KR20130018283A - 태양전지를 위한 격자 정합 가능한 합금 - Google Patents

태양전지를 위한 격자 정합 가능한 합금 Download PDF

Info

Publication number
KR20130018283A
KR20130018283A KR1020127028355A KR20127028355A KR20130018283A KR 20130018283 A KR20130018283 A KR 20130018283A KR 1020127028355 A KR1020127028355 A KR 1020127028355A KR 20127028355 A KR20127028355 A KR 20127028355A KR 20130018283 A KR20130018283 A KR 20130018283A
Authority
KR
South Korea
Prior art keywords
subcells
content
subcell
solar cells
gaas
Prior art date
Application number
KR1020127028355A
Other languages
English (en)
Inventor
레베카 엘리자베쓰 존스
호맨 베르나르드 유엔
팅 리우
프라노브 미스라
Original Assignee
솔라 정크션 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 솔라 정크션 코포레이션 filed Critical 솔라 정크션 코포레이션
Publication of KR20130018283A publication Critical patent/KR20130018283A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • C30B23/066Heating of the material to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명에서는 0.9 eV의 밴드갭을 지니는 태양전지의 서브셀을 위한 합금 조성물, 즉, 적은 안티몬(Sb) 함량 및 증가된 인듐(In) 함량과 증가된 질소(N) 함량을 지녀서, GaAs 및 Ge 기판에 실질적인 격자 정합을 달성하며 다중 접합 태양전지를 위한 GaInNAsSb 서브셀에서의 높은 단락 전류 및 높은 개회로 전압 둘 모두를 제공하는 Ga1 - xInxNyAs1 -y- zSbz가 제공된다. Ga1 - xInxNyAs1 -y- zSbz를 위한 조성 범위가 0.07 ≤ x ≤ 0.18, 0.025 ≤ y ≤ 0.04 및 0.001 ≤ z ≤ 0.03이다.

Description

태양전지를 위한 격자 정합 가능한 합금{LATTICE MATCHABLE ALLOY FOR SOLAR CELLS}
관련 기술에 대한 참조
해당사항 없음.
연방정부 지원 연구 또는 개발하에 이루어진 발명에 대한 권리에 관한 설명
해당사항 없음.
콤팩트 디스크로 제출된 "서열목록", 표, 또는 컴퓨터 프로그램 목록 첨부물에 대한 참조
해당사항 없음.
본 발명은 다중 접합 태양전지, 특히, III-V족 반도체 합금으로 구성된 고효율 태양전지에 관한 것이다.
다른 유형의 광전 물질의 효율을 능가하는 태양전지 효율을 생성키시기 위한 III-V족 반도체 합금으로 주로 제조된 다중 접합 태양전지가 공지되어 있다. 그러한 합금은 이하 표준 화학 기호, 명칭 및 약어로 표시되는 원소주기율표의 III족 및 V족으로부터 선택된 원소의 조합물이다. (당업자라면 이들 족의 특별한 참조 없이도 종류에 따른 이들 종류의 반도체 성질을 확인할 수 있다). 이들 태양전지의 높은 효율은 이들이 지상용 집광 광전 시스템 및 야외에서 작동하도록 설계된 시스템에 주목되게 하고 있다. 수백 개의 태양과 동등한 집광하에 40% 이상의 효율을 지닌 다중 접합 태양전지가 보고되었다. 공지된 가장 높은 효율의 소자는 3 개의 서브셀을 지니며, 그러한 각각의 서브셀은 기능적 p-n 접합면 및 그 밖의 층, 예컨대, 전면 및 후면 전계층으로 이루어져 있다. 이들 서브셀은 터널 접합면(tunnel junction)을 통해서 연결되고, 주된 층은 하부 기판에 격자 정합(lattice matching)되거나 변성 층상에 성장한다. 격자 정합형 소자 및 디자인이 바람직한데, 그 이유는 이들이 신뢰성이 있는 것으로 입증되었기 때문이며, 이들이 다양한 물질의 격자 상수에서의 차이를 수용하기 위해서 비교적 두꺼운 완충 층을 필요로 하는 변성 태양전지보다 더 적은 반도체 물질을 사용하기 때문이다. 본원에서 참조로 통합되는 발명의 명칭 "GaInNAsSb Solar Cells Grown by Molecular Beam Epitaxy"의 미국특허출원 제12/217818호에 더욱 완전히 기재된 바와 같이, 약 1.0 eV의 밴드 갭을 지니는 제 3 접합면을 생성시키기 위한 GaInNAsSb 물질로 제조된 층은 다중 접합 셀의 효율을 개선시키기 위한 유망한 방법을 제공한다. 그럼에도 불구하고, 그러한 적용에서 기재된 셀에 대한 개선이 고려되어야 한다.
공지된 가장 높은 효율의 격자-정합형 태양 전지는 전형적으로 게르마늄 (Ge) 기판상에 에피택셜하게(epitaxially) 성장한 세 개의 기능적 p-n 접합면 또는 서브셀의 모놀리스식 스택(monolithic stack)을 포함한다. 상부 서브셀은 (Al)GaInP로 제조되고, 중간 셀은 (In)GaAs로 제조되고, 하부 접합면은 Ge 기판을 포함한다. (구성 원소가 삽입식으로 표현된 III-V 합금에 대한 상기 명명법은 그러한 특정의 원소가 제로(0)일 수 있는 변화 조건을 나타낸다). 이러한 구조는 문헌[J.F. Geisz et al., "Inverted GaInP/(In)GaAs/InGaAs triple-junction solar cells with low-stress metamorphic bottom junctions," Proceedings of the 33rd IEEE PVSC Photovoltaics Specialists Conference, 2008]에 의해서 보고된 바와 같이, 하부 접합면이 대체로 상부 두 접합면의 단락 전류(short circuit current)의 두 배를 생성시킬 수 있다는 점에서 효율 면에서 최적이 아니다. 이러한 여분의 용량은 버려지는데, 그 이유는 전류 정합(current matching)으로 공지된 설계 피쳐(design feature)인 순전류(net current)가 전체 스택에 걸쳐서 균일해야 하기 때문이다.
상기 나타낸 미국특허출원 제12/217,818호의 개시내용에서, 실질적으로 1.0 eV 근처의 밴드 갭을 지니는 Ge 또는 GaAs에 실질적으로 격자 정합된 물질이 하부 Ge 접합면을 더 높은 전압을 생성시키는 상이한 물질로 제조된 접합면으로 대체시킴으로써 상기 기재된 구조보다 더 높은 효율을 지니는 삼중 정합 태양전지를 생성시키기 위해서 사용될 수 있음을 나타내고 있다.
또한, 이러한 1 eV 물질의 사용은 0.7 eV(게르마늄의 경우의 밴드 갭)와 1.1 eV(약 1 eV 층의 경우의 밴드 갭 범위의 상단) 사이에 오는 스펙트럼의 전부분의 이점을 취하기 위한 제 4 접합면으로서 여겨질 수 있음이 제안되었다. 참조예[S. R. Kurtz, D. Myers, and J. M. Olson, "Projected Performance of Three and Four-Junction Devices Using GaAs and GaInP," 26th IEEE Photovoltaics Specialists Conference, 1997, pp. 875-878]. Ga1 - xInxNyAs1 -y는 그러한 1 eV 물질로서 확인되었지만, 다른 서브셀과 정합하기에 충분히 높은 전류가 달성되지 않았다[참조예: A. J. Ptak et al., Journal of Applied Physics 98 (2005) 094501]. 이는 효과적인 포토캐리어(photocarrier) 수집을 방해하는 작은 소수 담체 확산 길이(minority carrier diffusion length)에 기인되었다. 갈륨, 인듐, 질소, 비소 및 다양한 농도의 안티몬으로 구성된 태양전지 서브셀 설계(GaInNAsSb)가 조사되어, 안티몬이 표면 조도를 감소시키고 어닐링이 필요하지 않은 높은 기판 온도에서의 성장을 가능하게 하는데 도움이 된다는 결과를 보고하고 있지만, 조사자들은 안티몬이 적은 농도라도 충분한 소자 성능에 유해하기 때문에 피하는 것이 중요함을 보고하고 있다. 참조[Ptak et al, "Effects of temperature, nitrogen ion, and antimony on wide depletion width GalnNAs," Journal of Vacuum Science Technology B 25(3) May/June 2007 pp. 955-959]. 그러한 논문에서 보고된 소자는 다중 접합 태양전지로 통합시키기에 너무 낮은 단락 전류를 지니고 있다. 그럼에도 불구하고, Ga1 -xInxNyAs1-y-zSbz(여기서, 0.05 ≤ x ≤ 0.07, 0.01 ≤ y ≤ 0.02 및 0.02 ≤ z ≤ 0.06)가 다중 접합 태양전지 내로의 통합에 충분한 전류를 제공할 수 있는 약 1 eV의 밴드 갭을 지닌 격자-정합 물질을 생성시키기 위해서 사용될 수 있음이 공지되어 있다. 그러나, 이러한 물질을 함유하는 서브셀에 의해서 생성된 전압은 1 태양의 조명하에서 0.30V를 초과하지 않았다. 참조[D.B. Jackrel et al., Journal of Applied Physics 101 (114916) 2007]. 따라서, 하부 서브셀로서 이러한 물질에 의한 삼중-접합 태양전지는 약 0.25 V의 개회로 전압을 생성하는 Ge의 하부 서브셀을 지닌 유사한 삼중 접합 태양전지에 비해서 단지 작은 개선인 것으로 예상되었다. 참조[H. Cotal et al., Energy and Environmental Science 2 (174) 2009]. 0.30 V 보다 더 높은 개회로 전압 및 (Al)InGaP 및 (In)GaAs 서브셀과 정합되기에 충분한 전류를 생성시키는 1 eV 근처의 밴드 갭을 지닌 Ge 및 GaAs에 격자-정합되는 물질이 요구되고 있다. 그러한 물질은 또한 4 또는 그 초과의 접합면을 지닌 고효율 태양전지에서 서브셀로서 유리할 것이다.
발명의 요약
본 발명에 따르면, 0.9 eV 이상의 밴드갭을 지니는 합금 조성물, 즉, 공지된 GaInNAsSb의 합금에 비해서 적은 안티몬(Sb) 함량 및 증가된 인듐(In) 함량 및 증가된 질소(N) 함량을 지녀서, GaAs 및 Ge 기판에 대한 실질적인 격자 정합을 달성하고, 다중 접합 태양전지에 사용하기에 적합한 GaInNAsSb 서브셀에서의 높은 단락 전류 및 높은 개회로 전압 둘 모두를 제공하는 Ga1 - xInxNyAs1 -y- zSbz을 제공한다. Ga1 -xInxNyAs1-y-zSbz에 대한 조성 범위는 0.07 ≤ x ≤ 0.18, 0.025 ≤ y ≤ 0.04 및 0.001 ≤ z ≤ 0.03이다. 이들 조성 범위는 이전에 교시된 것보다 GaInNAsSb에서의 더 큰 분율의 In 및 N을 사용하고 있으며, GaInNAsSb 서브셀을 관심있는 범위인 0.9 내지 1.1 eV의 범위에서 설계-조정 가능한 밴드갭을 지닌 서브셀의 생산을 가능하게 한다. 이러한 조성 범위 합금은 이하 "저-안티몬, 증가된 인듐-및-질소 GaInNAsSb" 합금으로 나타낼 것이다. 그러한 합금의 서브셀은 분자 빔 에피택시(molecular beam epitaxy: MBE)에 의해서 성장할 수 있으며, 당업자에게는 공지된 기술을 이용하는, 금속 유기 화학 기상 증착(metallorganic chemical vapor deposition: MOCVD)에 의해서 성장하는 것이 가능해야 한다.
본원에서 기재된 본 발명은 원소의 특정 범위의 발견 및 확인, 즉, 개시된 태양전지의 성능을 현저하게 개선시키는 GaInNAsSb에서의 다양한 원소의 특이적 합금 혼합물을 포함한, 미국특허출원 제12/217,818호에서 기재된 작업의 추가 개선을 반영하고 있다.
본 발명은 첨부된 도면과 결부되어 하기 상세한 설명을 참조함으로써 더 잘 이해될 것이다.
도 1a는 본 발명을 통합하고 있는 3 접합 태양전지의 개략적인 횡단면도이다.
도 1b는 본 발명을 통합하고 있는 4 접합 태양전지의 개략적인 횡단면도이다.
도 2a는 본 발명에 따른 GaInNAsSb 서브셀의 횡단면도이다.
도 2b는 예시적인 GaInNAsSb 서브셀을 예시하고 있는 상세 개략적 횡단면도이다.
도 3은 비교를 위한 여러 합금 물질로부터 형성된 서브셀의 효율 대 밴드갭 에너지를 나타내는 그래프이다.
도 4는 비교를 위한 여러 합금 물질로부터 형성된 서브셀의 단락 전류(Jsc) 및 개회로 전압(Voc)을 나타내는 플롯이다.
도 5는 1-태양(1-sun) AM1.5D 조명하에 본 발명에 따른 서브셀을 통합하고 있는 삼중 접합 태양전지를 위한 전압의 함수로서 광전류를 나타내는 그래프이다.
도 6은, 523개의 태양과 동등한 AM1.5D 조명 하에, 본 발명에 따른 서브셀을 통합하고 있는 삼중 접합 태양전지에 대한 전압의 함수로서 광전류를 나타내는 그래프이다.
도 7은 기판에 의해서 필름에 부여된 응력(strain)에 의해서 구별된 저 Sb 및 증가된 In와 N의 GaInNAsSb 서브셀의 단락 전류(Jsc) 및 개회로 전압(Voc)의 그래프이다.
발명의 상세한 설명
도 1a는 근본적으로는 (Al)InGaP의 상부 서브셀(16)과 (In)GaAs를 사용한 중간 서브셀(18)과 함께 Ge, GaAs 또는 다르게는 양립성 기판(14)에 인접한 저 Sb 및 증가된 In와 N의 GaInNAsSb 서브셀(12)로 이루어진 본 발명에 따른 삼중 접합 태양전지(10)의 예를 도시하는 개략적인 횡단면도이다. 터널 접합면(20)은 서브셀(16)과 서브셀(18) 사에에 있으며, 터널 접합면(22)은 서브셀(18)과 서브셀(12) 사이에 있다. 서브셀(12, 16, 18)의 각각은 전면전계 및 후면전계를 포함한 몇 개의 관련 층, 이미터(emitter) 및 베이스를 포함한다. 지명된 서브셀 물질(예, (In)GaAs)은 베이스 층을 형성할 수 있고, 다른 층들을 형성하거나 그렇지 않을 수 있다.
저 Sb 및 증가된 In와 N의 GaInNAsSb 서브셀은 또한 본 발명의 사상 및 범위를 벗어나지 않은 4 개 이상의 접합면을 지닌 다중 접합 태양전지 내로 통합될 수 있다. 도 1b는 제 3 접합면으로서 특이적인 저 Sb 및 증가된 In와 N의 GaInNAsSb 서브셀(12), 및 (Al)InGaP의 상부 서브셀(16), (In)GaAs의 제 2 서브셀 및 게르마늄(Ge) 기판 내로 또한 통합되는 Ge의 하부 서브셀(140)을 지닌 한 가지의 그러한 4-접합 태양전지(100)를 나타내고 있다. 서브셀(16, 18, 12, 140)의 각각은 각각의 터널 접합면(20, 22, 24)에 의해서 분리되고, 서브셀(16, 18, 12, 140)의 각각은 임의의 전면전계 및 후면전계를 포함한 몇 개의 관련 층, 이미터 및 베이스를 포함할 수 있다. 지명된 서브셀 물질(예, (In)GaAs)은 베이스 층을 형성할 수 있고, 다른 층들을 형성하거나 그렇지 않을 수 있다.
추가의 예로서, 도 2a는 본 발명에 따른 GaInNAsSb 서브셀(12)의 더욱 상세한 도면으로 개략적인 단면도이다. 따라서, 저 Sb 및 증가된 In와 N의 GaInNAsSb 서브셀(12)은 서브셀(12)에서의 베이스 층(220)으로서 저 Sb 및 증가된 In와 N의 GaInNAsSb의 사용이 특징이다. 이미터(26), 임의의 전면전계(28) 및 후면전계(30)를 포함한 GaInNAsSb 서브셀(12)의 다른 성분은 바람직하게는, 예를 들어, GaInNAs(Sb), (In)(Al)GaAs, (Al)InGaP 또는 Ge를 포함한 III-V 합금이다. 저 Sb 및 증가된 In와 N의 GaInNAsSb 베이스(220)은 상반된 유형의 이미터(26)와 함께, p-타입 또는 n-타입일 수 있다.
증가된 In와 N의 GaInNAsSb 서브셀 성능에 대한 Sb의 효과를 측정하기 위해서, 도 2b에서 도시된 구조의 유형의 다양한 서브셀(12)이 조사되었다. 도 2b는 도 2a에서의 더욱 일반적인 구조(12)의 대표적인 예이다. Sb가 없는 베이스 층(220), 저 Sb(0.001 ≤ z ≤ 0.03)를 지닌 베이스층(220) 및 많은 Sb(0.03 ≤ z ≤ 0.06)을 지니는 베이스층(220)이 분자 빔 에피택시에 의해서 성장하였고, GaAs 기판(도시되지 않음)에 실질적으로 격자-정합되었다. 이들 합금 조성이 이차 이온 질량 분광법에 의해서 입증되었다. 서브셀(12)은 열적 어닐링에 주어지고, 일반적으로 공지된 태양전지 공정으로 처리되고, 이어서, GaAs 밴드 갭을 초과하는 모든 빛을 차단하는 필터 아래에서 AM1.5D 스펙트럼(1 햇빛)하에 측정되었다. 이러한 필터가 적절한데, 그 이유는 GaInNAsSb 서브셀(12)이 전형적으로 다중접합 스택 내의 (In)GaAs 서브셀 아래에 있으며(예, 도 1a 및 도 1b), 그에 따라서, 더 높은 에너지의 빛이 서브셀(12)에 도달하지 않을 것이기 때문이다.
도 3은 다양한 분율의 Sb로 성장한 서브셀(12)의 밴드 갭의 함수로서 그러한 서브셀(12)에 의해서 생성된 효율을 도시하고 있다. 인듐 및 질소농도는 각각 0.07 내지 0.18 및 0.025 내지 0.04 범위에 있다. 저 Sb 및 증가된 In와 N의 GaInNAsSb 서브셀(삼각형으로 표시됨)은 다른 두 후보 서브셀(다이아몬드 및 사각으로 표시됨)에 비해서 지속적으로 더 높은 서브셀 효율을 지님을 볼 수 있다. 이는 저 Sb 및 증가된 In와 N의 GaInNAsSb 소자에서의 고전압 및 고전류 기능의 조합에 기인한다(도 4 참조 . 도 4에서 볼 수 있는 바와 같이, 저농도 및 고농도 Sb 소자 둘 모두는 고효율 (Al)InGaP 서브셀 및 (In)GaAs 서브셀(여과된 AM1.5D 스팩트럼하의 > 13 mA/cm2)과 정합하기에 충분한 단락 전류를 지니며, 그에 따라서, 이들은 전체 셀을 통한 전체 전류를 감소시키지 않으면서 전형적인 3-접합 또는 4-접합 태양전지(10, 100)에서 사용될 수 있다. 이러한 전류-정합은 고효율에 필수적이다. Sb가 없는 이러한 소자는 이들의 높은 개회로 전압으로 인해서 비교적 높은 서브셀 효율을 지니지만, 이들의 단락 전류는 도 4에 도시된 바와 같이 고효율 다중 접합 태양전지용으로는 너무 낮다.
도 4는 또한 Sb가, 다른 합금 조성에 대해서 이전에 보고된 바와 같이, 전압에 대해 유해한 효과를 지님을 입증하고 있다. 그러나, 다른 합금 조성에 대해서 이전에 보고된 것과는 상반되게, 안티몬의 첨가는 단락전류를 감소시키지 않는다. 저 Sb-유형 서브셀은 고 Sb-유형 서브셀에 비해서 대체로 100mV 더 높은 개회로 전압을 지닌다. 이러한 개선 효과를 설명하기 위해서, 3.1V의 개회로 전압을 지니는 삼중-접합 태양전지(10)가 3.0V의 개회로 전압을 지니는 다른 동등한 셀에 비해서 3.3% 더 높은 상대적 효율을 지니는 것으로 나타내고 있다. 따라서, GaInNAs(Sb) 태양전지에서의 Sb의 포함은 고효율 태양전지에 충분한 전류를 생성시키기 위해서 필수적이지만, 저 Sb(0.1-3%)를 사용함으로도, 고전압 및 고전류 둘 모두가 달성될 수 있다.
압축 응력(compressive strain)은 저 Sb 및 증가된 In와 N의 GaInNAsSb 서브셀(10, 100)의 개회로 전압을 개선시킨다. 더욱 특히, 저 Sb 및 증가된 In와 N의 GaInNAsSb 층(220)은 완전히 이완되었을 때의 GaAs 또는 Ge 기판의 격자 상수보다 큰 격자 상수(≤0.5% 더 큼)를 지니며, 그에 따라서, 그들 기판상에서 부정규형으로(pseudomorphically) 성장하는 경우에 압축 응력 하에 있다. 이들은 또한 더 작으며 완전히 이완된 격자 상수(인장 응력 하에)를 지니는 층 보다 더 우수한 소자 성능을 부여한다.
도 7은 압축 응력(삼각형) 및 인장 응력(다이아몬드) 하의 GaAs 기판에서 성장한 저 Sb 및 증가된 In와 N의 GaInNAsSb 서브셀의 단락 전류 및 개회로 전압을 도시하고 있다. 압축 응력하의 서브셀은 인장 응력하의 서브셀에 비해서 지속적으로 더 높은 개회로 전압을 지니는 것을 볼 수 있다.
저 Sb 및 증가된 In와 N의 압축식으로-응력이 가해진 GaInNAsSb 서브셀은 고효율 다중 접합 태양전지 내로 성공적으로 일체화되었다. 도 5는 1 태양과 동등한 AM1.5D 조명하에 도 1a에서의 구조의 삼중-접합 태양전지의 전류-전압 곡선을 도시하고 있다. 이러한 소자의 효율은 30.5%이다. 도 6은, 39.2%의 효율을 지니는, 523 태양과 동등한 농도하에 작동된 삼중 접합 태양전지의 전류-전압 곡선을 도시하고 있다.
본 발명은 특이적 구체예를 참조로 하여 설명되었다. 다른 구체예가 당업자에게는 자명할 것이다. 따라서, 본 발명이 특허청구범위에 의해서 나타낸 바를 제외하고는 제한되는 것이 아니다.

Claims (9)

  1. 다중 접합 태양전지의 선택된 서브셀(subcell)에 사용하기 위한, 0.9 eV 이상의 밴드갭(bandgap)을 달성하도록 적은 안티몬(Sb) 함량 및 증가된 인듐(In) 함량과 증가된 질소(N) 함량을 지니는 Ga1 - xInxNyAs1 -y- zSbz를 포함하는, 기판에 대한 실질적인 격자 정합에 적합한 합금 조성물.
  2. 제 1항에 있어서, 인접 기판이 GaAs 및 Ge 군으로부터 선택되는 합금 조성물.
  3. 제 1항에 있어서, Ga1 - xInxNyAs1 -y- zSbz를 위한 조성 범위가 0.07 ≤ x ≤ 0.18, 0.025 ≤ y ≤ 0.04 및 0.001 ≤ z ≤ 0.03인 합금 조성물.
  4. 0.9 eV 이상의 밴드갭(bandgap)을 달성하도록 적은 안티몬(Sb) 함량 및 증가된 인듐(In) 함량과 증가된 질소(N) 함량을 지니는 Ga1 - xInxNyAs1 -y- zSbz를 포함하는 하나 이상의 서브셀을 포함하는 다중 접합 태양전지.
  5. 제 4항에 있어서, 인접 기판이 GaAs 및 Ge 군으로부터 선택되는 다중 접합 태양전지.
  6. 제 4항에 있어서, Ga1 - xInxNyAs1 -y- zSbz를 위한 조성 범위가 0.07 ≤ x ≤ 0.18, 0.025 ≤ y ≤ 0.04 및 0.001 ≤ z ≤ 0.03인 다중 접합 태양전지.
  7. 적은 안티몬(Sb) 함량 및 증가된 인듐(In) 함량과 증가된 질소(N) 함량을 지니는 Ga1 - xInxNyAs1 -y- zSbz의 합금의 제 1 서브셀을 형성시키고, 상기 제 1 서브셀을 하나 이상의 인접 서브셀과 연결시켜 다중 접합 태양전지를 형성시킴을 포함하여 다중 접합 태양전지를 제조하는 방법으로서, 조성물이 0.9 eV 이상의 밴드갭을 달성하도록 선택되는 방법.
  8. 제 7항에 있어서, Ga1 - xInxNyAs1 -y- zSbz를 위한 조성 범위가 0.07 ≤ x ≤ 0.18, 0.025 ≤ y ≤ 0.04 및 0.001 ≤ z ≤ 0.03인 방법.
  9. 제 7항에 있어서, Ga1 - xInxNyAs1 -y- zSbz 서브셀이 GaAs 및 Ge 군으로부터 선택된 기판에 실질적으로 격자 정합되는 방법.
KR1020127028355A 2010-03-29 2010-12-21 태양전지를 위한 격자 정합 가능한 합금 KR20130018283A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/749,076 2010-03-29
US12/749,076 US20110232730A1 (en) 2010-03-29 2010-03-29 Lattice matchable alloy for solar cells
PCT/US2010/061635 WO2011123164A1 (en) 2010-03-29 2010-12-21 Lattice matchable alloy for solar cells

Publications (1)

Publication Number Publication Date
KR20130018283A true KR20130018283A (ko) 2013-02-20

Family

ID=44654966

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127028355A KR20130018283A (ko) 2010-03-29 2010-12-21 태양전지를 위한 격자 정합 가능한 합금

Country Status (9)

Country Link
US (9) US20110232730A1 (ko)
EP (2) EP3471149A1 (ko)
JP (1) JP2013524505A (ko)
KR (1) KR20130018283A (ko)
CN (1) CN203707143U (ko)
AU (1) AU2010349711A1 (ko)
ES (1) ES2720596T3 (ko)
SG (2) SG10201503386SA (ko)
WO (1) WO2011123164A1 (ko)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100319764A1 (en) * 2009-06-23 2010-12-23 Solar Junction Corp. Functional Integration Of Dilute Nitrides Into High Efficiency III-V Solar Cells
US20110114163A1 (en) * 2009-11-18 2011-05-19 Solar Junction Corporation Multijunction solar cells formed on n-doped substrates
US20110232730A1 (en) 2010-03-29 2011-09-29 Solar Junction Corp. Lattice matchable alloy for solar cells
US9214580B2 (en) 2010-10-28 2015-12-15 Solar Junction Corporation Multi-junction solar cell with dilute nitride sub-cell having graded doping
US20170338357A1 (en) 2016-05-23 2017-11-23 Solar Junction Corporation Exponential doping in lattice-matched dilute nitride photovoltaic cells
US8962991B2 (en) 2011-02-25 2015-02-24 Solar Junction Corporation Pseudomorphic window layer for multijunction solar cells
US8766087B2 (en) 2011-05-10 2014-07-01 Solar Junction Corporation Window structure for solar cell
US20140345679A1 (en) 2011-08-29 2014-11-27 Iqe Plc. Multijunction photovoltaic device having sige(sn) and gaasnsb cells
FR2981195A1 (fr) * 2011-10-11 2013-04-12 Soitec Silicon On Insulator Multi-jonctions dans un dispositif semi-conducteur forme par differentes techniques de depot
WO2013058640A2 (es) * 2011-10-20 2013-04-25 Zepeda Lopez Hector Manuel Método de extracción, comprobación y conteo de extracto dializado de leucocitos de origen bazo de tiburón, para la obtención de factor de transferencia potencializado, específicamente diseñado para su uso como tratamiento contra la enfermedad conocida como asma
US20180358499A1 (en) * 2011-11-15 2018-12-13 Solar Junction Corporation High efficiency multijunction solar cells
WO2013074530A2 (en) * 2011-11-15 2013-05-23 Solar Junction Corporation High efficiency multijunction solar cells
US9153724B2 (en) 2012-04-09 2015-10-06 Solar Junction Corporation Reverse heterojunctions for solar cells
JP2015518283A (ja) * 2012-04-23 2015-06-25 ナンヤン テクノロジカル ユニヴァーシティー セル配列
EP3103142B1 (en) * 2014-02-05 2020-08-19 Array Photonics, Inc. Monolithic multijunction power converter
US10087535B2 (en) 2015-03-23 2018-10-02 Alliance For Sustainable Energy, Llc Devices and methods for photoelectrochemical water splitting
US9768339B2 (en) 2015-06-22 2017-09-19 IQE, plc Optoelectronic detectors having a dilute nitride layer on a substrate with a lattice parameter nearly matching GaAs
US20170110613A1 (en) 2015-10-19 2017-04-20 Solar Junction Corporation High efficiency multijunction photovoltaic cells
JP2017105101A (ja) * 2015-12-11 2017-06-15 株式会社ミマキエンジニアリング 三次元造形物、並びにこれを生成する三次元造形装置及び方法
US10090420B2 (en) 2016-01-22 2018-10-02 Solar Junction Corporation Via etch method for back contact multijunction solar cells
US9680035B1 (en) 2016-05-27 2017-06-13 Solar Junction Corporation Surface mount solar cell with integrated coverglass
WO2017218190A1 (en) 2016-06-15 2017-12-21 Solar Junction Corporation Dilute nitride bismide semiconductor alloys
GB2555409B (en) * 2016-10-25 2020-07-15 Iqe Plc Photovoltaic Device
US10930808B2 (en) 2017-07-06 2021-02-23 Array Photonics, Inc. Hybrid MOCVD/MBE epitaxial growth of high-efficiency lattice-matched multijunction solar cells
EP3669402A1 (en) 2017-09-27 2020-06-24 Array Photonics, Inc. Short wavelength infrared optoelectronic devices having a dilute nitride layer
WO2019143776A1 (en) 2018-01-19 2019-07-25 Solar Junction Corporation Surface mount solar cell having low stress passivation layers
EP3766104A1 (en) 2018-03-12 2021-01-20 Solar Junction Corporation Chirped distributed bragg reflectors for photovoltaic cells and other light absorption devices
WO2020033706A1 (en) 2018-08-09 2020-02-13 Array Photonics, Inc. Hydrogen diffusion barrier for hybrid semiconductor growth
US20210399153A1 (en) 2018-10-03 2021-12-23 Array Photonics, Inc. Optically-transparent semiconductor buffer layers and structures employing the same
US11211514B2 (en) 2019-03-11 2021-12-28 Array Photonics, Inc. Short wavelength infrared optoelectronic devices having graded or stepped dilute nitride active regions
EP3980586A1 (en) * 2019-06-04 2022-04-13 Solar Junction Corporation Dilute nitride optical absorption layers having graded doping
WO2021194793A1 (en) 2020-03-27 2021-09-30 Array Photonics, Inc. Dilute nitride optoelectronic absorption devices having graded or stepped interface regions

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179702A (en) 1978-03-09 1979-12-18 Research Triangle Institute Cascade solar cells
US4404421A (en) * 1982-02-26 1983-09-13 Chevron Research Company Ternary III-V multicolor solar cells and process of fabrication
US4881979A (en) * 1984-08-29 1989-11-21 Varian Associates, Inc. Junctions for monolithic cascade solar cells and methods
JPS63100781A (ja) 1986-10-17 1988-05-02 Nippon Telegr & Teleph Corp <Ntt> 半導体素子
US5016562A (en) 1988-04-27 1991-05-21 Glasstech Solar, Inc. Modular continuous vapor deposition system
US4935384A (en) 1988-12-14 1990-06-19 The United States Of America As Represented By The United States Department Of Energy Method of passivating semiconductor surfaces
JPH02218174A (ja) * 1989-02-17 1990-08-30 Mitsubishi Electric Corp 光電変換半導体装置
US5223043A (en) * 1991-02-11 1993-06-29 The United States Of America As Represented By The United States Department Of Energy Current-matched high-efficiency, multijunction monolithic solar cells
US5166761A (en) * 1991-04-01 1992-11-24 Midwest Research Institute Tunnel junction multiple wavelength light-emitting diodes
JPH07101753B2 (ja) 1992-08-05 1995-11-01 日立電線株式会社 積層型太陽電池
JPH0661516A (ja) 1992-08-06 1994-03-04 Japan Energy Corp 太陽電池の製造方法
US5330585A (en) 1992-10-30 1994-07-19 Spectrolab, Inc. Gallium arsenide/aluminum gallium arsenide photocell including environmentally sealed ohmic contact grid interface and method of fabricating the cell
US5342453A (en) * 1992-11-13 1994-08-30 Midwest Research Institute Heterojunction solar cell
US5316593A (en) * 1992-11-16 1994-05-31 Midwest Research Institute Heterojunction solar cell with passivated emitter surface
US5800630A (en) 1993-04-08 1998-09-01 University Of Houston Tandem solar cell with indium phosphide tunnel junction
US5376185A (en) 1993-05-12 1994-12-27 Midwest Research Institute Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
US5405453A (en) * 1993-11-08 1995-04-11 Applied Solar Energy Corporation High efficiency multi-junction solar cell
US5689123A (en) * 1994-04-07 1997-11-18 Sdl, Inc. III-V aresenide-nitride semiconductor materials and devices
FR2722612B1 (fr) 1994-07-13 1997-01-03 Centre Nat Rech Scient Procede de fabrication d'un materiau ou dispositif photovoltaique, materiau ou dispositif ainsi obteu et photopile comprenant un tel materiau ou dispositif
JPH1012905A (ja) 1996-06-27 1998-01-16 Hitachi Ltd 太陽電池及びその製造方法
US5911839A (en) * 1996-12-16 1999-06-15 National Science Council Of Republic Of China High efficiency GaInP NIP solar cells
JP3683669B2 (ja) 1997-03-21 2005-08-17 株式会社リコー 半導体発光素子
US6281426B1 (en) * 1997-10-01 2001-08-28 Midwest Research Institute Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge
US5944913A (en) * 1997-11-26 1999-08-31 Sandia Corporation High-efficiency solar cell and method for fabrication
US6150603A (en) 1999-04-23 2000-11-21 Hughes Electronics Corporation Bilayer passivation structure for photovoltaic cells
US6252287B1 (en) * 1999-05-19 2001-06-26 Sandia Corporation InGaAsN/GaAs heterojunction for multi-junction solar cells
US6340788B1 (en) * 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
JP4064592B2 (ja) * 2000-02-14 2008-03-19 シャープ株式会社 光電変換装置
US7345327B2 (en) 2000-11-27 2008-03-18 Kopin Corporation Bipolar transistor
US6815736B2 (en) * 2001-02-09 2004-11-09 Midwest Research Institute Isoelectronic co-doping
US7233028B2 (en) * 2001-02-23 2007-06-19 Nitronex Corporation Gallium nitride material devices and methods of forming the same
US6787385B2 (en) * 2001-05-31 2004-09-07 Midwest Research Institute Method of preparing nitrogen containing semiconductor material
US6586669B2 (en) 2001-06-06 2003-07-01 The Boeing Company Lattice-matched semiconductor materials for use in electronic or optoelectronic devices
US20030070707A1 (en) 2001-10-12 2003-04-17 King Richard Roland Wide-bandgap, lattice-mismatched window layer for a solar energy conversion device
US7119271B2 (en) 2001-10-12 2006-10-10 The Boeing Company Wide-bandgap, lattice-mismatched window layer for a solar conversion device
US6764926B2 (en) * 2002-03-25 2004-07-20 Agilent Technologies, Inc. Method for obtaining high quality InGaAsN semiconductor devices
US6660928B1 (en) 2002-04-02 2003-12-09 Essential Research, Inc. Multi-junction photovoltaic cell
US6756325B2 (en) * 2002-05-07 2004-06-29 Agilent Technologies, Inc. Method for producing a long wavelength indium gallium arsenide nitride(InGaAsN) active region
US8173891B2 (en) 2002-05-21 2012-05-08 Alliance For Sustainable Energy, Llc Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps
US20060162768A1 (en) 2002-05-21 2006-07-27 Wanlass Mark W Low bandgap, monolithic, multi-bandgap, optoelectronic devices
US8067687B2 (en) 2002-05-21 2011-11-29 Alliance For Sustainable Energy, Llc High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
US6967154B2 (en) * 2002-08-26 2005-11-22 Micron Technology, Inc. Enhanced atomic layer deposition
US7255746B2 (en) * 2002-09-04 2007-08-14 Finisar Corporation Nitrogen sources for molecular beam epitaxy
US7122733B2 (en) * 2002-09-06 2006-10-17 The Boeing Company Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
US6765238B2 (en) * 2002-09-12 2004-07-20 Agilent Technologies, Inc. Material systems for semiconductor tunnel-junction structures
US7126052B2 (en) * 2002-10-02 2006-10-24 The Boeing Company Isoelectronic surfactant induced sublattice disordering in optoelectronic devices
US7122734B2 (en) * 2002-10-23 2006-10-17 The Boeing Company Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers
US7071407B2 (en) * 2002-10-31 2006-07-04 Emcore Corporation Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell
WO2004054003A1 (en) * 2002-12-05 2004-06-24 Blue Photonics, Inc. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
JP2004296658A (ja) 2003-03-26 2004-10-21 Sharp Corp 多接合太陽電池およびその電流整合方法
US7812249B2 (en) * 2003-04-14 2010-10-12 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate
US7123638B2 (en) * 2003-10-17 2006-10-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Tunnel-junction structure incorporating N-type layer comprising nitrogen and a group VI dopant
JP5248782B2 (ja) 2004-01-20 2013-07-31 シリアム・テクノロジーズ・インコーポレーテッド エピタキシャルに成長させた量子ドット材料を有する太陽電池
US7807921B2 (en) * 2004-06-15 2010-10-05 The Boeing Company Multijunction solar cell having a lattice mismatched GrIII-GrV-X layer and a composition-graded buffer layer
JP5008874B2 (ja) 2005-02-23 2012-08-22 住友電気工業株式会社 受光素子と受光素子を用いた光通信用受信モジュールおよび受光素子を用いた計測器
US7473941B2 (en) * 2005-08-15 2009-01-06 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Structures for reducing operating voltage in a semiconductor device
US11211510B2 (en) 2005-12-13 2021-12-28 The Boeing Company Multijunction solar cell with bonded transparent conductive interlayer
US20070227588A1 (en) 2006-02-15 2007-10-04 The Regents Of The University Of California Enhanced tunnel junction for improved performance in cascaded solar cells
US20090078310A1 (en) 2007-09-24 2009-03-26 Emcore Corporation Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells
US20100229926A1 (en) 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer
US7872252B2 (en) 2006-08-11 2011-01-18 Cyrium Technologies Incorporated Method of fabricating semiconductor devices on a group IV substrate with controlled interface properties and diffusion tails
US7842881B2 (en) 2006-10-19 2010-11-30 Emcore Solar Power, Inc. Solar cell structure with localized doping in cap layer
US20080149173A1 (en) * 2006-12-21 2008-06-26 Sharps Paul R Inverted metamorphic solar cell with bypass diode
JP5515162B2 (ja) 2007-03-23 2014-06-11 住友電気工業株式会社 半導体ウエハの製造方法
US7825328B2 (en) * 2007-04-09 2010-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US20080257405A1 (en) 2007-04-18 2008-10-23 Emcore Corp. Multijunction solar cell with strained-balanced quantum well middle cell
JP2009010175A (ja) 2007-06-28 2009-01-15 Sumitomo Electric Ind Ltd 受光素子およびその製造方法
WO2009009111A2 (en) * 2007-07-10 2009-01-15 The Board Of Trustees Of The Leland Stanford Junior University GaInNAsSB SOLAR CELLS GROWN BY MOLECULAR BEAM EPITAXY
JP5417694B2 (ja) * 2007-09-03 2014-02-19 住友電気工業株式会社 半導体素子およびエピタキシャルウエハの製造方法
US8895342B2 (en) 2007-09-24 2014-11-25 Emcore Solar Power, Inc. Heterojunction subcells in inverted metamorphic multijunction solar cells
GB0719554D0 (en) 2007-10-05 2007-11-14 Univ Glasgow semiconductor optoelectronic devices and methods for making semiconductor optoelectronic devices
TW200924214A (en) 2007-11-16 2009-06-01 Univ Nat Chunghsing Solar cell
US20090155952A1 (en) 2007-12-13 2009-06-18 Emcore Corporation Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells
US20090188561A1 (en) 2008-01-25 2009-07-30 Emcore Corporation High concentration terrestrial solar array with III-V compound semiconductor cell
US20090255575A1 (en) 2008-04-04 2009-10-15 Michael Tischler Lightweight solar cell
US20090255576A1 (en) 2008-04-04 2009-10-15 Michael Tischler Window solar cell
US20090272438A1 (en) 2008-05-05 2009-11-05 Emcore Corporation Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell
US20090288703A1 (en) 2008-05-20 2009-11-26 Emcore Corporation Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells
US8309374B2 (en) 2008-10-07 2012-11-13 Applied Materials, Inc. Advanced platform for processing crystalline silicon solar cells
US8912428B2 (en) 2008-10-22 2014-12-16 Epir Technologies, Inc. High efficiency multijunction II-VI photovoltaic solar cells
KR20100084843A (ko) 2009-01-19 2010-07-28 삼성전자주식회사 다중접합 태양전지
US20100282306A1 (en) 2009-05-08 2010-11-11 Emcore Solar Power, Inc. Multijunction Solar Cells with Group IV/III-V Hybrid Alloys
US20100282305A1 (en) 2009-05-08 2010-11-11 Emcore Solar Power, Inc. Inverted Multijunction Solar Cells with Group IV/III-V Hybrid Alloys
US20100319764A1 (en) 2009-06-23 2010-12-23 Solar Junction Corp. Functional Integration Of Dilute Nitrides Into High Efficiency III-V Solar Cells
MX2012001218A (es) 2009-07-29 2012-06-01 Cyrium Technologies Inc Celda solar y metodo de fabricacion de la misma.
JP5649157B2 (ja) 2009-08-01 2015-01-07 住友電気工業株式会社 半導体素子およびその製造方法
US20110114163A1 (en) 2009-11-18 2011-05-19 Solar Junction Corporation Multijunction solar cells formed on n-doped substrates
TWI436488B (zh) 2010-03-12 2014-05-01 Epistar Corp 一種具有漸變緩衝層太陽能電池
US20110232730A1 (en) 2010-03-29 2011-09-29 Solar Junction Corp. Lattice matchable alloy for solar cells
US20110303268A1 (en) 2010-06-15 2011-12-15 Tan Wei-Sin HIGH EFFICIENCY InGaAsN SOLAR CELL AND METHOD OF MAKING
US9853478B2 (en) 2010-07-28 2017-12-26 Qualcomm Incorporated Low power detection of wireless power devices
US8642883B2 (en) 2010-08-09 2014-02-04 The Boeing Company Heterojunction solar cell
US9214580B2 (en) 2010-10-28 2015-12-15 Solar Junction Corporation Multi-junction solar cell with dilute nitride sub-cell having graded doping
US20170338357A1 (en) 2016-05-23 2017-11-23 Solar Junction Corporation Exponential doping in lattice-matched dilute nitride photovoltaic cells
US8962991B2 (en) 2011-02-25 2015-02-24 Solar Junction Corporation Pseudomorphic window layer for multijunction solar cells
US8927857B2 (en) 2011-02-28 2015-01-06 International Business Machines Corporation Silicon: hydrogen photovoltaic devices, such as solar cells, having reduced light induced degradation and method of making such devices
US8766087B2 (en) 2011-05-10 2014-07-01 Solar Junction Corporation Window structure for solar cell
WO2013074530A2 (en) 2011-11-15 2013-05-23 Solar Junction Corporation High efficiency multijunction solar cells
US9153724B2 (en) 2012-04-09 2015-10-06 Solar Junction Corporation Reverse heterojunctions for solar cells
US20170110613A1 (en) 2015-10-19 2017-04-20 Solar Junction Corporation High efficiency multijunction photovoltaic cells

Also Published As

Publication number Publication date
EP2553731A4 (en) 2016-09-07
US8912433B2 (en) 2014-12-16
AU2010349711A1 (en) 2012-11-08
US20130220409A1 (en) 2013-08-29
US9252315B2 (en) 2016-02-02
US9985152B2 (en) 2018-05-29
US20160111569A1 (en) 2016-04-21
US20110232730A1 (en) 2011-09-29
EP2553731A1 (en) 2013-02-06
EP3471149A1 (en) 2019-04-17
EP2553731B1 (en) 2019-01-23
WO2011123164A1 (en) 2011-10-06
CN203707143U (zh) 2014-07-09
JP2013524505A (ja) 2013-06-17
US20150122318A1 (en) 2015-05-07
SG184191A1 (en) 2012-10-30
US20130130431A1 (en) 2013-05-23
US20130014815A1 (en) 2013-01-17
SG10201503386SA (en) 2015-06-29
US20170110607A1 (en) 2017-04-20
ES2720596T3 (es) 2019-07-23
US20150027520A1 (en) 2015-01-29
US20150214412A1 (en) 2015-07-30
US8575473B2 (en) 2013-11-05
US9018522B2 (en) 2015-04-28

Similar Documents

Publication Publication Date Title
US9985152B2 (en) Lattice matchable alloy for solar cells
Philipps et al. High-efficiency III–V multijunction solar cells
US10374112B2 (en) Inverted metamorphic multijunction solar cell including a metamorphic layer
US6586669B2 (en) Lattice-matched semiconductor materials for use in electronic or optoelectronic devices
TWI600173B (zh) 在中間電池中具有低能隙吸收層之多接面太陽能電池及其製造方法
US20090014061A1 (en) GaInNAsSb solar cells grown by molecular beam epitaxy
US20140326301A1 (en) Multijunction photovoltaic device having sige(sn) and (in)gaasnbi cells
US20170338357A1 (en) Exponential doping in lattice-matched dilute nitride photovoltaic cells
WO2012057874A1 (en) Multi-junction solar cell with dilute nitride sub-cell having graded doping
JP2009182325A (ja) 倒置型メタモルフィック多接合ソーラーセルにおけるヘテロ接合サブセル
US20130228216A1 (en) Solar cell with gradation in doping in the window layer
US20140090700A1 (en) High-concentration multi-junction solar cell and method for fabricating same
Hoehn et al. Development of Germanium-based wafer-bonded four-junction solar cells
US20190288147A1 (en) Dilute nitride optical absorption layers having graded doping
EP3980586A1 (en) Dilute nitride optical absorption layers having graded doping
Simon et al. Recent HVPE grown solar cells at NREL
Zhang et al. Theoretical study on potential performance of lattice-matched monolithic GaNP/GaNAsP/Si triple-junction solar cell
Jackrel et al. GaInNAsSb solar cells grown by molecular beam epitaxy
Yamaguchi et al. Super-high-efficiency III-V tandem and multi-junction cells
Ali et al. Design and simulation of high efficiency Al x Ga 1− x As/Ga 0.47 in 0.53 as y P 1− y bandgraded 2-J tandem solar cell
Andreev et al. GaSb structures with quantum dots in space charge region
US20150034151A1 (en) Inverted metamorphic multijunction solar cell with passivation in the window layer

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid