ES2720596T3 - Subcélula para su utilización en una célula solar multiunión - Google Patents

Subcélula para su utilización en una célula solar multiunión Download PDF

Info

Publication number
ES2720596T3
ES2720596T3 ES10849171T ES10849171T ES2720596T3 ES 2720596 T3 ES2720596 T3 ES 2720596T3 ES 10849171 T ES10849171 T ES 10849171T ES 10849171 T ES10849171 T ES 10849171T ES 2720596 T3 ES2720596 T3 ES 2720596T3
Authority
ES
Spain
Prior art keywords
subcell
gaas
solar cell
layer
zsbz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES10849171T
Other languages
English (en)
Inventor
Rebecca Elizabeth Jones
Homan Bernard Yuen
Ting Liu
Pranob Misra
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solar Junction Corp
Original Assignee
Solar Junction Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solar Junction Corp filed Critical Solar Junction Corp
Application granted granted Critical
Publication of ES2720596T3 publication Critical patent/ES2720596T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • C30B23/066Heating of the material to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Subcélula para su utilización en una célula solar multiunión, que comprende: una capa Ga1-xInxNyAs1-y-zSbz (220), en la que los valores de contenido para x, y, y z se encuentran en los rangos de composición siguientes: 0,07 <= x <= 0,18, 0,025 <= y <= 0,04 y 0,001 <= z <= 0,03; un emisor (26), un campo en superficie delantero opcional (28) y un campo en superficie trasero opcional (30); donde la capa Ga1-xInxNyAs1-y-zSbz (220) se empareja reticularmente de forma sustancial a un sustrato GaAs o a un sustrato Ge; donde la capa Ga1-xInxNyAs1-y-zSbz (220) presenta una banda prohibida en el rango de 0,9 - 1,1 eV; donde, cuando se expone a una iluminación de 1 sol AM 1.5D, la subcélula presenta una tensión en circuito abierto superior a 0,30 V; y una corriente de cortocircuito superior a 13 mA/cm cuando se expone a una iluminación de 1 sol AM1.5D con un filtro que bloquea toda la luz por encima de la banda prohibida GaAs.

Description

DESCRIPCIÓN
Subcélula para su utilización en una célula solar multiunión
REFERENCIAS CRUZADAS A SOLICITUDES RELACIONADAS
[0001] NO APLICABLE
DECLARACIÓN SOBRE DERECHOS DE INVENCIONES OBTENIDAS MEDIANTE INVESTIGACIÓN O DESARROLLO FINANCIADOS POR EL GOBIERNO FEDERAL
[0002] NO APLICABLE
REFERENCIA A UN APÉNDICE DE "LISTA DE SECUENCIAS", TABLA O LISTA DE PROGRAMA INFORMÁTICO PRESENTADOS EN UN DISCO COMPACTO
[0003] NO APLICABLE
ESTADO DE LA TÉCNICA
[0004] La presente invención se refiere a una subcélula para su utilización en células solares multiunión y, en particular, a células solares de alta eficiencia formadas por aleaciones semiconductoras III-V.
[0005] Se sabe que las células solares multiunión obtenidas principalmente a partir de aleaciones semiconductoras III-V producen eficiencias de células solares que sobrepasan las eficiencias de otros tipos de materiales fotovoltaicos. Dichas aleaciones son combinaciones de elementos extraídos de las columnas III y V de la tabla periódica estándar, que de ahora en adelante serán identificados por su símbolo, nombre y abreviatura químicos estándar. (Los expertos en la materia pueden identificar su clase de propiedades semiconductoras por clase sin referencia específica a su columna). Las altas eficiencias de estas células solares hacen que sean atractivas para los sistemas fotovoltaicos de concentración terrestre y los sistemas pensados para funcionar en el espacio exterior. Se ha informado de células solares multiunión con eficiencias que superan un 40 % en concentraciones equivalentes a varios cientos de soles. Los dispositivos de más alta eficiencia conocidos presentan tres subcélulas, consistiendo cada una de las subcélulas en una unión p-n funcional y otras capas, tales como capas de campo en superficie delanteras y traseras. Estas subcélulas se conectan a través de uniones túnel y las capas dominantes, bien se emparejan mediante una estructura reticular con el sustrato subyacente, bien se hacen crecer sobre capas metamórficas. Los dispositivos y diseños con emparejamiento mediante estructura reticular son deseables, puesto que han demostrado ser fiables y porque utilizan menos material semiconductor que las células solares metamórficas, que requieren capas buffer relativamente gruesas para adaptarse a las diferencias en los parámetros de red de los diversos materiales. Tal y como se expone más detalladamente en la solicitud de patente estadounidense n.° 12/217818, titulada "GaInNAsSb Solar Cells Grown by Molecular Beam Epitaxy," incorporándose dicha solicitud como referencia en la presente memoria, una capa hecha a partir de material GaInNAsSb para crear una tercera unión que presenta una banda prohibida de aproximadamente 1,0 eV ofrece un enfoque alentador para mejorar la eficiencia de las células multiunión. No obstante, deben tenerse en cuenta mejoras en la célula descrita en dicha solicitud.
[0006] La eficiencia más alta conocida, las células solares con estructura reticular normalmente incluyen una pila monolítica de tres uniones p-n funcionales o subcélulas, que se hacen crecer de manera epitaxial en un sustrato de germanio (Ge). La subcélula superior se ha obtenido a partir de (Al)GaInP, la intermedia a partir de (In)GaAs y la unión inferior incluía el sustrato Ge. (La nomenclatura anterior para una aleación III-V, en la que se muestra un elemento constituyente entre paréntesis, indica una condición de variabilidad donde dicho elemento particular puede ser cero). Esta estructura no es óptima en términos de eficiencia, ya que la unión inferior puede generar aproximadamente el doble de corriente de cortocircuito que las dos uniones superiores, tal y como se expone en J.F. Geisz et al., "Inverted GaInP / (In)GaAs / InGaAs triple-junction solar cells with low-stress metamorphic bottom junctions," Actas del 33° congreso IEEE PVSC Photovoltaics Specialists, 2008. Esta capacidad de corriente adicional se desperdicia, puesto que la corriente neta debe ser uniforme a través de la pila completa, una característica de diseño conocida como coincidencia de corriente.
[0007] En la exposición de la solicitud de patente estadounidense n.° 12/217,818 mencionada anteriormente, se demostró que un material que está sustancialmente emparejado reticularmente a Ge O GaAs con una banda prohibida de alrededor de 1,0 eV podría utilizarse para crear una célula solar de triple unión con eficiencias superiores a las de la estructura descrita anteriormente mediante la sustitución de la unión Ge inferior con una unión hecha de un material diferente que produce una tensión superior.
[0008] Además, se ha propuesto que la utilización de este material de 1 eV pueda considerarse como una cuarta unión para aprovechar la parte completa del espectro que se encuentra entre 0,7 eV (la banda prohibida del germanio) y 1,1 eV (el extremo superior del rango de bandas prohibidas de la capa de ~ 1 eV). Véase, por ejemplo, S. R. Kurtz, D. Myers y J. M. Olson, "Projected Performance of Three and Four-Junction Devices Using GaAs and GalnP," congreso 26° IEEE Photovoltaics Specialists, 1997, pp. 875-878. Ga1-xInxNyAs1-y ha sido identificado como dicho material de 1 eV, pero no se han alcanzado corrientes lo suficientemente altas como para emparejarse con las demás subcélulas; véase, por ejemplo, A. J. Ptak et al., Journal of Applied Physics 98 (2005) 094501. Esto ha sido atribuido a bajas distancias de difusión de los portadores minoritarios, que evitan la recogida eficaz de fotoportadores. El diseño de las subcélulas solares compuestas por galio, indio, nitrógeno, arsénico y diversas concentraciones de antimonio (GaInNAsSb) se ha investigado con el resultado expuesto de que el antimonio es útil en la disminución de la rugosidad de superficie y que permite el crecimiento con unas temperaturas de sustrato superiores en los casos en que el recocido no es necesario, pero los investigadores informaron de que el antimonio, incluso en concentraciones pequeñas es fundamental que se evite ya que es perjudicial para el rendimiento adecuado del dispositivo. Véase Ptak et al., "Effects of temperature, nitrogen ion, and antimony on wide depletion width GaInNAs," Journal of Vacuum Science Technology B 25(3) mayo/junio de 2007 pp. 955-959. Los dispositivos analizados en dicho artículo presentan corrientes de cortocircuito demasiado bajas para integrarse en células solares multiunión. Sin embargo, se sabe que Ga1-xlnxNyAs1-y-zSbz con un 0,05^x^0,07, 0,01^y^0,02 y 0,02^z^0,06 pueden utilizarse para producir un material con estructura reticular con una banda prohibida de aproximadamente 1 eV que puede proporcionar suficiente corriente como para integrarse en una célula solar multiunión. Sin embargo, las tensiones generadas por las subcélulas que contienen este material no han sobrepasado 0,30 V con 1 sol de iluminación. Véase D. B. Jackrel et al., Journal of Applied Physics 101 (114916) 2007. Por lo tanto, una célula solar de tripe unión con este material como subcélula inferior solamente ha resultado ser una pequeña mejora sobre una célula solar de triple unión análoga con una subcélula inferior de Ge, que produce una tensión en circuito abierto de aproximadamente 0,25 V. Véase H. Cotal et al., Energy and Environmental Science 2 (174) 2009. Se necesita un material que se empareje reticularmente a Ge y GaAs con una banda prohibida de alrededor de 1 eV que produce una tensión en circuito abierto superior a 0,30 V y suficiente corriente como para emparejar las subcélulas (Al)InGaP y (In)GaAs. Dicho material también sería ventajoso como subcélula en células solares de alta eficiencia con 4 o más uniones. En R. Kudrawiec, Applied Physics Letters 88, 221113 (2006), se ha aplicado la espectroscopia de electrorreflectancia sin contacto (CER, por sus siglas en inglés) para analizar las transiciones ópticas en un único pozo cuántico (QW, por sus siglas en inglés) de Ga0.gIn0.1N0.027As0.g73-xSbx/GaAs con un contenido de antimonio de entre un 0 % y un 5,4 %.
RESUMEN DE LA INVENCIÓN
[0009] La invención da a conocer una subcélula para su utilización en una célula solar multiunión, una célula solar multiunión y un procedimiento de fabricación de la subcélula según se establece en las reivindicaciones adjuntas.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
[0010]
La figura 1A es un corte transversal esquemático de una célula solar de tres uniones que incorpora la invención
La figura 1B es un corte transversal esquemático de una célula solar de cuatro uniones que incorpora la invención.
La figura 2A es un corte transversal esquemático de una subcélula GaInNAsSb de acuerdo con la invención. La figura 2B es un corte transversal esquemático detallado que ilustra una subcélula GaInNAsSb de ejemplo. La figura 3 es un gráfico que muestra la eficiencia frente a la energía de banda prohibida de subcélulas formadas a partir de diferentes materiales de aleación, para su comparación.
La figura 4 es un gráfico que muestra la corriente de cortocircuito (Jsc) y la tensión en circuito abierto (Voc) de subcélulas formadas a partir de diferentes materiales de aleación, para su comparación.
La figura 5 es un gráfico que muestra la fotocorriente como una función de la tensión para una célula solar de triple unión que incorpora una subcélula de acuerdo con la invención, con iluminación AM1.5D de 1 sol. La figura 6 es un gráfico que muestra la fotocorriente como función de la tensión para una célula solar de triple unión que incorpora una subcélula de acuerdo con la invención, con iluminación AM1.5D equivalente a 523 soles.
La figura 7 es un gráfico de la corriente de cortocircuito (Jsc) y la tensión en circuito abierto (Voc) de subcélulas con Sb bajo, In mejorado y N GaInNAsSb distinguidas por la presión transmitida a la película por el sustrato.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
[0011] La figura 1A es un corte transversal esquemático que muestra un ejemplo de una célula solar de triple unión 10 de acuerdo con la invención, que consiste fundamentalmente en una subcélula con Sb bajo, In mejorado y N GaInNAsSb 12 adyacente a Ge, GaAs u otro sustrato compatible de cualquier otra forma 14 con una subcélula superior 16 de (Al)InGaP y una subcélula intermedia 18 con la utilización de (In)GaAs. La unión túnel 20 se encuentra entre las subcélulas 16 y 18, mientras que la unión túnel 22 se encuentra entre las subcélulas 18 y 12. Cada una de las subcélulas 12, 16, 18 comprende diversas capas asociadas, incluidas campo en superficie delanteras y traseras, un emisor y una base. El material de subcélula indicado (p.ej., (In)GaAs) forma la capa de base y puede o puede no formar las otras capas.
[0012] Las subcélulas con Sb bajo, In mejorado y N GaInNAsSb también pueden incorporarse en células solares multiunión con cuatro o más uniones sin desviarse del espíritu y alcance de la invención. En la figura 1B, se muestra una de dichas células solares con cuatro uniones 100 con una subcélula específica con Sb bajo, In mejorado y N GaInNAsSb 12 como tercera unión, así como con una subcélula superior 16 de (Al)InGaP, una segunda subcélula 18 de (In)GaAs y una subcélula inferior 140 de Ge, que también se incorpora en un sustrato de germanio (Ge). Cada una de las subcélulas 16, 18, 12, 140 está separada por respectivas uniones túnel 20, 22, 24, y cada una de las subcélulas 16, 18, 12, 140 puede comprender diversas capas asociadas, incluidas campo en superficie delanteras y traseras opcionales, un emisor y una base. El material de subcélula indicado (p. ej., (In)GaAs) forma la capa de base y puede o puede no formar las otras capas.
[0013] A modo de ilustración adicional, la figura 2A es un corte transversal esquemático con más detalle de una subcélula GaInNAsSb 12, de acuerdo con la invención. La subcélula con Sb bajo, In mejorado y N GaInNAsSb 12 se caracteriza, por lo tanto, por su utilización de Sb bajo, In mejorado y N GaInNAsSb como capa de base 220 en la subcélula 12. Otros componentes de la subcélula GaInNAsSb 12, incluidos un emisor 26, un campo en superficie delantero 28 y un campo en superficie trasero opcionales 30, son preferiblemente aleaciones III-V, incluyendo, a modo de ejemplo, GaInNAs(Sb), (In)(Al)GaAs, (Al)InGaP o Ge. La base con Sb bajo, In mejorado y N GaInNAsSb 220 puede, bien ser de tipo p o de tipo n, con un emisor 26 del tipo contrario.
[0014] Para determinar el efecto de Sb en el rendimiento de la subcélula con In mejorado y N GaInNAsSb, se investigaron varias subcélulas del tipo (12) de la estructura mostrada en la figura 2B. La figura 2B es un ejemplo representativo de la estructura más general 12 de la figura 2A. Las capas de base 220 sin Sb, con Sb bajo (0,001 < z < 0,03) y con Sb alto (0,03 < z < 0,06) fueron desarrolladas mediante crecimiento epitaxial por haces moleculares y fueron emparejadas reticularmente de forma sustancial a un sustrato GaAs (no mostrado). Estas composiciones de aleación fueron verificadas mediante espectometría de masas de iones secundarios. Las subcélulas 12 fueron sometidas a un recocido térmico, procesado con procesamiento de células solares generalmente conocido y, a continuación, medidas con el espectro AM1.5D (1 sol) por debajo de un filtro que bloqueaba toda la luz por encima de la banda prohibida de GaAs. Este filtro era adecuado porque una subcélula GaInNAsSb 12 está normalmente por debajo de una subcélula (In)GaAs en una pila multiunión (p. ej., figuras 1A y 1B) y, por lo tanto, la luz de energías elevadas no alcanzará la subcélula 12.
[0015] La figura 3 muestra las eficiencias producidas por las subcélulas 12 desarrolladas con diferentes fracciones de Sb como una función de sus bandas prohibidas. Las concentraciones de indio y de nitrógeno eran de rangos entre 0,07 y 0,18, y entre 0,025 y 0,04, respectivamente. Puede observarse que las subcélulas con Sb bajo, In mejorado y N GaInNAsSb (representadas por triángulos) presentan eficiencias de subcélula sistemáticamente más elevadas que las otras dos candidatas (representadas por rombos y cuadrados). Esto se debe a la combinación de capacidades de tensión elevada y de corriente elevada en los dispositivos con Sb bajo, In mejorado y N GaInNAsSb. (Véase la figura 4). Como puede observarse en la figura 4, tanto los dispositivos con concentración baja y elevada de Sb presentan suficiente corriente de cortocircuito para emparejarse con subcélulas (Al)InGaP de alta eficiencia y con subcélulas (In)GaAs (> 13 mA/cm2 con el espectro AM1.5D filtrado) y, por lo tanto, pueden utilizarse en células solares de tres uniones o de cuatro uniones 10, 100 sin reducir la corriente total a través de la célula completa. Este emparejamiento de corriente es esencial para conseguir una eficiencia elevada. Los dispositivos sin Sb presentan eficiencias relativamente elevadas de subcélula debido a sus tensiones elevadas en circuito abierto, pero sus corrientes de cortocircuito son demasiado bajas para las células solares multiunión de alta eficiencia, como se muestra en la figura 4.
[0016] La figura 4 también confirma que Sb presenta un efecto perjudicial en la tensión, como se había informado previamente para otras composiciones de aleación. No obstante, a diferencia de lo que se había informado previamente para otras composiciones de aleación, la adición de antimonio NO disminuye la corriente de cortocircuito. Las subcélulas de tipo Sb bajo presentan aproximadamente tensiones en circuito abierto unos 100 mV superiores que las subcélulas de tipo Sb alto. Para ilustrar el efecto de esta mejora, se ha descubierto que una célula solar de triple unión 10 con una tensión en circuito abierto de 3,1 V presenta una eficiencia relativa un 3,3 % superior en comparación con una célula idéntica por lo demás con una tensión en circuito abierto de 3,0 V. Por lo tanto, la inclusión de Sb en células solares de GaInNAs(Sb) es necesaria para producir suficiente corriente para una célula solar de alta eficiencia, pero sólo mediante la utilización de Sb bajo (0,1-3 %) pueden alcanzarse tanto tensiones elevadas como corriente elevadas.
[0017] La presión de compresión mejora la tensión en circuito abierto de las subcélulas con Sb bajo, In mejorado y N GaInNAsSb 10, 100. Más específicamente, las capas con Sb bajo, In mejorado y N GaInNAsSb 220 que presentan un parámetro de red más grande que el de un sustrato GaAs o Ge cuando se relajan completamente (<0,5 % más grande) y, por lo tanto, se encuentran bajo presión de compresión cuando se desarrollan pseudomórficamente en esos sustratos. También proporcionan mejor rendimiento de dispositivo que las capas con un parámetro de red completamente relajado y más pequeño (con tensión de rotura).
[0018] La figura 7 muestra la corriente de cortocircuito y la tensión en circuito abierto de subcélulas con Sb bajo, In mejorado y N GaInNAsSb desarrolladas en sustratos de GaAs con presión de compresión (triángulos) y tensión de rotura (rombos). Puede observarse que las subcélulas con presión de compresión presentan constantemente tensiones en circuito abierto superiores que las que tienen tensión de rotura.
[0019] Las subcélulas con Sb bajo, In mejorado y N GaInNAsSb con presión de compresión se han integrado con éxito en células solares multiunión de alta eficiencia. La figura 5 muestra una curva de corriente-tensión de una célula solar de triple unión de la estructura de la figura 1A con iluminación AM1.5D equivalente a 1 sol. La eficiencia de este dispositivo es de un 30,5 %. La figura 6 muestra la curva de corriente-tensión de la célula solar de triple unión con una concentración equivalente a 523 soles, con una eficiencia de un 39,2 %.
[0020] La invención se ha explicado con referencia a modos de realización específicos. Otros modos de realización serán evidentes para los expertos en la materia. Por lo tanto, no se pretende que la invención se limite, con la excepción de cuando lo indiquen las reivindicaciones adjuntas.

Claims (5)

REIVINDICACIONES
1. Subcélula para su utilización en una célula solar multiunión, que comprende:
una capa Ga-iJnxNyAs-i-y-zSbz (220), en la que
los valores de contenido para x, y, y z se encuentran en los rangos de composición siguientes: 0,07 < x < 0,18, 0,025 < y < 0,04 y 0,001 < z < 0,03;
un emisor (26), un campo en superficie delantero opcional (28) y un campo en superficie trasero opcional (30);
donde la capa Ga-iJnxNyAs-i-y-zSbz (220) se empareja reticularmente de forma sustancial a un sustrato GaAs o a un sustrato Ge;
donde la capa Ga-iJnxNyAs-i-y-zSbz (220) presenta una banda prohibida en el rango de 0,9 -1,1 eV; donde, cuando se expone a una iluminación de 1 sol AM 1.5D, la subcélula presenta una tensión en circuito abierto superior a 0,30 V; y
una corriente de cortocircuito superior a 13 mA/cm cuando se expone a una iluminación de 1 sol AM1.5D con un filtro que bloquea toda la luz por encima de la banda prohibida GaAs.
2. Subcélula de acuerdo con la reivindicación 1, donde el parámetro de red de la capa Ga-iJnxNyAs-i-y-zSbz cuando se desarrolla en una capa de sustrato GaAs o Ge es hasta un 0,5 % superior que el parámetro de red de GaAs o Ge, y donde la capa Ga-iJnxNyAs-i-y-zSbz tiene presión por compresión.
3. Célula solar multiunión que incluye la subcélula de la reivindicación 1, donde la subcélula de la reivindicación 1 está dispuesta como primera subcélula en el sustrato GaAs o Ge.
4. Célula solar multiunión de acuerdo con la reivindicación 3, donde la célula solar multiunión es una célula solar de triple unión.
5. Procedimiento de fabricación de la subcélula de la reivindicación 1, que comprende:
el desarrollo de la capa Ga-iJnxNyAs-i-y-zSbz (220) mediante crecimiento epitaxial por haces moleculares y donde la subcélula se somete a un recocido térmico.
ES10849171T 2010-03-29 2010-12-21 Subcélula para su utilización en una célula solar multiunión Active ES2720596T3 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/749,076 US20110232730A1 (en) 2010-03-29 2010-03-29 Lattice matchable alloy for solar cells
PCT/US2010/061635 WO2011123164A1 (en) 2010-03-29 2010-12-21 Lattice matchable alloy for solar cells

Publications (1)

Publication Number Publication Date
ES2720596T3 true ES2720596T3 (es) 2019-07-23

Family

ID=44654966

Family Applications (1)

Application Number Title Priority Date Filing Date
ES10849171T Active ES2720596T3 (es) 2010-03-29 2010-12-21 Subcélula para su utilización en una célula solar multiunión

Country Status (9)

Country Link
US (9) US20110232730A1 (es)
EP (2) EP2553731B1 (es)
JP (1) JP2013524505A (es)
KR (1) KR20130018283A (es)
CN (1) CN203707143U (es)
AU (1) AU2010349711A1 (es)
ES (1) ES2720596T3 (es)
SG (2) SG10201503386SA (es)
WO (1) WO2011123164A1 (es)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100319764A1 (en) * 2009-06-23 2010-12-23 Solar Junction Corp. Functional Integration Of Dilute Nitrides Into High Efficiency III-V Solar Cells
US20110114163A1 (en) * 2009-11-18 2011-05-19 Solar Junction Corporation Multijunction solar cells formed on n-doped substrates
US20110232730A1 (en) 2010-03-29 2011-09-29 Solar Junction Corp. Lattice matchable alloy for solar cells
US9214580B2 (en) 2010-10-28 2015-12-15 Solar Junction Corporation Multi-junction solar cell with dilute nitride sub-cell having graded doping
US8962991B2 (en) 2011-02-25 2015-02-24 Solar Junction Corporation Pseudomorphic window layer for multijunction solar cells
US8766087B2 (en) 2011-05-10 2014-07-01 Solar Junction Corporation Window structure for solar cell
JP6228119B2 (ja) 2011-08-29 2017-11-08 アイキューイー パブリック リミテッド カンパニーIqe Plc. 光起電デバイス
FR2981195A1 (fr) * 2011-10-11 2013-04-12 Soitec Silicon On Insulator Multi-jonctions dans un dispositif semi-conducteur forme par differentes techniques de depot
WO2013058640A2 (es) * 2011-10-20 2013-04-25 Zepeda Lopez Hector Manuel Método de extracción, comprobación y conteo de extracto dializado de leucocitos de origen bazo de tiburón, para la obtención de factor de transferencia potencializado, específicamente diseñado para su uso como tratamiento contra la enfermedad conocida como asma
WO2013074530A2 (en) 2011-11-15 2013-05-23 Solar Junction Corporation High efficiency multijunction solar cells
US20180358499A1 (en) * 2011-11-15 2018-12-13 Solar Junction Corporation High efficiency multijunction solar cells
US9153724B2 (en) 2012-04-09 2015-10-06 Solar Junction Corporation Reverse heterojunctions for solar cells
WO2013162466A1 (en) * 2012-04-23 2013-10-31 Nanyang Technological University A cell arrangement
WO2015120169A1 (en) * 2014-02-05 2015-08-13 Solar Junction Corporation Monolithic multijunction power converter
US10087535B2 (en) 2015-03-23 2018-10-02 Alliance For Sustainable Energy, Llc Devices and methods for photoelectrochemical water splitting
US9768339B2 (en) 2015-06-22 2017-09-19 IQE, plc Optoelectronic detectors having a dilute nitride layer on a substrate with a lattice parameter nearly matching GaAs
US20170110613A1 (en) 2015-10-19 2017-04-20 Solar Junction Corporation High efficiency multijunction photovoltaic cells
JP2017105101A (ja) * 2015-12-11 2017-06-15 株式会社ミマキエンジニアリング 三次元造形物、並びにこれを生成する三次元造形装置及び方法
US10090420B2 (en) 2016-01-22 2018-10-02 Solar Junction Corporation Via etch method for back contact multijunction solar cells
WO2017205100A1 (en) 2016-05-23 2017-11-30 Solar Junction Corporation Exponential doping in lattice-matched dilute nitride photovoltaic cells
US9680035B1 (en) 2016-05-27 2017-06-13 Solar Junction Corporation Surface mount solar cell with integrated coverglass
WO2017218190A1 (en) 2016-06-15 2017-12-21 Solar Junction Corporation Dilute nitride bismide semiconductor alloys
GB2555409B (en) * 2016-10-25 2020-07-15 Iqe Plc Photovoltaic Device
US10930808B2 (en) 2017-07-06 2021-02-23 Array Photonics, Inc. Hybrid MOCVD/MBE epitaxial growth of high-efficiency lattice-matched multijunction solar cells
WO2019067553A1 (en) 2017-09-27 2019-04-04 Solar Junction Corporation SHORT-LENGTH WAVELENGTH INFRARED OPTOELECTRONIC DEVICES HAVING DILUTED NITRIDE LAYER
EP3740972A1 (en) 2018-01-19 2020-11-25 Solar Junction Corporation Surface mount solar cell having low stress passivation layers
EP3766104A1 (en) 2018-03-12 2021-01-20 Solar Junction Corporation Chirped distributed bragg reflectors for photovoltaic cells and other light absorption devices
CN113490998A (zh) 2018-08-09 2021-10-08 阵列光子学公司 用于混合式半导体生长的氢扩散屏障
CN113491015A (zh) 2018-10-03 2021-10-08 阵列光子学公司 光学透明的半导体缓冲层和应用这种半导体缓冲层的结构
WO2020185528A1 (en) 2019-03-11 2020-09-17 Array Photonics, Inc. Short wavelength infrared optoelectronic devices having graded or stepped dilute nitride active regions
WO2020247691A1 (en) * 2019-06-04 2020-12-10 Solar Junction Corporation Dilute nitride optical absorption layers having graded doping
US20210305442A1 (en) 2020-03-27 2021-09-30 Array Photonics, Inc. Dilute nitride optoelectronic absorption devices having graded or stepped interface regions

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179702A (en) 1978-03-09 1979-12-18 Research Triangle Institute Cascade solar cells
US4404421A (en) * 1982-02-26 1983-09-13 Chevron Research Company Ternary III-V multicolor solar cells and process of fabrication
US4881979A (en) * 1984-08-29 1989-11-21 Varian Associates, Inc. Junctions for monolithic cascade solar cells and methods
JPS63100781A (ja) 1986-10-17 1988-05-02 Nippon Telegr & Teleph Corp <Ntt> 半導体素子
US5016562A (en) 1988-04-27 1991-05-21 Glasstech Solar, Inc. Modular continuous vapor deposition system
US4935384A (en) 1988-12-14 1990-06-19 The United States Of America As Represented By The United States Department Of Energy Method of passivating semiconductor surfaces
JPH02218174A (ja) * 1989-02-17 1990-08-30 Mitsubishi Electric Corp 光電変換半導体装置
US5223043A (en) * 1991-02-11 1993-06-29 The United States Of America As Represented By The United States Department Of Energy Current-matched high-efficiency, multijunction monolithic solar cells
US5166761A (en) * 1991-04-01 1992-11-24 Midwest Research Institute Tunnel junction multiple wavelength light-emitting diodes
JPH07101753B2 (ja) 1992-08-05 1995-11-01 日立電線株式会社 積層型太陽電池
JPH0661516A (ja) 1992-08-06 1994-03-04 Japan Energy Corp 太陽電池の製造方法
US5330585A (en) 1992-10-30 1994-07-19 Spectrolab, Inc. Gallium arsenide/aluminum gallium arsenide photocell including environmentally sealed ohmic contact grid interface and method of fabricating the cell
US5342453A (en) * 1992-11-13 1994-08-30 Midwest Research Institute Heterojunction solar cell
US5316593A (en) * 1992-11-16 1994-05-31 Midwest Research Institute Heterojunction solar cell with passivated emitter surface
US5800630A (en) 1993-04-08 1998-09-01 University Of Houston Tandem solar cell with indium phosphide tunnel junction
US5376185A (en) 1993-05-12 1994-12-27 Midwest Research Institute Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
US5405453A (en) * 1993-11-08 1995-04-11 Applied Solar Energy Corporation High efficiency multi-junction solar cell
US5689123A (en) * 1994-04-07 1997-11-18 Sdl, Inc. III-V aresenide-nitride semiconductor materials and devices
FR2722612B1 (fr) 1994-07-13 1997-01-03 Centre Nat Rech Scient Procede de fabrication d'un materiau ou dispositif photovoltaique, materiau ou dispositif ainsi obteu et photopile comprenant un tel materiau ou dispositif
JPH1012905A (ja) 1996-06-27 1998-01-16 Hitachi Ltd 太陽電池及びその製造方法
US5911839A (en) * 1996-12-16 1999-06-15 National Science Council Of Republic Of China High efficiency GaInP NIP solar cells
JP3683669B2 (ja) * 1997-03-21 2005-08-17 株式会社リコー 半導体発光素子
US6281426B1 (en) * 1997-10-01 2001-08-28 Midwest Research Institute Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge
US5944913A (en) * 1997-11-26 1999-08-31 Sandia Corporation High-efficiency solar cell and method for fabrication
US6150603A (en) 1999-04-23 2000-11-21 Hughes Electronics Corporation Bilayer passivation structure for photovoltaic cells
US6252287B1 (en) * 1999-05-19 2001-06-26 Sandia Corporation InGaAsN/GaAs heterojunction for multi-junction solar cells
US6340788B1 (en) * 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
JP4064592B2 (ja) * 2000-02-14 2008-03-19 シャープ株式会社 光電変換装置
US7345327B2 (en) 2000-11-27 2008-03-18 Kopin Corporation Bipolar transistor
US6815736B2 (en) * 2001-02-09 2004-11-09 Midwest Research Institute Isoelectronic co-doping
US7233028B2 (en) * 2001-02-23 2007-06-19 Nitronex Corporation Gallium nitride material devices and methods of forming the same
US6787385B2 (en) * 2001-05-31 2004-09-07 Midwest Research Institute Method of preparing nitrogen containing semiconductor material
US6586669B2 (en) 2001-06-06 2003-07-01 The Boeing Company Lattice-matched semiconductor materials for use in electronic or optoelectronic devices
US7119271B2 (en) 2001-10-12 2006-10-10 The Boeing Company Wide-bandgap, lattice-mismatched window layer for a solar conversion device
US20030070707A1 (en) 2001-10-12 2003-04-17 King Richard Roland Wide-bandgap, lattice-mismatched window layer for a solar energy conversion device
US6764926B2 (en) * 2002-03-25 2004-07-20 Agilent Technologies, Inc. Method for obtaining high quality InGaAsN semiconductor devices
US6660928B1 (en) 2002-04-02 2003-12-09 Essential Research, Inc. Multi-junction photovoltaic cell
US6756325B2 (en) * 2002-05-07 2004-06-29 Agilent Technologies, Inc. Method for producing a long wavelength indium gallium arsenide nitride(InGaAsN) active region
US8173891B2 (en) 2002-05-21 2012-05-08 Alliance For Sustainable Energy, Llc Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps
US20060162768A1 (en) 2002-05-21 2006-07-27 Wanlass Mark W Low bandgap, monolithic, multi-bandgap, optoelectronic devices
US8067687B2 (en) 2002-05-21 2011-11-29 Alliance For Sustainable Energy, Llc High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
US6967154B2 (en) * 2002-08-26 2005-11-22 Micron Technology, Inc. Enhanced atomic layer deposition
US7255746B2 (en) * 2002-09-04 2007-08-14 Finisar Corporation Nitrogen sources for molecular beam epitaxy
US7122733B2 (en) * 2002-09-06 2006-10-17 The Boeing Company Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
US6765238B2 (en) * 2002-09-12 2004-07-20 Agilent Technologies, Inc. Material systems for semiconductor tunnel-junction structures
US7126052B2 (en) * 2002-10-02 2006-10-24 The Boeing Company Isoelectronic surfactant induced sublattice disordering in optoelectronic devices
US7122734B2 (en) 2002-10-23 2006-10-17 The Boeing Company Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers
US7071407B2 (en) 2002-10-31 2006-07-04 Emcore Corporation Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell
AU2003297649A1 (en) * 2002-12-05 2004-06-30 Blue Photonics, Inc. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
JP2004296658A (ja) 2003-03-26 2004-10-21 Sharp Corp 多接合太陽電池およびその電流整合方法
US7812249B2 (en) * 2003-04-14 2010-10-12 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate
US7123638B2 (en) * 2003-10-17 2006-10-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Tunnel-junction structure incorporating N-type layer comprising nitrogen and a group VI dopant
JP5248782B2 (ja) 2004-01-20 2013-07-31 シリアム・テクノロジーズ・インコーポレーテッド エピタキシャルに成長させた量子ドット材料を有する太陽電池
US7807921B2 (en) * 2004-06-15 2010-10-05 The Boeing Company Multijunction solar cell having a lattice mismatched GrIII-GrV-X layer and a composition-graded buffer layer
JP5008874B2 (ja) 2005-02-23 2012-08-22 住友電気工業株式会社 受光素子と受光素子を用いた光通信用受信モジュールおよび受光素子を用いた計測器
US7473941B2 (en) 2005-08-15 2009-01-06 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Structures for reducing operating voltage in a semiconductor device
US11211510B2 (en) 2005-12-13 2021-12-28 The Boeing Company Multijunction solar cell with bonded transparent conductive interlayer
US20070227588A1 (en) 2006-02-15 2007-10-04 The Regents Of The University Of California Enhanced tunnel junction for improved performance in cascaded solar cells
US20090078310A1 (en) 2007-09-24 2009-03-26 Emcore Corporation Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells
US20100229926A1 (en) 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer
US7872252B2 (en) 2006-08-11 2011-01-18 Cyrium Technologies Incorporated Method of fabricating semiconductor devices on a group IV substrate with controlled interface properties and diffusion tails
US7842881B2 (en) 2006-10-19 2010-11-30 Emcore Solar Power, Inc. Solar cell structure with localized doping in cap layer
US20080149173A1 (en) * 2006-12-21 2008-06-26 Sharps Paul R Inverted metamorphic solar cell with bypass diode
JP5515162B2 (ja) 2007-03-23 2014-06-11 住友電気工業株式会社 半導体ウエハの製造方法
US7825328B2 (en) * 2007-04-09 2010-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US20080257405A1 (en) 2007-04-18 2008-10-23 Emcore Corp. Multijunction solar cell with strained-balanced quantum well middle cell
JP2009010175A (ja) 2007-06-28 2009-01-15 Sumitomo Electric Ind Ltd 受光素子およびその製造方法
WO2009009111A2 (en) * 2007-07-10 2009-01-15 The Board Of Trustees Of The Leland Stanford Junior University GaInNAsSB SOLAR CELLS GROWN BY MOLECULAR BEAM EPITAXY
JP5417694B2 (ja) * 2007-09-03 2014-02-19 住友電気工業株式会社 半導体素子およびエピタキシャルウエハの製造方法
US8895342B2 (en) 2007-09-24 2014-11-25 Emcore Solar Power, Inc. Heterojunction subcells in inverted metamorphic multijunction solar cells
GB0719554D0 (en) 2007-10-05 2007-11-14 Univ Glasgow semiconductor optoelectronic devices and methods for making semiconductor optoelectronic devices
TW200924214A (en) 2007-11-16 2009-06-01 Univ Nat Chunghsing Solar cell
US20090155952A1 (en) 2007-12-13 2009-06-18 Emcore Corporation Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells
US20090188561A1 (en) 2008-01-25 2009-07-30 Emcore Corporation High concentration terrestrial solar array with III-V compound semiconductor cell
US20090255575A1 (en) 2008-04-04 2009-10-15 Michael Tischler Lightweight solar cell
US20090255576A1 (en) 2008-04-04 2009-10-15 Michael Tischler Window solar cell
US20090272438A1 (en) 2008-05-05 2009-11-05 Emcore Corporation Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell
US20090288703A1 (en) 2008-05-20 2009-11-26 Emcore Corporation Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells
WO2011011864A1 (en) 2009-07-29 2011-02-03 Cyrium Technologies Incorporated Solar cell and method of fabrication thereof
WO2010042577A2 (en) 2008-10-07 2010-04-15 Applied Materials, Inc. Advanced platform for processing crystalline silicon solar cells
US8912428B2 (en) 2008-10-22 2014-12-16 Epir Technologies, Inc. High efficiency multijunction II-VI photovoltaic solar cells
KR20100084843A (ko) 2009-01-19 2010-07-28 삼성전자주식회사 다중접합 태양전지
US20100282306A1 (en) 2009-05-08 2010-11-11 Emcore Solar Power, Inc. Multijunction Solar Cells with Group IV/III-V Hybrid Alloys
US20100282305A1 (en) 2009-05-08 2010-11-11 Emcore Solar Power, Inc. Inverted Multijunction Solar Cells with Group IV/III-V Hybrid Alloys
US20100319764A1 (en) 2009-06-23 2010-12-23 Solar Junction Corp. Functional Integration Of Dilute Nitrides Into High Efficiency III-V Solar Cells
JP5649157B2 (ja) 2009-08-01 2015-01-07 住友電気工業株式会社 半導体素子およびその製造方法
US20110114163A1 (en) 2009-11-18 2011-05-19 Solar Junction Corporation Multijunction solar cells formed on n-doped substrates
TWI436488B (zh) 2010-03-12 2014-05-01 Epistar Corp 一種具有漸變緩衝層太陽能電池
US20110232730A1 (en) 2010-03-29 2011-09-29 Solar Junction Corp. Lattice matchable alloy for solar cells
US20110303268A1 (en) 2010-06-15 2011-12-15 Tan Wei-Sin HIGH EFFICIENCY InGaAsN SOLAR CELL AND METHOD OF MAKING
US9853478B2 (en) 2010-07-28 2017-12-26 Qualcomm Incorporated Low power detection of wireless power devices
US8642883B2 (en) 2010-08-09 2014-02-04 The Boeing Company Heterojunction solar cell
US9214580B2 (en) 2010-10-28 2015-12-15 Solar Junction Corporation Multi-junction solar cell with dilute nitride sub-cell having graded doping
US8962991B2 (en) 2011-02-25 2015-02-24 Solar Junction Corporation Pseudomorphic window layer for multijunction solar cells
US8927857B2 (en) 2011-02-28 2015-01-06 International Business Machines Corporation Silicon: hydrogen photovoltaic devices, such as solar cells, having reduced light induced degradation and method of making such devices
US8766087B2 (en) 2011-05-10 2014-07-01 Solar Junction Corporation Window structure for solar cell
WO2013074530A2 (en) 2011-11-15 2013-05-23 Solar Junction Corporation High efficiency multijunction solar cells
US9153724B2 (en) 2012-04-09 2015-10-06 Solar Junction Corporation Reverse heterojunctions for solar cells
US20170110613A1 (en) 2015-10-19 2017-04-20 Solar Junction Corporation High efficiency multijunction photovoltaic cells
WO2017205100A1 (en) 2016-05-23 2017-11-30 Solar Junction Corporation Exponential doping in lattice-matched dilute nitride photovoltaic cells

Also Published As

Publication number Publication date
KR20130018283A (ko) 2013-02-20
US20130014815A1 (en) 2013-01-17
US9985152B2 (en) 2018-05-29
SG10201503386SA (en) 2015-06-29
US20130220409A1 (en) 2013-08-29
US8912433B2 (en) 2014-12-16
EP2553731A4 (en) 2016-09-07
JP2013524505A (ja) 2013-06-17
US20110232730A1 (en) 2011-09-29
US20130130431A1 (en) 2013-05-23
EP2553731A1 (en) 2013-02-06
US20150122318A1 (en) 2015-05-07
US20160111569A1 (en) 2016-04-21
CN203707143U (zh) 2014-07-09
WO2011123164A1 (en) 2011-10-06
US20170110607A1 (en) 2017-04-20
US9018522B2 (en) 2015-04-28
US20150027520A1 (en) 2015-01-29
US20150214412A1 (en) 2015-07-30
US9252315B2 (en) 2016-02-02
AU2010349711A1 (en) 2012-11-08
SG184191A1 (en) 2012-10-30
EP3471149A1 (en) 2019-04-17
EP2553731B1 (en) 2019-01-23
US8575473B2 (en) 2013-11-05

Similar Documents

Publication Publication Date Title
ES2720596T3 (es) Subcélula para su utilización en una célula solar multiunión
Geisz et al. Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells
US8642883B2 (en) Heterojunction solar cell
WO2017205100A1 (en) Exponential doping in lattice-matched dilute nitride photovoltaic cells
ES2858923T3 (es) Dispositivo fotovoltaico
ES1077182U (es) Una disposición de célula solar fotovoltaica
Baba et al. Feasibility study of two‐terminal tandem solar cells integrated with smart stack, areal current matching, and low concentration
Dai et al. Room-temperature wafer bonded InGaP/GaAs//InGaAsP/InGaAs four-junction solar cell grown by all-solid state molecular beam epitaxy
Wilson et al. Single and multi-junction solar cells utilizing a 1.0 eV SiGeSn junction
Thomas et al. GaNAsSb 1-eV solar cells for use in lattice-matched multi-junction architectures
US20210288202A1 (en) Photovoltaic device
ES2947007T3 (es) Célula fotovoltaica láser laminada multiunión y método de fabricación de la misma
Wood et al. GaAsP nanowire-on-Si tandem solar cell
Li et al. > 35% 5-junction space solar cells based on the direct bonding technique
Tauke-Pedretti et al. Bonded InGaAs cells for microsystems enabled photovoltaics
Ho et al. Optical and electrical characteristics of high‐efficiency InGaP/InGaAs/Ge triple‐junction solar cell incorporated with InGaAs/GaAs QD layers in the middle cell
Cruz-Campa et al. Power maximization in III–V sub-millimeter, radial front contacted cells for thin micro-concentrators
Simon et al. Recent HVPE grown solar cells at NREL
Wilkins et al. Design constraints of np InGaAsN dilute nitride sub-cells for 3-and 4-junction solar cell applications under concentrated illumination
Kharel et al. Modeling of the tandem III–V dilute nitride bulk or quantum engineered/silicon solar cells
Sawicka-Chudy et al. Impacts of Tunnel Junction Thickness on the Performance of Triple-Junction Solar Cells
Kurin et al. Conversion efficiency in a solar splitting system
Miyashita et al. Effect of Electric Field in GaInNAsSb based Solar Cells