセンス表示装置
EA201270559A1 (ru) * 2009-10-15 2012-11-30 Асахи Гласс Компани, Лимитед Органический светодиодный элемент, стеклянная фритта для рассеивающего слоя для применения в органическом светодиодном элементе и способ получения диффузионного слоя для применения в органическом светодиодном элементе
WO2011126097A1 (ja) 2010-04-08 2011-10-13 旭硝子株式会社 有機led素子、透光性基板、および有機led素子の製造方法
CN101867020A (zh) 2010-06-01 2010-10-20 友达光电股份有限公司 发光元件
CN103026526A (zh) * 2010-07-16 2013-04-03 旭硝子欧洲玻璃公司 用于有机发光器件的半透明导电基板
CN103026785A (zh) * 2010-07-26 2013-04-03 旭硝子株式会社 有机led元件的散射层用玻璃及有机led元件
KR20120024358A (ko) * 2010-09-06 2012-03-14 주식회사 엘지화학 유기전자소자용 기판 및 그 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100138939A (ko) * 2008-03-18 2010-12-31 아사히 가라스 가부시키가이샤 전자 디바이스용 기판, 유기 led 소자용 적층체 및 그의 제조 방법, 유기 led 소자 및 그의 제조 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715368A (zh) * 2013-12-27 2014-04-09 京东方科技集团股份有限公司 发光器件及其制造方法和显示装置
US9748513B2 (en) 2013-12-27 2017-08-29 Boe Technology Group Co., Ltd. Light emitting device and manufacturing method thereof, and display device
US10319948B2 (en) 2015-08-31 2019-06-11 Lg Display Co., Ltd. Organic light emitting diode display device
KR20170137683A (ko) * 2017-11-30 2017-12-13 엘지디스플레이 주식회사 유기발광 표시장치
KR20190112256A (ko) * 2019-09-24 2019-10-04 삼성디스플레이 주식회사 다층 구조로 형성된 절연층을 포함하는 유기 발광 표시 장치

Also Published As

Publication number Publication date
EP2819198B1 (en) 2018-06-06
JP5956673B2 (ja) 2016-07-27
CN104221179A (zh) 2014-12-17
US9368758B2 (en) 2016-06-14
KR101589343B1 (ko) 2016-01-28
JP2015516652A (ja) 2015-06-11
EP2819198A4 (en) 2015-11-11
CN104221179B (zh) 2017-03-01
TWI523292B (zh) 2016-02-21
US20150001522A1 (en) 2015-01-01
WO2013147573A1 (ko) 2013-10-03
TW201403908A (zh) 2014-01-16
EP2819198A1 (en) 2014-12-31

Similar Documents

Publication Publication Date Title
KR101478478B1 (ko) 유기전자장치
KR101589343B1 (ko) 유기전자소자용 기판
KR101427536B1 (ko) 유기전자소자용 기판
KR101645774B1 (ko) 유기전자소자용 기판
KR101589342B1 (ko) 유기전자소자용 기판
KR20140018807A (ko) 유기전자소자용 기판
KR101589341B1 (ko) 유기전자소자용 기판
US9391301B2 (en) Substrate for organic electronic device
KR101612588B1 (ko) 유기전자소자용 기판
KR20130135142A (ko) 유기전자장치
KR101589344B1 (ko) 유기전자소자용 기판
KR20130108214A (ko) 유기발광소자
KR20160081388A (ko) 유기전자장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 4