KR20120100860A - 4v 영역과 3v 영역에서 우수한 충방전 특성을 발휘할 수 있는 리튬 망간 산화물을 포함하는 양극 활물질 - Google Patents

4v 영역과 3v 영역에서 우수한 충방전 특성을 발휘할 수 있는 리튬 망간 산화물을 포함하는 양극 활물질 Download PDF

Info

Publication number
KR20120100860A
KR20120100860A KR1020120082184A KR20120082184A KR20120100860A KR 20120100860 A KR20120100860 A KR 20120100860A KR 1020120082184 A KR1020120082184 A KR 1020120082184A KR 20120082184 A KR20120082184 A KR 20120082184A KR 20120100860 A KR20120100860 A KR 20120100860A
Authority
KR
South Korea
Prior art keywords
manganese oxide
lithium manganese
active material
conductive material
region
Prior art date
Application number
KR1020120082184A
Other languages
English (en)
Other versions
KR101496653B1 (ko
Inventor
노현국
김신규
정근창
오송택
이상욱
김종찬
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20120100860A publication Critical patent/KR20120100860A/ko
Application granted granted Critical
Publication of KR101496653B1 publication Critical patent/KR101496653B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬 망간 산화물을 포함하고 있는 양극 활물질로서, 상기 리튬 망간 산화물은 하기 화학식 1로 표시되는 조성의 스피넬 구조를 가지고 있으며, 4V 영역 이외에 2.5 내지 3.5V 범위에서도 우수한 충방전 특성을 발휘할 수 있도록 상기 리튬 망간 산화물의 입자 표면에 전도성 물질이 코팅되어 있는 것을 특징으로 하는 양극 활물질을 제공한다.
Li1 + yMzMn2 -y- zO4 -x- aQxRa (1)
상기 식에서, 0≤x≤1, 0≤y≤0.3, 0≤z≤1이고, M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 또는 그 이상의 원소이며, Q는 N, F, S, 및 Cl 로 이루어진 군에서 선택되는 하나 또는 그 이상의 원소이다. R은 결정 격자에서 산소가 빠져나간 vacancy이며 0≤a≤2 이다.

Description

4V 영역과 3V 영역에서 우수한 충방전 특성을 발휘할 수 있는 리튬 망간 산화물을 포함하는 양극 활물질 {Cathode Active Material Comprising Lithium Manganese Oxide Capable of Providing Excellent Charge-Discharge Characteristics at 3V Region as Well as 4V Region}
본 발명은 고전압 영역과 저전압 영역에서 충방전 특성을 발휘할 수 있는 리튬 망간 산화물을 포함하는 양극 활물질로서, 상기 리튬 망간 산화물은 소정 조성을 기반으로 한 스피넬 구조를 가지고 있으며, 기존의 4V 영역 뿐만 아니라 2.5 내지 3.5V 범위에서 우수한 충방전 특성을 발휘할 수 있도록 상기 리튬 망간 산화물의 입자 표면에 전도성 물질이 코팅되어 있는 것을 특징으로 하는 양극 활물질에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 전압을 가지고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
또한, 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석 연료를 사용하는 차량을 대체할 수 있는 전기 자동차, 하이브리드 전기자동차에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차, 하이브리드 전기자동차 등의 동력원으로는 주로 니켈수소 금속 이차전지가 사용되고 있지만, 높은 에너지 밀도와 방전 전압의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 단계에 있다.
이러한 리튬 이차전지의 음극 활물질로는 탄소재료가 주로 사용되고 있고, 리튬 금속, 황 화합물 등의 사용도 고려되고 있다. 또한, 양극 활물질로는 주로 리튬 함유 코발트 산화물(LiCoO2)이 사용되고 있고, 그 외에 층상 결정구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬 함유 망간 산화물과, 리튬 함유 니켈 산화물(LiNiO2)의 사용도 고려되고 있다.
상기 양극 활물질들 중 LiCoO2은 수명 특성 및 충방전 효율이 우수하여 가장 많이 사용되고 있지만, 구조적 안정성이 떨어지고, 원료로서 사용되는 코발트의 자원적 한계로 인해 고가이므로 가격 경쟁력에 한계가 있다는 단점을 가지고 있어서 전기자동차 등과 같은 분야의 동력원으로 대량 사용함에는 한계가 있다.
LiNiO2계 양극 활물질은 비교적 값이 싸고 높은 방전용량의 전지 특성을 나타내고 있으나, 충방전 사이클에 동반하는 체적 변화에 따라 결정구조의 급격한 상전이가 나타나고, 공기와 습기에 노출되었을 때 안전성이 급격히 저하되는 문제점이 있다.
또한, LiMnO2, LiMn2O4 등의 리튬 망간 산화물은 열적 안전성이 우수하고 가격이 저렴하다는 장점이 있지만, 용량이 작고, 사이클 특성이 나쁘며, 고온 특성이 열악하다는 문제점이 있다.
이러한 리튬 망간 산화물 중에서 스피넬계 LiMn2O4의 경우, 4V 영역(3.7 내지 4.3V)과 3V 영역(2.7 내지 3.1V)에서 비교적 평탄한 전위를 나타낸다. 그러나, 3V 영역에서는 사이클 및 저장 특성이 매우 떨어져서, 그 활용이 어려운 것으로 알려져 있다. 그 원인으로는 Jahn-Teller distortion의 상전이 현상에 의해 4V 영역에서 등축정계상(cubic phase)의 단일상으로 존재하다가, 3V 영역에서는 등축정계상(cubic phase)과 정방정계상(tetragonal phase)의 복합상(two-phase)으로 변화되는 현상과, 망간의 전해액으로의 용출 현상 등을 들 수 있다.
이러한 이유로 인해, 스피넬계 리튬 망간 산화물의 3V 영역 활용시, 일반적으로는 실제 용량이 이론 용량보다 낮은 편이며, C-rate 특성도 낮은 편이다.
따라서, 스피넬계 리튬 망간 산화물의 3V 영역의 활용에 대한 연구는 그 해결이 매우 어려운 것으로 알려져 있기 때문에, 4V 영역의 활용에 대한 연구에 비해 부진하다. 그 중 일부 연구는 각각 정방정계상(tetragonal phase)의 형성 및 S-도핑(doping)에 의한 효과에 의하여 3V 영역에서 사이클 특성이 향상되었다고 보고하고 있으나, 그 효과가 미미하거나 향상 원인에 대하여 확실한 이유를 밝혀내지 못하였다.
또한, Kang과 Goodenough 등(Sun-Ho Kang, John B. Goodenough, et al, Chem. Mater. 2001, 13, 1758-1764)은 3V 영역의 활용을 위하여, 스피넬계 리튬 망간 산화물과 카본을 밀링에 의해 혼합하는 방식으로 리튬 망간 산화물 내에서의 나노 그레인(nano grain)과 응력(strain)의 형성에 의해 3V 영역의 사이클 특성을 향상시키는 기술을 제시하고 있다. 그러나, 이러한 기술 역시 그 효과가 미미하고, 특성의 향상 원인에 대해 확실한 이유를 설명하지 못하고 있다.
본 출원의 발명자들이 확인한 바로는, 상기 연구 결과를 포함하여 기타 선행기술들에서 제시하는 방법으로는 3V 영역에서 소망하는 수준으로 충방전 특성을 발휘하지 못하는 것으로 확인되었다.
따라서, 본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 3V 영역(2.5 내지 3.5V)에서의 낮은 전기화학적 성능에 대한 원인을 규명하였고, 그에 따라, 특정한 스피넬계 리튬 망간 산화물의 입자 표면에 전도성 물질을 코팅할 경우, 기존의 4V 영역에서 뿐만 아니라, 상기 3V 영역에서도 우수한 충방전 특성을 발휘할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
따라서, 본 발명에 따른 양극 활물질은 하기 화학식 1로 표시되는 조성의 스피넬 구조의 리튬 망간 산화물을 포함하고 있으며, 4V 영역 이외에 2.5 내지 3.5V 범위에서도 충방전 특성을 발휘할 수 있도록 상기 리튬 망간 산화물의 입자 표면에 전도성 물질이 코팅되어 있는 것을 특징으로 한다.
Li1 + yMzMn2 -y- zO4 -x- aQxRa (1)
상기 식에서, 0≤x≤1, 0≤y≤0.3, 0≤z≤1이고, M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 또는 그 이상의 원소이며, Q는 N, F, S, 및 Cl 로 이루어진 군에서 선택되는 하나 또는 그 이상의 원소이다. R은 결정 격자에서 산소가 빠져나간 vacancy이며 0≤a≤2 이다.
일반적인 스피넬계 리튬 망간 산화물은 4V 영역(3.7 내지 4.3V)에서 등축정계상(cubic phase)의 단일상으로 존재하다가, 3V 영역(2.5 내지 3.5V)에서 Mn3 +가 과량 존재하여 Jahn-Teller distortion 효과에 의해 등축정계상(cubic phase)에서 정방정계상(tetragonal phase)으로 상전이 현상이 발생하면서, 충방전 특성이 크게 감소하게 된다. 예를 들어, 동일한 조건으로 이차전지를 제조하였을 때, 4V 영역에서의 실제 용량은 이론 용량에 근접하지만(이론 용량은 3V 영역과 4V 영역 모두에서 약 130 mAh/g 임), 3V 영역에서의 일반적인 실제 용량(90 mAh/g)은 이론 용량에 크게 미치지 못한다.
이와 같이 3V 영역에서 상기와 같은 상전이 현상에 의해 충방전 특성이 크게 감소하는 원인은 현재까지 명확하게 규명되지 못하고 있다.
그러나, 본 출원의 발명자들은 다양한 실험들과 심도있는 연구를 통해, 상기 정방정계상(tetragonal phase)의 전기 전도도가 등축정계상(cubic phase)의 약 25% 수준임을 계산화학적인 방법을 통해 처음으로 밝혀 내었다. 더 나아가, 상기 스피넬계 리튬 망간 산화물의 입자 표면에 전도성 물질을 코팅하여 전반적인 전기 전도도를 높여 주는 경우, 놀랍게도 3V 영역(2.5 내지 3.5V)의 실제 용량이 이론 용량 수준으로 증가하고 사이클 특성이 향상됨을 확인하였다. 이는 당업계에 전혀 알려져 있지 않은 새로운 사실로서, 스피넬계 리튬 망간 산화물의 효용성을 극대화시킬 수 있는 혁신적인 발견이라 할 수 있다.
전도성 물질의 코팅에 의한 충방전 특성의 향상은, 앞서 설명한 바와 같이, 상전이된 정방정계상(tetragonal phase)의 전기 전도도를 향상시키는 것 이외에, 하기와 같은 요인들에 의해서도 3V 영역에서의 충방전 특성을 향상시키는 것으로 추측된다.
구체적으로, 스피넬계 리튬 망간 산화물에 전도성 물질을 코팅함으로써, 리튬 망간 산화물과 전해액간의 계면에서 일어나는 부반응을 억제할 수 있는 것으로 추측된다. 일반적으로, 스피넬계 리튬 망간 산화물은 3V 영역에서 Mn3+ 이온이 표면에 과량으로 존재하게 되는데, 이러한 Mn3+가 불균화 반응(disproportionation; 2Mn3+ → Mn4+ + Mn2+)을 거치게 되고, 상기 불균화 반응에서 발생한 Mn2+ 이온이 전해액으로 용출되면서 사이클 및 저장 특성을 크게 저하시킨다. 반면에, 본 발명에서와 같이 전도성 물질로 코팅하면, 이러한 계면에서의 반응을 위한 반응 면적이 줄어들 수 있다.
또한, 일반적으로는 3V 영역에서 Jahn-Teller distortion의 상전이 현상에 의한 전기화학적 분쇄(electrochemical grinding) 현상이 일어남으로써(예를 들어, 무정형화(amorphorization)) 충방전 특성의 저하가 유발되는데, 본 발명에서와 같이 전도성 물질로 코팅함으로써, 이를 방지할 수 있는 것으로 추측된다.
따라서, 본 발명에서 스피넬계 리튬 망간 산화물은 전도성 물질의 코팅에 기반한 다양한 작용들에 의해 3V 영역에서 소망하는 수준의 충방전 특성을 발휘할 수 있다.
본 발명에서 상기 스피넬계 리튬 망간 산화물은 등축정계상(cubic phase)을 포함할 수도 있고, 정방정계상(tetragonal phase)을 포함할 수도 있으며, 이들 모두를 포함할 수도 있다. 즉, 등축정계상의 리튬 망간 산화물의 입자 표면에 전도성 물질이 코팅된 형태, 정방정계상의 리튬 망간 산화물의 입자 표면에 전도성 물질이 코팅된 형태 등일 수 있으며, 경우에 따라서는 등축정계상과 정방정계상을 모두 포함하는 리튬 망간 산화물의 입자 표면에 전도성 물질이 코팅된 형태일 수도 있다.
상기 전도성 물질은 전기 전도도가 우수하고 이차전지의 내부 환경에서 부반응을 유발하지 않는 것이라면 특별히 제한되지는 않으나, 전도성이 높은 카본계 물질이 특히 바람직하다. 그러한 고전도성의 카본계 물질의 바람직한 예로는 결정구조가 그라펜이나 그라파이트를 포함하는 물질을 들 수 있다. 경우에 따라서는, 전도성이 높은 전도성 고분자도 가능함은 물론이다.
코팅되는 상기 전도성 물질의 양이 너무 적으면 소망하는 효과를 기대하기 어렵고, 반대로 너무 많으면 상대적으로 활물질의 양이 적어져서 용량이 감소할 수 있다. 따라서, 상기 전도성 물질의 함량은 전도성 물질과 리튬 망간 산화물의 전체 중량을 기준으로 1 중량% 내지 40 중량%인 것이 바람직하고, 3 중량% 내지 30 중량%인 것이 더욱 바람직하다.
전도성 물질을 리튬 망간 산화물의 입자 표면에 코팅하는 방법은 다양할 수 있으며, 하나의 바람직한 예에서, 상기 전도성 물질과 리튬 망간 산화물에 대한 고에너지 밀링(high energy milling) 또는 혼합(mixing)에 의한 건식법으로 달성될 수 있다.
또 다른 예로서, 상기 리튬 망간 산화물을 용매에 분산한 후 전도성 물질의 전구체를 표면 코팅한 후 건조하여 용매를 회수하는 습식법으로도 코팅을 수행할 수 있다.
본 발명에 따른 양극 활물질은 상기와 같은 스피넬계 리튬 망간 산화물 이외에 추가로 기타 활물질을 포함할 수 있으며, 이 경우 스피넬계 리튬 망간 산화물은 전체 양극 활물질 중량을 기준으로 바람직하게는 30 내지 100%, 더욱 바람직하게는 50 내지 100%일 수 있다. 여기서, 기타 활물질은 당업계에 공지되어 있는 다양한 활물질들로서, 리튬 코발트 산화물, 리튬 니켈 산화물, 리튬 망간 산화물, 리튬 코발트-망간 산화물, 리튬 니켈-망간 산화물, 리튬 코발트-니켈 산화물, 리튬 코발트-망간-니켈 산화물, 이들에 타원소(들)가 치환 또는 도핑된 산화물 등이 모두 포함된다.
본 발명은 또한 스피넬 구조의 리튬 망간 산화물로서, 입자 내부에 나노 그레인(nano grain)을 가지고 있지 않은 상태로 2.5 내지 3.5V 범위에서 충방전 특성을 발휘하는 것을 특징으로 하는 리튬 망간 산화물을 제공한다.
이러한 리튬 망간 산화물은 그 자체로 당업계에 신규한 물질이며, 당업계에서 오랫동안 소원하던 3V 영역에서의 우수한 충방전 특성을 제공할 수 있다.
앞서 설명한 바와 같이, 일부 선행기술에서는 나노 그레인(nano grain)과 응력(strain)의 형성에 의해 3V 영역의 사이클 특성을 향상시키는 기술이 제안되기도 하였지만, 3V 영역의 사이클 특성의 향상 방법에 대해서 오직 고에너지 밀링(high energy milling) 방법만을 언급하고 있으며, 그 효과가 미미하고, 성능 향상의 원인에 대해 확인한 이유를 설명하지 못하고 있다.
반면에, 본 발명에 따르면, 상기 고에너지 밀링 방법 만으로 생성된 나노 그레인을 가지고 있지 않으면서도, 3V 영역에서 소망하는 충방전 특성을 발휘할 수 있다. 즉, 고에너지 밀링을 하지 않더라도 공침법, 수열 합성법 등에 의해 나노 크기의 1차 입자를 형성할 수 있으며, 이렇게 제조된 입자에 전도성 물질을 그 표면에 효과적으로 코팅함으로써, 3V 영역에서의 성능을 향상시킬 수 있다.
본 발명은 또한 상기와 같은 양극 활물질을 포함하는 것을 특징으로 하는 양극 합제를 제공한다.
이러한 양극 합제는 상기의 양극 활물질 이외에도, 선택적으로 도전재, 바인더, 충진제 등이 포함될 수 있다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전제 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합제 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합제; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
본 발명은 또한 상기 양극 합제가 집전체 상에 도포되어 있는 이차전지용 양극을 제공한다.
이차전지용 양극은, 예를 들어, 상기 양극 합제를 NMP 등의 용매에 혼합하여 만들어진 슬러리를 음극 집전체 상에 도포한 후 건조 및 압연하여 제조될 수 있다.
상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들어진다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
본 발명은 또한 상기 양극과, 음극, 분리막, 및 리튬염 함유 비수 전해액으로 구성된 리튬 이차전지를 제공한다. 본 발명에 따른 리튬 이차전지는 Li(1+x)Mn2O4에 전도성 물질로 코팅하여 2.5 내지 3.5V에서도 용량 및 사이클 특성이 우수한 장점이 있다.
상기 음극은, 예를 들어, 음극 집전체 상에 음극 활물질을 포함하고 있는 음극 합제를 도포한 후 건조하여 제조되며, 상기 음극 합제에는, 필요에 따라, 앞서 설명한 바와 같은 성분들이 포함될 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 리튬염 함유 비수계 전해액은 전해액과 리튬염으로 이루어져 있으며, 상기 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene carbonate), PRS(Propene sultone), FEC(Fluoro-Ethlene carbonate) 등을 더 포함시킬 수 있다.
본 발명에 따른 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
상기 중대형 디바이스의 바람직한 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 전력 저장용 시스템 등을 들 수 있지만, 이들 만으로 한정되는 것은 아니다.
이상에서 설명한 바와 같이, 본 발명에 따르면 용량 및 사이클 특성이 낮은 스피넬계 리튬 망간 산화물의 3V 영역(2.5 내지 3.5V)에서의 특성을 개선하여, 충방전 성능이 우수한 리튬 망간 산화물 양극 활물질을 제조할 수 있고, 이를 이용한 양극 합제, 이차전지용 양극 및 리튬 이차전지를 제조할 수 있다.
도 1은 비교예의 양극합제를 사용한 리튬 이차전지의 0.1C 조건에서의 충방전 테스트에서 3V 영역의 사이클 증가에 따른 결과를 나타낸 그래프이다;
도 2는 실시예의 양극합제를 사용한 리튬 이차전지의 0.1C 조건에서의 충방전 테스트에서 3V 영역의 사이클 증가에 따른 결과를 나타낸 그래프이다;
도 3은 비교예의 양극합제를 사용한 리튬 이차전지의 0.1C 조건에서의 충방전 테스트에서 3~4V 영역의 사이클 증가에 따른 결과를 나타낸 그래프이다;
도 4는 실시예의 양극합제를 사용한 리튬 이차전지의 0.1C 조건에서의 충방전 테스트에서 3~4V 영역의 사이클 증가에 따른 결과를 나타낸 그래프이다.
이하, 실시예를 통해 본 발명을 더욱 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.
<실시예 1>
스피넬계 리튬 망간 산화물 90 중량%, 그라파이트 3 중량%, 댕카블랙 3 중량% 및 PVDF 4 중량%를 포함하는 양극 합제를 제조하였다. 구체적으로, 스피넬계 리튬 망간 산화물과 그라파이트를 상기 함량 비율로 milling한 후, 그로부터 얻어진 그라파이트-코팅 스피넬계 리튬 망간 산화물을 상기 함량 비율로 댕카블랙 및 PVDF와 혼합하여 양극 합제를 제조하였다.
<비교예 1>
스피넬계 리튬 망간 산화물 90 중량%, 댕카블랙 6 중량% 및 PVDF 4 중량%를 혼합하여 별도의 그라파이트-코팅 없이 양극 합제를 제조하였다.
<실험예 1>
상기 실시예 및 비교예에 각각 제조된 양극 합제를 NMP에 첨가하여 슬러리를 만들고, 이를 양극 집전체에 도포한 압연 및 건조하여 이차전지용 양극을 제조하였다. 이러한 양극과 리튬 메탈을 기반으로 한 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하고, 리튬 전해액을 주입하여, 코인형 리튬 이차전지를 제작하였다.
이렇게 제작된 이차전지를 0.1C 조건으로 충방전을 반복하여 사이클에 따른 용량의 변화를 각각 측정하였다.
도 1은 상기 비교예에 따른 이차전지의 3V 영역(2.5 내지 3.5V)에서의 사이클 증가에 따른 용량의 변화를 보여주고 있다.
도 1을 참조하면, 최초 충전시에는 3V 영역 충전이 일어나지 않고 최초 방전시 리튬 음극의 리튬 이온이 3V 영역에서 방전되며, 이후 3V 영역 충전시 음극에서 유래된 리튬 이온이 다시 음극으로 충전된다. 상기 비교예에 따른 이차전지는 초기 용량이 100 mAh/g 정도이고, 용량 감소 폭이 크며, 사이클이 반복되면서 용량 감소도 계속 나타나는 것을 알 수 있다. 이는, 앞서도 설명한 바와 같이, Jahn-Teller distortion의 상전이 현상 및 Mn2 + 이온의 용출로 인하여 발생하는 것이다.
도 2는 상기 실시예에 따른 이차전지의 3V 영역(2.5 내지 3.5V)에서의 사이클 증가에 따른 용량의 변화를 보여주고 있다.
도 2를 참조하면, 도 1에서와 마찬가지로 최초 충전시에는 3V 영역에서 음극으로 충전될 리튬 이온이 없으므로 3V 영역 충전 그래프가 나타나지 않는다. 상기 실시예에 따른 이차전지는 초기 용량이 144 mAh/g 정도로 비교예의 이차전지에 비해 높고, 사이클이 증가되어도 용량 감소가 거의 없는 것을 알 수 있다.
도 3은 상기 비교예의 이차전지에 따른 3~4V 영역에서의 사이클 증가에 따른 용량의 변화를 보여주고 있다.
도 3을 참조하면, 최초 충전시 3V 영역의 충전은 일어나지 않고, 4V 영역의 충전만 일어나고, 이후에는 3V 영역의 충전시 평탄 구간이 나타나는 것을 볼 수 있다. 또한, 도 1과 마찬가지로 사이클이 증가하면서 용량감소가 크게 일어나는 것을 알 수 있을 뿐만 아니라, 평탄전위 구간의 길이도 사이클 증가에 따라 감소하고 있다.
도 4는 상기 실시예의 이차전지에 따른 3~4V 영역에서의 사이클 증가에 따른 용량의 변화를 나타내고 있다.
도 4를 참조하면, 도 3과 마찬가지로 최초 충전시 3V 영역의 충전은 일어나지 않고, 4V 영역의 충전만 일어나고, 이후에는 3V 영역의 충전시 평탄 구간이 나타나는 것을 볼 수 있다. 상기 실시예에 따른 이차전지는 도 2와 마찬가지로 초기 용량도 비교예의 그것보다 크고, 사이클 증가시에도 용량 감소가 미미하다. 또한, 평탄전위 구간의 길이가 거의 일정하게 유지되고 있어, 충방전 성능이 매우 우수한 것을 알 수 있다.
<실험예 2>
실시예 1에서 제조한 그라파이트-코팅 스피넬계 리튬 망간 산화물 1g을 전해액 (EC : EMC = 1:2 (v/v%), 1M LiPF) 5ml에 분산시키고 밀폐시킨 다음 25C 에서 보관하였다. 1주일 후 분산액의 용액 색깔은 무색 투명하였다. 반면에 비교예 1의 그라파이트 코팅하지 않은 스피넬계 리튬 망간 산화물 1g을 같은 방법으로 전해액에 1주일 보관한 후 분산액의 용액 색깔을 확인한 결과 보라색으로 반투명하였다. 이로부터 실시예 1에서 제조한 그라파이트-코팅 스피넬계 리튬 망간 산화물은 그 코팅 효과에 의해 전해액과의 부반응이 크게 억제됨을 알 수 있다.
<실시예 2>
스피넬계 리튬 망간 산화물 62 중량%, 그라파이트 26 중량%, 댕카블랙 2 중량% 및 PVDF 10 중량%를 포함하는 양극 합제를 제조하였다. 구체적으로, 스피넬계 리튬 망간 산화물과 그라파이트를 상기 함량 비율로 milling한 후, 그로부터 얻어진 그라파이트-코팅 스피넬계 리튬 망간 산화물을 상기 함량 비율로 댕카블랙 및 PVDF와 혼합하여 양극 합제를 제조하였다.
<실시예 3>
스피넬계 리튬 망간 산화물 53 중량%, 그라파이트 34 중량%, 댕카블랙 2 중량% 및 PVDF 11 중량%를 포함하는 양극 합제를 제조하였다. 구체적으로, 스피넬계 리튬 망간 산화물과 그라파이트를 상기 함량 비율로 milling한 후, 그로부터 얻어진 그라파이트-코팅 스피넬계 리튬 망간 산화물을 상기 함량 비율로 댕카블랙 및 PVDF와 혼합하여 양극 합제를 제조하였다.
<비교예 2>
스피넬계 리튬 망간 산화물 42 중량%, 그라파이트 42 중량%, 댕카블랙 2 중량% 및 PVDF 14 중량%를 포함하는 양극 합제를 제조하였다. 구체적으로, 스피넬계 리튬 망간 산화물과 그라파이트를 상기 함량 비율로 milling한 후, 그로부터 얻어진 그라파이트-코팅 스피넬계 리튬 망간 산화물을 상기 함량 비율로 댕카블랙 및 PVDF와 혼합하여 양극 합제를 제조하였다. 제조된 양극 합제에서 알루미늄 호일에의 부착성이 실시예의 경우보다 크게 떨어지는 것으로 관찰되었다.
<비교예 3>
스피넬계 리튬 망간 산화물 89 중량%, 그라파이트 1 중량%, 댕카블랙 5 중량% 및 PVDF 5 중량%를 포함하는 양극 합제를 제조하였다. 구체적으로, 스피넬계 리튬 망간 산화물과 그라파이트를 상기 함량 비율로 milling한 후, 그로부터 얻어진 그라파이트-코팅 스피넬계 리튬 망간 산화물을 상기 함량 비율로 댕카블랙 및 PVDF와 혼합하여 양극 합제를 제조하였다.
<실험예 3>
실험예 1과 같은 방법으로 실시예 2-3 및 비교예 2-3에서 제조한 양극 합제를 사용한 이차전지의 충방전 성능을 평가하여, 초기 용량과 20th 사이클 용량을 하기 표 1에 나타내었다.
<표 1>
Figure pat00001
표 1에서 보는 바와 같이, 실시예 2-3의 양극 합제를 사용한 이차전지의 초기 용량 및 20th 사이클 용량이 비교예 2-3의 양극 합제를 사용한 이차전지보다 우수한 것을 알 수 있다.
상기 실시예 및 비교예들에서 바인더의 함량이 차이가 나는 이유는 그라파이트의 함량이 높아질수록 집전체와의 부착성이 떨어지기 때문에 전극으로 제조하기가 어려워지기 때문이다.
비교예 2의 경우, 상기와 같은 결과가 나타나는 이유는 그라파이트의 함량이 지나치게 높은 경우 상기와 같이 알루미늄 호일과의 부착성이 좋지않아 사이클 특성이 저하되는 것이다. 또한, 그라파이트의 함량이 높아질수록 상대적으로 리튬 망간 산화물의 함량이 적어지므로 에너지 밀도가 저하되는 문제가 있어 그 사용에 있어 경제적이지 못하다.
반면에, 비교예 3의 경우, 상기와 같은 결과가 나타나는 이유는 그라파이트의 함량이 너무 미량이어서 리튬 망간 산화물에 그라파이트가 충분히 코팅되지 않기 때문이다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.

Claims (16)

  1. 리튬 망간 산화물을 포함하고 있는 양극 활물질로서, 상기 리튬 망간 산화물은 하기 화학식 1로 표시되는 조성의 스피넬 구조를 가지고 있으며, 4V 영역 이외에 2.5 내지 3.5V 범위에서도 충방전 특성을 발휘할 수 있도록 상기 리튬 망간 산화물의 입자 표면에 전도성 물질이 코팅되어 있는 것을 특징으로 하는 양극 활물질:
    Li1 + yMzMn2 -y- zO4 -x- aQxRa (1)
    상기 식에서, 0≤x≤1, 0≤y≤0.3, 0≤z≤1이고, M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 또는 그 이상의 원소이며, Q는 N, F, S, 및 Cl 로 이루어진 군에서 선택되는 하나 또는 그 이상의 원소이다. R은 결정 격자에서 산소가 빠져나간 vacancy이며 0≤a≤2 이다.
  2. 제 1 항에 있어서, 상기 리튬 망간 산화물은 등축정계상(cubic phase) 및 정방정계상(tetragonal phase) 중에서 선택되는 하나 또는 그 이상으로 구성되어 있는 것을 특징으로 하는 양극 활물질.
  3. 제 2 항에 있어서, 상기 전도성 물질은 등축정계상의 리튬 망간 산화물의 입자 표면에 코팅되어 있는 것을 특징으로 하는 양극 활물질.
  4. 제 2 항에 있어서, 상기 전도성 물질은 정방정계상의 리튬 망간 산화물의 입자 표면에 코팅되어 있는 것을 특징으로 하는 양극 활물질.
  5. 제 1 항에 있어서, 상기 전도성 물질은 카본계 물질인 것을 특징으로 하는 양극 활물질.
  6. 제 5 항에 있어서, 상기 카본계 물질은 결정구조가 그라펜이나 그라파이트를 포함하는 물질인 것을 특징으로 하는 양극 활물질.
  7. 제 1 항에 있어서, 상기 전도성 물질의 함량은 전도성 물질과 리튬 망간 산화물의 전체 중량을 기준으로 1 중량% ~ 40 중량%인 것을 특징으로 하는 양극 활물질.
  8. 제 1 항에 있어서, 상기 전도성 물질의 함량은 전도성 물질과 리튬 망간 산화물의 전체 중량을 기준으로 3 중량% ~ 30 중량%인 것을 특징으로 하는 양극 활물질.
  9. 제 1 항에 있어서, 상기 전도성 물질은 전도성 물질과 리튬 망간 산화물에 대한 고에너지 밀링(high energy milling) 또는 혼합(mixing)에 의한 건식법으로 리튬 망간 산화물의 입자 표면에 코팅되는 것을 특징으로 하는 양극 활물질.
  10. 제 1 항에 있어서, 상기 전도성 물질은 리튬 망간 산화물을 용매에 분산한 후 전도성 물질의 전구체를 표면 코팅 후 건조하여 용매를 회수하는 습식법에 의해 리튬 망간 산화물의 입자 표면에 코팅되는 것을 특징으로 하는 양극 활물질.
  11. 스피넬 구조의 리튬 망간 산화물로서, 입자 내부에 나노 그레인(nano grain)을 가지고 있지 않은 상태로 2.5 내지 3.5V 범위에서 충방전 특성을 발휘하는 것을 특징으로 하는 리튬 망간 산화물.
  12. 제 1 항 내지 제 11 항 중 어느 하나에 따른 양극 활물질을 포함하는 것을 특징으로 하는 양극 합제.
  13. 제 12 항에 따른 양극 합제가 집전체 상에 도포되어 있는 것을 특징으로 하는 이차전지용 양극.
  14. 제 13 항에 따른 이차전지용 양극을 포함하고 있는 것을 특징으로 하는 리튬 이차전지.
  15. 제 14 항에 있어서, 상기 리튬 이차전지는 중대형 디바이스의 전원인 전지모듈의 단위전지로 사용되는 것을 특징으로 하는 리튬 이차전지.
  16. 제 15 항에 있어서, 상기 중대형 디바이스는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 또는 전력 저장용 시스템인 것을 특징으로 하는 리튬 이차전지.
KR1020120082184A 2010-01-07 2012-07-27 4v 영역과 3v 영역에서 우수한 충방전 특성을 발휘할 수 있는 리튬 망간 산화물을 포함하는 양극 활물질 KR101496653B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100001373 2010-01-07
KR1020100001373 2010-01-07

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020110001698A Division KR101452228B1 (ko) 2010-01-07 2011-01-07 4v 영역과 3v 영역에서 우수한 충방전 특성을 발휘할 수 있는 리튬 망간 산화물을 포함하는 양극 활물질

Publications (2)

Publication Number Publication Date
KR20120100860A true KR20120100860A (ko) 2012-09-12
KR101496653B1 KR101496653B1 (ko) 2015-03-02

Family

ID=44305965

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020110001698A KR101452228B1 (ko) 2010-01-07 2011-01-07 4v 영역과 3v 영역에서 우수한 충방전 특성을 발휘할 수 있는 리튬 망간 산화물을 포함하는 양극 활물질
KR1020120082184A KR101496653B1 (ko) 2010-01-07 2012-07-27 4v 영역과 3v 영역에서 우수한 충방전 특성을 발휘할 수 있는 리튬 망간 산화물을 포함하는 양극 활물질

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020110001698A KR101452228B1 (ko) 2010-01-07 2011-01-07 4v 영역과 3v 영역에서 우수한 충방전 특성을 발휘할 수 있는 리튬 망간 산화물을 포함하는 양극 활물질

Country Status (5)

Country Link
US (1) US9911977B2 (ko)
EP (1) EP2523239B1 (ko)
KR (2) KR101452228B1 (ko)
CN (2) CN106935809A (ko)
WO (1) WO2011084003A2 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2621003T3 (pl) * 2010-09-20 2019-10-31 Lg Chemical Ltd Materiał czynny elektrody dodatniej zawierający tlenek litu i manganu oraz akumulator z niewodnym elektrolitem
KR101337365B1 (ko) * 2010-09-20 2013-12-05 주식회사 엘지화학 도전성이 개선된 고용량 양극 활물질 및 이를 포함하는 비수 전해질 이차전지
KR101620617B1 (ko) 2013-07-04 2016-05-12 주식회사 엘지화학 도전성이 개선된 양극 합제, 그를 구비하는 양극 및 전기화학소자
KR102172024B1 (ko) 2013-07-16 2020-10-30 삼성에스디아이 주식회사 집전체 구조 및 이를 채용한 전극과 리튬 전지
CN105390694A (zh) * 2015-11-28 2016-03-09 天津赫维科技有限公司 一种3v可充扣式锂锰电池正极的制作方法
KR101865381B1 (ko) * 2016-03-28 2018-06-07 울산과학기술원 리튬 이차 전지 및 이의 제조방법
CN107275567A (zh) * 2016-04-07 2017-10-20 苏州宝时得电动工具有限公司 正极、包含该正极的水系储能装置以及正极制备方法
JP6704284B2 (ja) * 2016-04-19 2020-06-03 株式会社エンビジョンAescジャパン 非水電解質二次電池用正極スラリーの製造方法
CN110719893A (zh) 2017-06-12 2020-01-21 加利福尼亚大学董事会 用于Li离子电池阴极的具有组合的金属和氧氧化还原的高容量锂金属氟氧化物
CN110574194B (zh) 2017-11-06 2022-06-03 株式会社Lg化学 尖晶石结构的锂锰基正极活性材料和包含所述正极活性材料的正极和锂二次电池
CN108598427A (zh) * 2018-04-26 2018-09-28 吉林大学 通过包覆还原氧化石墨烯提高硫化钴充放电循环能力的方法
CN109560284A (zh) * 2018-11-06 2019-04-02 山西北斗星新材料有限公司 一种高性能的掺杂型锰酸锂正极材料及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5674645A (en) 1996-09-06 1997-10-07 Bell Communications Research, Inc. Lithium manganese oxy-fluorides for li-ion rechargeable battery electrodes
JPH11180717A (ja) * 1997-12-22 1999-07-06 Ishihara Sangyo Kaisha Ltd マンガン酸リチウム及びその製造方法ならびにそれを用いてなるリチウム電池
US5939043A (en) * 1998-06-26 1999-08-17 Ga-Tek Inc. Process for preparing Lix Mn2 O4 intercalation compounds
US6878487B2 (en) * 2001-09-05 2005-04-12 Samsung Sdi, Co., Ltd. Active material for battery and method of preparing same
WO2003085758A1 (en) * 2002-03-29 2003-10-16 University Of Florida Improved lithium-based rechargeable batteries
AU2003242383A1 (en) 2002-05-24 2003-12-12 Nec Corporation Negative electrode for secondary cell and secondary cell using the same
JP4552475B2 (ja) * 2004-03-24 2010-09-29 Tdk株式会社 電極用複合粒子、電極及び電気化学素子、並びに、電極用複合粒子の製造方法、電極の製造方法及び電気化学素子の製造方法
CN100440594C (zh) * 2004-04-27 2008-12-03 三菱化学株式会社 用于锂二次电池正极材料的层状锂镍锰钴类复合氧化物粉末及其制造方法和使用其的用于锂二次电池的正极以及锂二次电池
CN1595680A (zh) * 2004-06-25 2005-03-16 吴孟涛 锂离子蓄电池正极材料的制备方法
CA2506104A1 (en) * 2005-05-06 2006-11-06 Michel Gauthier Surface modified redox compounds and composite electrode obtain from them
CN100547831C (zh) * 2006-03-14 2009-10-07 深圳市比克电池有限公司 改性尖晶石锰酸锂材料、制备方法及锂二次电池
FR2902577B1 (fr) * 2006-06-20 2009-04-24 Commissariat Energie Atomique Accumulateur lithium-ion comprenant tio2-b comme materiau actif d'electrode negative
EP2067198A2 (en) * 2006-09-25 2009-06-10 Board of Regents, The University of Texas System Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries
TWI369019B (en) * 2007-12-27 2012-07-21 Ind Tech Res Inst Cathodal materials for lithium cells, methods for fabricating the same, and lithium secondary cells using the same
KR101071336B1 (ko) * 2008-03-25 2011-10-07 주식회사 에너세라믹 리튬 전지용 올리빈형 양극 활물질 전구체, 및 이의 제조 방법
KR100946387B1 (ko) * 2008-03-25 2010-03-08 주식회사 에너세라믹 리튬 전지용 올리빈형 양극 활물질 전구체, 리튬 전지용올리빈형 양극 활물질, 이의 제조 방법, 및 이를 포함하는리튬 전지

Also Published As

Publication number Publication date
KR20110081107A (ko) 2011-07-13
WO2011084003A2 (ko) 2011-07-14
EP2523239A4 (en) 2014-12-24
WO2011084003A3 (ko) 2011-12-08
EP2523239B1 (en) 2018-04-11
KR101452228B1 (ko) 2014-10-21
US20130022872A1 (en) 2013-01-24
KR101496653B1 (ko) 2015-03-02
EP2523239A2 (en) 2012-11-14
CN102696137A (zh) 2012-09-26
US9911977B2 (en) 2018-03-06
CN106935809A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
KR101496653B1 (ko) 4v 영역과 3v 영역에서 우수한 충방전 특성을 발휘할 수 있는 리튬 망간 산화물을 포함하는 양극 활물질
KR101190185B1 (ko) 고용량의 양극활물질 및 이를 포함하는 리튬 이차전지
KR101335460B1 (ko) 리튬 망간계 산화물을 포함하는 양극 활물질 및 비수 전해질 이차전지
KR101452029B1 (ko) 고용량 양극활물질 및 이를 포함하는 리튬이차전지
EP3012890B1 (en) Method of manufacturing a cathode active material for secondary batteries
KR101337365B1 (ko) 도전성이 개선된 고용량 양극 활물질 및 이를 포함하는 비수 전해질 이차전지
KR20180002055A (ko) 도핑 원소를 가진 고전압용 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법
KR101034227B1 (ko) 두 성분들의 조합에 따른 양극 및 이를 이용한 리튬 이차전지
KR101587055B1 (ko) 수명특성이 우수한 리튬 코발트계 복합 산화물 및 이를 포함하는 이차전지용 양극 활물질
EP2942329B1 (en) Lithium manganese-based oxide and positive electrode active substance comprising same
US20160218359A1 (en) Positive electrode active material, preparing method thereof, and lithium secondary battery employing positive electrode comprising positive electrode active material
KR101240174B1 (ko) 양극 활물질 및 이를 이용한 리튬 이차전지
KR20180072587A (ko) 금속이 도핑된 이차전지용 양극 활물질 제조용 코발트 전구체
KR101239620B1 (ko) 향상된 레이트 특성의 이차전지용 양극 활물질
KR101469436B1 (ko) 양극 활물질 및 이를 포함하고 불순물 혹은 스웰링 제어를 위한 리튬 이차전지와 생산성이 향상된 양극 활물질의 제조방법
KR101217461B1 (ko) 망간계 양극 활물질을 포함하는 복합체 및 그 제조 방법
KR20180089030A (ko) 고전압용 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법
CN104412424B (zh) 具有增强的寿命特性的二次电池用正极活性材料及其制备方法
KR101527995B1 (ko) 4v 영역과 3v 영역에서 우수한 충방전 특성을 발휘할 수 있는 리튬 망간 산화물을 포함하는 양극 활물질
KR101352836B1 (ko) 리튬 과잉의 리튬 망간계 산화물의 제조 방법 및 이를 이용한 리튬 이차전지
KR20130141772A (ko) 저장특성이 향상된 리튬 이차전지와 이에 포함되는 양극 활물질의 제조방법
KR101301564B1 (ko) 스피넬 결정구조를 가진 고용량 리튬 망간계 산화물의 이차전지용 양극 및 이를 포함하는 리튬 이차전지
KR20140142613A (ko) 수명특성이 향상된 이차전지용 양극 활물질 및 이의 제조방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180116

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200116

Year of fee payment: 6