KR20120081986A - 5-ht₄ 수용체 리간드로서의 1,2-디히드로-2-옥소퀴놀린 화합물 - Google Patents

5-ht₄ 수용체 리간드로서의 1,2-디히드로-2-옥소퀴놀린 화합물 Download PDF

Info

Publication number
KR20120081986A
KR20120081986A KR1020127007464A KR20127007464A KR20120081986A KR 20120081986 A KR20120081986 A KR 20120081986A KR 1020127007464 A KR1020127007464 A KR 1020127007464A KR 20127007464 A KR20127007464 A KR 20127007464A KR 20120081986 A KR20120081986 A KR 20120081986A
Authority
KR
South Korea
Prior art keywords
hydroxy
oxo
carboxamide
dec
azatricyclo
Prior art date
Application number
KR1020127007464A
Other languages
English (en)
Other versions
KR101386354B1 (ko
Inventor
라마크리스나 니로지
압둘 라시드 모하메드
이쉬티야케 아마드
프라디프 자야라잔
나가라즈 비쉬워트탐 칸디케레
아닐 카르브하리 신데
라마 사스트리 캄밤파티
고피나드히 브야라푸네니
요츠나 라불라
스리라마찬드라 머시 파트날라
벤카테스왈루 자스티
Original Assignee
수벤 라이프 사이언시스 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 수벤 라이프 사이언시스 리미티드 filed Critical 수벤 라이프 사이언시스 리미티드
Publication of KR20120081986A publication Critical patent/KR20120081986A/ko
Application granted granted Critical
Publication of KR101386354B1 publication Critical patent/KR101386354B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/47042-Quinolinones, e.g. carbostyril
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/08Drugs for disorders of the alimentary tract or the digestive system for nausea, cinetosis or vertigo; Antiemetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/10Laxatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/14Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Cardiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Pain & Pain Management (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Psychiatry (AREA)
  • Otolaryngology (AREA)
  • Nutrition Science (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Quinoline Compounds (AREA)

Abstract

본 발명은 화학식 (Ⅰ)의 신규한 1,2-디히드로-2-옥소퀴놀린 화합물, 및 이의 유도체(derivatives), 전구체(prodrugs), 호변 이성질체(tautomers), 입체 이성질체(stereoisomers), 다형체(polymorphs), 용매화합물(solvates), 수화물(hydrates), 대사물질(metabolites), N-옥사이드(N-oxides), 약제학적으로 허용가능한 염(pharmaceutically acceptable salts) 및 이들을 포함하는 조성물에 관한 것이다. 또한, 본 발명은 상기의 신규한 화합물, 및 이의 유도체, 전구체, 호변 이성질체, 입체 이성질체, 다형체, 용매화합물, 수화물, 대사물질, N-옥사이드, 약제학적으로 허용가능한 염 및 이들을 포함하는 조성물의 제조 방법(process for the preparation)에 관한 것이다. 본 발명의 화합물은 5-HT4 수용체 활성에 의해 매개되는 다양한 질환(various disorders that are mediated by 5-HT4 receptor activity)의 치료/예방에 유용하다.
[화학식 Ⅰ]

Description

L-디히드로-2-옥소퀴놀린 화합물 5-HT₄수용체 리간드{L-DIHYDRO-2-OXOQUINOLINE COMPOUNDS A 5-HT₄ RECEPTOR LIGANDS}
본 발명은 화학식(Ⅰ)의 신규한 1,2-디히드로-2-옥소퀴놀린 화합물 및 이의 유도체(derivatives), 전구체(prodrugs), 호변 이성질체(tautomers), 입체 이성질체(stereoisomers), 다형체(polymorphs), 용매화합물(solvates), 수화물(hydrates), 대사물질(metabolites), N-옥사이드(N-oxides), 약제학적으로 허용가능한 염(pharmaceutically acceptable salts) 및 이를 포함하는 조성물(compositions)에 관한 것이다.
[화학식 Ⅰ]
Figure pct00001

본 발명은 또한 상기 신규한 화합물 및 이들의 유도체, 전구체, 호변 이성질체, 입체 이성질체, 다형체, 용매화합물, 수화물, 대사물질, N-옥사이드, 약제학적으로 허용가능한 염 및 이를 포함하는 조성물(compositions)의 제조 방법(process for the preparation)에 관한 것이다.
본 발명의 화합물은 5-HT4 수용체 활성(5-HT4 receptor activity)에 의해 매개되는(mediated) 다양한 질환의 치료/예방에 유용하다.
세로토닌 [5-히드록시트립타민(5-hydroxytryptamine), 5-HT] 수용체는 중추(central) 및 말초 신경계(peripheral nervous systems)에서 발견된 G 단백질-연관 수용체(G protein-coupled receptors, GPCRs) 및 리간드-게이트 이온 채널(ligand-gated ion channels, LGICs)의 군(group)이다. 5-HT 수용체 패밀리(5-HT receptor family)는 7 개의 주요한 하위 분류(major sub classifications), 5-HT1 패밀리(예를 들어, 5-HT1A), 5-HT2 패밀리(예를 들어, 5-HT2A & 5-HT2C), 5-HT3, 5-HT4, 5-HT5, 5-HT6 및 5-HT7 로 현재 기술되고 있고, 이들의 상이한 수용체와 세로토닌의 상호작용(interaction)은 매우 다양한 생리학적 기능(physiological functions)과 연관되어 있다. 따라서, 특정한 5-HT 수용체 아류형(subtypes)을 목표로 하는 치료제(therapeutic agent)를 개발하는데 상당한 관심(substantial interest)이 있다.
아데닐 시클라아제(adenylate cyclase)와 분명히 결합하는, 신규한 5-히드록시트립타민(5-HT) 수용체는 1988 년에 Dumuis 및 동료에 의해 마우스 배아 소구 뉴런(mouse embryo colliculi neurones)에서 확인되었다(Dumuis et al., l988a, b). 수용체는 Bradley 등의, (1986) 분류에 적합한 이의 무능 때문에[due to its inability to fit into the Bradley et al. (1986) classification] 5-HT4로 실험적으로 명명되었다. 그때부터, 5-HT4 수용체는 공식적으로 알려졌고(Humphrey et al., 1993), 많은 종에 거쳐서 여러가지의 조직에서 확인되었다(for review see Ford & Clarke, 1993). 특히, 이들과 상호작용하는 5-HT4 수용체의 특성(characterization) 및 약제학적 제제(pharmaceutical agents)의 발견(identification)은 중요한 최근의 활성도(activity)에 집중되었다. (예를 들어, the review by Langlois and Fischmeister, 5-HT4 Receptor Ligands:  Applications and New Prospects J. Med. Chem. 2003, 46, 319-344 참고)
5-HT4 수용체 조절인자[예를 들어, 작용물질(agonists) 및 길항물질(antagonists)]는 위 식도 역류 질환(gastroesophageal reflux disease), 위장 질환(gastrointestinal disease), 위 운동 장애(gastric motility disorder), 비궤양성 소화불량(non-ulcer dyspepsia), 기능성 소화불량(functional dyspepsia), 과민성대장 증후군(irritable bowel syndrome), 변비(constipation), 소화불량(dyspepsia), 식도염(esophagitis), 위 식도 질환(gastroesophageal disease), 구역(nausea), 중추신경계 질환(central nervous system disease), 알츠하이머병(Alzheimer's disease), 인지기능장애(cognitive disorder), 구토(emesis), 편두통(migraine), 신경 질환(neurological disease), 통증(pain)과 같은 질환, 및 심부전(cardiac failure) 및 심장 부정맥(heart arrhythmia)과 같은 심혈관 질환(cardiovascular disorders)의 치료에 유용한 것으로 발견되었다[Corsi.M et al., Pharmacological analysis of 5-hydroxytryptamine effects on electrically stimulated human isolated urinary bladder, Br.J.Pharmacol. 1991, 104(3), 719-725; Waikar.M.V et al., Evidence for an inhibitory 5-HT4 receptor in urinary bladder of rhesus and Cynomolgus monkeys, Br.J.Pharmacol. 1994, 111(1), 213-218; Anthony P. D. W. Ford et al., The 5-HT4 Receptor, Med. Res. Rev. 1993, 13(6), 633-662; Gary W. Gullikson et al., Gastrointestinal motility responses to the S and R enantiomers of zacopride a 5-HT4 agonist and 5-HT3 antagonist, Drug Dev. Res. 1992, 26(4), 405-417; Kaumann.A.J et al., A 5-HT4-like receptor in human right atrium, Naunyn-Schmiedeberg's Arch. Pharmacol. 1991, 344(2), 150-159].
미국 특허/특허 공개 US5726187, US7419989, US7534889, US20060194842, US20080207690 및 US20080269211 는 몇몇의 5-HT4 수용체를 나타내었다. 몇몇 5-HT4 조절인자는 밝혀지면서, 5-HT4 를 조절하는데 유용한 화합물에 대한 필요는 계속되었다. 5-HT4 수용체 조절인자로서의 신규하고 강한(potent) 리간드를 발견하기위한 우리의 연구는 매우 높은 5-HT4 수용체 친화력(affinity)을 보여주는 화학식 (Ⅰ)의 1,2-디히드로-2-옥소퀴놀린 화합물(1,2-dihydro-2-oxoquinoline compounds)을 발견하는 결과를 나타내었다. 따라서, 다양한 질환 또는 5-HT4 수용체에 의해 영향을 미치는 질환의 치료/예방에 있어서의 치료제(therapeutic agent)로서 유용한 화합물을 제공하는 것이 이러한 발명의 목적이다.
본 발명은 화학식(Ⅰ)의 신규한 5-HT4 수용체 리간드 화합물, 및 이의 유도체(derivatives), 전구체(prodrugs), 호변 이성질체(tautomers), 입체 이성질체(stereoisomers), 다형체(polymorphs), 용매화합물(solvates), 수화물(hydrates), 대사물질(metabolites), N-옥사이드(N-oxides), 약제학적으로 허용가능한 염(pharmaceutically acceptable salts) 및 이를 포함하는 조성물에 관한 것이다.
[화학식 Ⅰ]
Figure pct00002

이 식에서,
R1 은 수소(hydrogen), 히드록시(hydroxy), 할로겐(halogen), 할로알킬(haloalkyl), 할로알콕시(haloalkoxy), 니트로(nitro), 아미드(amide), 아민(amine), 시아노(cyano), 카르복실(carboxylic), 시클로알킬(cycloalkyl), 알킬(alkyl), 알켄닐(alkenyl), 알키닐(alkynyl), 알콕시(alkoxy), 아릴(aryl), 아랄킬(aralkyl), 헤테로아릴(heteroaryl), 헤테로아랄킬(heteroaralkyl) 또는 헤테로시클릴(heterocyclyl)을 나타내고;
R2 는 수소, 알킬, 시클로알킬(cycloalkyl), 아릴, 아랄킬, 헤테로아릴, 헤테로아랄킬 또는 헤테로시클릴을 나타내고;
Figure pct00003

R3 은 하기를 나타내고;
Figure pct00004

R4 는 수소, 히드록시(hydroxy), 아민, 알킬, 알콕시, 아릴, 아릴옥시(aryloxy), 시클로알킬(cycloalkyl), 시클로알콕시(cycloalkoxy), 헤테로아릴(heteroaryl), 헤테로아랄킬(heteroaralkyl) 또는 헤테로시클릴(heterocyclyl)을 나타내고;
R5 은 수소, 알킬, 시클로알킬 또는 헤테로시클릴을 나타내고;
R6 은 헤테로아릴(heteroaryl)을 나타내고;
R7 및 R8 은 수소, 알킬, 시클로알킬(cycloalkyl) 또는 헤테로시클릴(heterocyclyl)을 나타내고;
선택적으로 'N' 원자와 함께 R7 및 R8 은, C, O, N, S 중에서 선택한 하나 또는 그 이상의 헤테로원자(heteroatoms)를 포함하는 4 내지 9 원환(4 to 9 member rings)을 형성할 수 있다.
본 발명은, 5-HT4 수용체와 관련된(related) 다양한 질환의 치료/예방에서의 의약(medicament)을 제조하기 위한 치료학적 유효량(therapeutically effective amount)의 화학식(Ⅰ)의 화합물의 용도(use)에 관한 것이다.
분명하게, 이러한 본 발명의 화합물은, 위 식도 역류 질환(gastroesophageal reflux disease), 위장 질환(gastrointestinal disease), 위 운동 장애(gastric motility disorder), 비궤양성 소화불량(non-ulcer dyspepsia), 기능성 소화불량(functional dyspepsia), 과민성대장 증후군(irritable bowel syndrome), 변비(constipation), 소화불량(dyspepsia), 식도염(esophagitis), 위 식도 질환(gastroesophageal disease), 구역(nausea), 중추신경계 질환(central nervous system disease), 알츠하이머병(Alzheimer's disease), 인지기능장애(cognitive disorder), 구토(emesis), 편두통(migraine), 신경 질환(neurological disease), 통증(pain)과 같은 질환, 및 심부전(cardiac failure) 및 심장 부정맥(heart arrhythmia)과 같은 심혈관 질환(cardiovascular disorders)의 치료에 유용하다.
또 다른 양상에서, 본 발명은, 적어도 하나의 적절한 담체(carrier), 희석제(diluents), 보조제(adjuvants) 또는 부형제(excipients)와 함께 혼합물(admixture)에, 화학식(Ⅰ)의 적어도 하나의 화합물의 치료학적 유효량을 포함하는 약제학적 조성물, 및 이의 유도체, 전구체, 호변 이성질체, 입체 이성질체, 다형체, 용매화합물, 수화물, 대사물질, N-옥사이드 및 이의 약제학적으로 허용가능한 염을 포함하는 약제학적 조성물에 관한 것이다.
또 다른 양상에서, 본 발명은, 의학적인 진단(medical diagnosis) 또는 치료에 사용하기 위한 화학식(Ⅰ) 방사성 표지된 화합물(radio labeled compound) 뿐만 아니라 5-HT4 수용체와 관련된 다양한 질병의 치료에서 유용한 의약(medicament)을 제조하기 위한 화학식(Ⅰ)의 방사성 표지된 화합물의 용도를 또한 제공한다.
또 다른 양상에서, 본 발명은 상기 언급된 질병 및 증상(conditions)의 치료/예방을 위한 의약(medicament)의 제조를 위한 적어도 하나의 추가적인 유효 성분(active ingredient)과 결합하여 본 발명에 따른 화합물의 용도에 관한 것이다.
여전히 또 다른 양상에서, 본 발명은 화학식(Ⅰ)의 화합물을 사용하기 위한 방법 및 이를 포함하는 조성물에 관한 것이다.
또 다른 양상에서, 본 발명은 추가적으로 화학식(Ⅰ)의 화합물 및 이의 유도체, 전구체, 호변 이성질체, 입체 이성질체, 다형체, 용매화합물, 수화물, 대사물질, N-옥사이드 및 이의 약제학적으로 허용가능한 염의 제조를 위한 방법에 관한 것이다.
본 발명의 대표적인 화합물은 하기에 특정한 화합물 및 이의 유도체, 전구체, 호변 이성질체, 입체 이성질체, 다형체, 용매화합물, 수화물, 대사물질, N-옥사이드 및 약제학적으로 허용가능한 염을 포함한다. 본 발명은 이들로 한정되는 것으로 해석하여서는 안된다.
N-[(2-아자트리시클로[3.3.1.13,7]덱(dec)-2-일)프로필]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-1-이소부틸-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
N-[1-(트리시클로[3.3.1.13,7]덱-2-일)피롤리딘-3-일]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(5-히드록시-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(5-페닐-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
N-[(1,4-디아자트리시클로[4.3.1.13,8]운덱-4-일)프로필]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로-퀴놀린-3-카르복사미드;
N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-1-이소부틸-6-메톡시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-6-클로로-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-6-플루오로-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-6-브로모-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-6-아미노-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[2-(피리딘-3-일 메틸)-1-아자비시클로[2.2.2]옥트-3-일]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[2-(피리딘-2-일 메틸)-1-아자비시클로[2.2.2]옥트-3-일]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-(2-메틸-2-아자트리시클로[3.3.1.13,7]덱-5-일)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로-퀴놀린-3-카르복사미드;
N-(2-이소프로필-2-아자트리시클로[3.3.1.13,7]덱-5-일)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로-퀴놀린-3-카르복사미드;
N-(2-벤질-1-아자비시클로[2.2.2]옥트-3-일)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)에틸]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
N-(2-부틸-2-아자트리시클로[3.3.1.13,7]덱-5-일)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
N-(2-에틸-2-아자트리시클로[3.3.1.13,7]덱-5-일 메틸)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
N-(1-부틸 피페리딘-4-일)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
N-[(1-(피롤리딘-1-일)트리시클로[3.3.1.03,7]노난-3-일]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로-퀴놀린-3-카르복사미드;
N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-6-니트로-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-(2-아자트리시클로[3.3.1.13,7]덱-5-일)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-1-메틸-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-1-벤질-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
N-[(4-(모르폴린-4-일)시클로헥실)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
N-(4-(피롤리딘-1-일)시클로헥실)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
N-(2-메틸-2-아자트리시클로[3.3.1.13,7]덱-5-일)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-(2-메틸-2-아자트리시클로[3.3.1.13,7]덱-5-일)-1-시클로프로필-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-(2-메틸-2-아자트리시클로[3.3.1.13,7]덱-5-일)-4-히드록시-1-이소부틸-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[2-(피리딘-2-일메틸)-1-아자비시클로[2.2.2]옥트-3-일]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[2-(피리딘-2-일메틸)-1-아자비시클로[2.2.2]옥트-3-일]-1-시클로프로필-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[2-(피리딘-2-일메틸)-1-아자비시클로[2.2.2]옥트-3-일]-4-히드록시-1-이소부틸-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-1-시클로프로필-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-1-벤질-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-2-옥소-1-(피리딘-2-일메틸)-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-2-옥소-1-(피리딘-3-일메틸)-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-1-시클로펜틸-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-1-시클로헥실-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(5-히드록시-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-1-시클로헥실-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(5-히드록시-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-1-이소부틸-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(5-히드록시-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-1-시클로프로필-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(5-히드록시-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-1-시클로펜틸-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(5-히드록시-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-2-옥소-1-(테트라히드로피란-4-일)-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-2-옥소-1-(테트라히드로피란-4-일)-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(5-히드록시-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-1-벤질-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(5-히드록시-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-2-옥소-1-(피리딘-2-일메틸)-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(5-페닐-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-2-옥소-1-(피리딘-2-일메틸)-1,2-디히드로퀴놀린-3-카르복사미드
N-[(5-페닐-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-1-시클로프로필-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(5-페닐-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-1-이소부틸-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(5-페닐-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-2-옥소-1-(2-메틸벤질)-1,2-디히드로퀴놀린-3-카르복사미드;
N-[1-(테트라히드로피란-4-일메틸)피페리딘-4-일]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[1-(테트라히드로피란-4-일메틸)피페리딘-4-일]-1-시클로프로필-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[1-(테트라히드로피란-4-일메틸)피페리딘-4-일]-4-히드록시-1-이소부틸-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[1-(테트라히드로피란-4-일메틸)피페리딘-4-일]-1-벤질-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-(1-페네틸 피페리딘-4-일)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(1-(피롤리딘-1-일) 트리시클로[3.3.1.03,7]노난-3-일]-1-시클로프로필-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(1-(피롤리딘-1-일) 트리시클로[3.3.1.03,7]노난-3-일]-1-시클로헥실-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(1-(피롤리딘-1-일) 트리시클로[3.3.1.03,7]노난-3-일]-1-벤질-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(1-(피롤리딘-1-일) 트리시클로[3.3.1.03,7]노난-3-일]--4-히드록시-2-옥소-1-(피리딘-2-일메틸)-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(1-(피롤리딘-1-일) 트리시클로[3.3.1.03,7]노난-3-일]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(1-(피롤리딘-1-일) 트리시클로[3.3.1.03,7]노난-3-일]-1-시클로프로필-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(1-(피롤리딘-1-일) 트리시클로[3.3.1.03,7]노난-3-일]-1-시클로헥실-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-(2-메틸-2-아자트리시클로[3.3.1.13,7]덱-5-일메틸)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-(2-메틸-2-아자트리시클로[3.3.1.13,7]덱-5-일메틸)-1-시클로프로필-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-(2-메틸-2-아자트리시클로[3.3.1.13,7]덱-5-일메틸)-1-벤질-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-(2-메틸-2-아자트리시클로[3.3.1.13,7]덱-5-일메틸)-4-히드록시-1-이소부틸-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-(2-메틸-2-아자트리시클로[3.3.1.13,7]덱-5-일메틸)-1-시클로헥실-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-(2-에틸-2-아자트리시클로[3.3.1.13,7]덱-5-일메틸)-1-시클로펜틸-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(5-메톡시-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
N-[(5-부톡시-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드.
그 외에 달리 명시하지 않는 한, 본 명세서 및 청구범위에서 사용된 하기의 용어는 하기의 주어진 의미를 갖는다:
용어 "할로겐(halogen)"은 플루오린(fluorine), 염소(chlorine), 브롬(bromine), 요오드(iodine)를 의미한다.
용어 "알킬(alkyl)"은, 단일 결합에 의해 분자의 나머지(the rest of the molecule)에 부착된, 1 내지 8 의 탄소 원자를 갖는 불포화가 없는(no unsaturation) 탄소 및 수소 원자만으로 이루어진 선형(straight chain) 또는 가지형 탄화수소기(branched hydrocarbon radical)를 의미한다. 모범적인 "알킬"기는 메틸, 에틸, n-프로필, 이소-프로필 등을 포함한다.
용어 "알켄닐(alkenyl)"은 2 내지 10 개의 탄소 원자를 갖고, 탄소-탄소 이중 결합(carbon-carbon double bond)을 포함하는 선형(straight chain) 또는 가지형 지방족 탄화수소기(branched aliphatic hydrocarbon group)를 의미한다. 모범적인 "알켄닐"기는 에테닐(ethenyl), 1-프로페닐(1-propenyl), 2-프로페닐 알릴[2-propenyl (allyl)], 이소-프로페닐(iso-propenyl), 2-메틸-1-프로페닐(2-methyl-1-propenyl), 1-부테닐(1-butenyl), 2-부테닐(2-butenyl) 등을 포함한다.
용어 "알키닐(alkynyl)"은 2 내지 10 개의 탄소 원자를 갖고, 적어도 하나의 탄소-탄소 삼중결합(carbon-carbon triple bond)을 갖는 선형 또는 가지형 히드로카보닐 라디칼(hydrocarbynyl radical)을 의미한다. 모범적인 "알키닐"기는 에티닐(ethynyl), 프로피닐(propynyl), 부티닐(butynyl) 등을 포함한다.
용어 "알콕시(alkoxy)"는 분자의 나머지(rest)에 산소 결합(oxygen linkage)을 통하여 부착된 알킬기를 의미한다. 모범적인 "알콕시"기는 메톡시(methoxy), 에톡시(ethoxy), 프로필옥시(propyloxy), 이소-프로필옥시(iso-propyloxy)를 포함한다.
용어 "시클로알킬(cycloalkyl)"은 3 내지 12 개의 탄소 원자의 비-방향족 단일 또는 다수의 고리환 시스템(non-aromatic mono or multi cyclic ring systems)을 의미한다. 모범적인 "시클로알킬"기는 시클로프로필(cyclopropyl), 시클로부틸(cyclobutyl), 시클로펜틸(cyclopenty)을 포함한다.
용어 "할로알킬"은 1 내지 3 개의 탄소 원자를 포함하는 선형 또는 가지형 알킬 라디칼을 의미한다. 모범적인 "할로알킬"기는 플루오로메틸(fluoromethyl), 디플루오로메틸(difluoromethyl), 트리플루오로메틸(trifluoromethyl), 트리플루오로메틸(trifluoromethyl), 플루오로에틸(fluoroethyl), 디플루오로에틸(difluoroethyl) 등을 포함한다.
용어 "할로알콕시(haloalkoxy)"는 1 내지 3 개의 탄소 원자를 포함하는 직쇄(straight) 또는 가지형(branched chain) 알콕시 라디칼을 의미한다. 모범적인 "할로알콕시"기는 플루오로메톡시(fluoromethoxy), 디플루오로메톡시(difluoromethoxy), 트리플루오로메톡시(trifluoromethoxy), 트리플루오로에톡시(trifluoroethoxy), 플루오로에톡시(fluoroethoxy), 디플루오로에톡시(difluoroethoxy) 등을 포함한다.
용어 "아릴(aryl)"은 단순한 방향족 고리(simple aromatic ring)로부터 유도된(derived) 모든 작용기(functional group) 또는 치환기(substituent)를 의미하고, 모범적인 "아릴"기는 페닐(phenyl), 나프틸(naphthyl), 티오페닐(thiophenyl), 인돌릴(indolyl) 등을 포함한다.
용어 "아랄킬(aralkyl)"은 알킬기에 직접적으로 결합된 아랄킬 고리 라디칼(aralkyl ring radical)을 의미한다.
용어 "헤테로아릴(heteroaryl)"은 고리(ring)의 부분(part)으로서 황(sulfur), 산소(oxygen) 또는 질소(nitrogen)와 같은 탄소에 더하여 원자(atoms)를 포함하는 고리형 구조(ring structure)를 포함하는 유기 화합물(organic compound)을 의미한다. 이러한 추가적인 원자는 고리에서 한번 이상 반복될 수 있다. 이러한 고리는 단순한 방향족 고리 또는 비-방향족 고리일 수 있다. 모범적인 "헤테로아릴"기는 피리딘(pyridine), 피리미딘(pyrimidine), 벤조티오펜(benzothiophene), 푸릴(furyl), 디옥살라닐(dioxalanyl), 피롤릴(pyrrolyl), 옥사졸릴(oxazolyl), 피리딜(pyridyl), 피리다지닐(pyridazinyl), 피리미디닐(pyrimidinyl) 등을 포함한다.
용어 "헤테로아랄킬(heteroaralkyl)"은 알킬기에 직접적으로 결합된 헤테로아릴 고리 라디칼(heteroaryl ring radical)을 의미한다.
용어 "헤테로시클릴(heterocyclyl)"은 3 내지 12 원형(3 to 12-memebered rings)을 의미하고, 이의 1 내지 3 개의 이종 원자(heteroatom)을 포함하는 고리형 구조(ring structures)이고; 이러한 추가적인 원자는 고리형에서 하나 이상 반복될 수 있다. 모범적인 "헤테로시클릴"기는 피롤리디닐(pyrrolidinyl), 피페리디닐(piperidinyl), 모르폴리닐(morpholinyl) 등을 포함한다.
하기의 기는 치환되거나 또는 치환되지 않을 수 있고, 이들은 시클로알킬, 아릴, 아랄킬, 헤테로알킬, 헤테로아릴 및 헤테로시클릴이다. 선택적으로, 이러한 기에서 치환기(substituent)는 수소, 히드록시, 할로겐, 니트로, 티오(thio), 옥소(oxo), 카르복실(carboxylic), 아민, 아미드, 알킬, 알콕시, 할로알킬 또는 할로알콕시로 이루어진 군으로부터 선택될 수 있다.
용어 "입체 이성질체(stereo isomers)"는 공간(space)에서 이들 원자의 방향(orientation)만이 상이한 각각의 분자의 모든 이성질체의 일반적인 용어이다. 이는 거울상 이성질체(mirror image isomers)[거울상체(enantiomers)], 기하 (cis-trans) 이성질체[geometric (cis-trans) isomers] 및 서로 거울상이 아닌 하나 이상의 비대칭 중심(chiral centre)을 갖는 화합물의 이성질체[부분 입체 이성질체(diastereomers)]를 포함한다.
용어 "전구체(prodrug)"는, 생체내 생리학적 조건(in vivo physiological conditions) 하[예를 들어, 효소의 산화(enzymatic oxidation), 환원(reduction) 및/또는 가수분해(hydrolysis)]에서, 효소, 위산(gastric acid)의 작용에 의해 본원에서 기재된 화합물로 직접적으로 또는 간접적으로 변환(converting)할 수 있는 화합물에 관한 것으로 사용되었다.
용어 "용매화합물(solvate)"은 본 발명의 화합물과 용매화합물 분자(solvent molecules) 사이의 분자 복합체(molecular complex)를 기술하기 위해 사용되었다. 용매화합물의 예는 물, 이소프로판올(isopropanol), 에탄올, 메탄올, 디메틸설폭시화물(dimethylsulfoxide, DMSO), 아세트산에틸(ethyl acetate), 아세트산(acetic acid), 에탄올아민(ethanolamine) 또는 이의 혼합물과 결합한 본 발명의 화합물을 포함하지만, 이로 제한되는 것은 아니다.
용어 "수화물(hydrate)"은 상기 용매화합물이 물일 때 사용될 수 있다. 이는, 본 발명에서 하나의 용매 분자(solvent molecule)가 수화물과 같이 본 발명의 화합물의 하나의 분자와 관련될 수 있음을 분명히 예상하였다. 더욱이, 이는, 본 발명에서 하나 이상의 용매화합물 분자가 2수화물(dihydrate)과 같이 본 발명의 화합물의 하나의 분자와 관련될 수 있음을 분명히 예상하였다. 게다가, 이는, 본 발명에서 하나 보다 적은 용매화합물 분자가 반수화물(hemihydrate)과 같이 본 발명의 화합물의 하나의 분자와 관련될 수 있음을 분명히 예상하였다. 더욱이, 화합물의 비-수화물 형태(non-hydrate form)의 생물학적 유효성(biological effectiveness)을 유지하는 본 발명의 화합물의 용매화합물로서 본 발명의 용매화합물을 예상하였다.
용어 "호변 이성질체(tautomers)"는 평형(equilibrium)에서 화합물의 쉽게 호환성이 있는 이성체의 형태(readily interconvertible isomeric forms)를 포함한다. 엔올-케토 토토머화(enol-keto tautomerism)는 예이다.
용어 "다형체(polymorphs)"는 화학적으로 동일한 구조를 갖는 화합물의 결정학적으로 분명한 형태(crystallographically distinct forms)를 포함한다.
용어 "대사물질(metabolite)"은 물질대사(metabolism)에 의해 생산된 물질을 나타낸다.
용어 "유도체(derivatives)"는, 산화, 수소화(hydrogenation), 알킬화(alkylation), 에스테르화(esterification), 할로겐화(halogenation) 등과 같은 하나 또는 그 이상의 작용기(one or more functional groups)를 변환(converting)시키는 단순한 화학적 과정(simple chemical process)에 의한, 화학식 (Ⅰ)에 따른 화합물로부터 수득된 화합물, 및 이의 호변 이성질체(tautomers), 입체 이성질체(stereoisomers), 다형체(polymorphs), 용매화합물(solvates), 수화물(hydrates), N-옥사이드(N-oxides) 및 이의 약제학적으로 허용가능한 염(pharmaceutically acceptable salts)을 나타낸다.
용어 "치료하는(treating)", "치료하다(treat)" 또는 "치료(treatment)"는 예방을 위한(preventative), 예방의(prophylactic) 및 일시적인 처방(palliative)과 같은 모든 의미를 아우른다(embrace).
구절(phrase) "약제학적으로 허용가능한 염(pharmaceutically acceptable salts)"은, 그 물질(substance) 또는 구성(composition)이 이와 함께 치료될 포유동물(mammal)에게 제형(formulation)을 포함하는 그 밖의 성분과 함께 화학적으로 및/또는 독물학상으로(toxicologically) 호환되어야 함을 나타낸다.
구절 "치료학적 유효량(Therapeutically effective amount)"은 (i) 특정한 질환(disease), 증상(condition) 또는 질병(disorder)을 치료하거나 예방하고 (ii) 특정한 질환, 증상 또는 질병의 하나 또는 그 이상의 증상(symptom)을 약화시키거나(attenuates), 개선하거나(ameliorate) 또는 제거하고(eliminates), (iii) 본원에서 기재한 특정한 질환, 증상 또는 질병의 하나 또는 그 이상의 증상의 발병(onset)을 예방하거나 지연시키는 본 발명의 화합물의 양으로서 나타내었다.
용어 "조절인자(modulator)"는 수용체 활성도(receptor activity)의 조절(regulation)에 직접적으로 또는 간접적으로 영향을 미치는 화합물, 작용물질(agonists), 길항물질(antagonists), 리간드(ligands), 기질(substrates) 및 효소를 의미한다.
상업적인 지시약(Commercial reagents)은 추가적인 정제 없이 사용하였다. 실온은 25 내지 30 ℃ 를 나타낸다. IR 은 고체 상태(solid state)에서 KBr 을 사용하여 얻었다(taken). 그 외에 달리 명시하지 않는 한, 모든 질량 스펙트럼(mass spectra)은 ESI 조건을 사용하여 실행하였다. 1H-NMR 스펙트럼은 Bruker 기기(instrument)에서 400 MHz 에서 기록하였다. 듀테로화한 클로로포름(Deuterated chloroform)(99.8 % D)을 용매로서 사용되었다. TMS 는 내부의 표준 시료(internal reference standard)로서 사용되었다. 화학적 이동 값(Chemical shift values)은 백만(d) 값 당 나누어서[in parts per million (d) values] 나타내었다. 하기의 약어(abbreviations)는 NMR 신호에 대한 다양성을 위해 사용되었다: s=일중선(singlet), bs=넓은 일중선(broad singlet), d=이중선(doublet), t=삼중선(triplet), q=사중선(quartet), qui=오중선(quintet), h=헵텟(heptet), dd=이중 이중선(double doublet), dt=이중 삼중선(double triplet), tt=삼중선의 삼중(triplet of triplets), m=다중선(multiplet). 크로마토그래피(Chromatography)는 100 내지 200 메쉬(mesh) 실리카 겔(mesh silica gel)을 사용하여 컬럼 크로마토그래피를 나타내고, 질소 압력 [플래쉬 크로마토그래피(flash chromatography)] 조건 하에서 실행되었다.
본 발명의 화합물은 상기 언급된 바와 같은 조건을 치료/예방하는데 사용된 그 밖의 치료제(therapeutic agent) 또는 접근법(approach)과 함께 사용될 수 있다. 이러한 제제 또는 접근법은, 5-HT3 수용체, 5-HT6 수용체, 양성자 펌프 억제제(proton pump inhibitors), 선택적 세로토닌 재흡수 저해제(selective serotonin reuptake inhibitors), 삼환계 항우울제(tricyclic antidepressants), 콜레시스토키닌 수용체(cholecystokinin receptor), 모틸린 수용체(motilin receptor), 산화질소 합성효소 억제제(nitric oxide synthase inhibitors), GABAB 수용체 작용물질 또는 조절인자(GABAB receptor agonists or modulators), 뉴로키닌 수용체(Neurokinin receptor), 칼시토닌 유전자-관련 펩티드 수용체(calcitonin gene-related peptide receptor), 자극성 완화제(stimulant laxatives), 삼투성 완화제(osmotic laxatives), 변연화제(fecal softeners), 식이섬유 보충물(fiber supplements), 제산제(antacids), GI 이완제(GI relaxants), 로페라미드(loperamide), 디페녹시레이트(diphenoxylate), 방독 화합물(anti-gas compounds), 항-구토 도파민 D2 길항물질(anti-emetic dopamine D2 antagonists), 비만-세포 안정제(mast-cell stabilizing agents), DPP IV 억제제(DPP IV inhibitors), 아세틸콜린에스테라제 억제제(acetylcholinesterase inhibitors), α2-아드레날린수용체 길항물질(α2-adrenoceptor antagonists), NMDA 수용체 길항물질(NMDA receptor antagonists), M1 무스카린 수용체 작용물질(M1 muscarinic receptor agonists), 알로스테릭 조절인자(allosteric modulators), 히스타민 H2 수용체 길항물질(histamine H2 receptor antagonists), 히스타민 H3 수용체 길항물질(histamine H3 receptor antagonists), 잔틴 유도체(Xanthin derivatives), 칼슘 채널 차단제(calcium channel blockers), 프로스타글란딘 유사체(prostaglandin analogues), 아편계 진통제(opioid analgesics), 소마토스타틴 유사체(somatostatin analogues) 또는 C1 채널 활성제(C1 channel activators)를 포함한다.
본 발명의 컴비네이션(combination)에 있어서, 본 발명의 화합물 및 상기 언급한 컴비네이션 파트너(combination partners)는 하나의 약제학적 조성물[예를 들어, 캡슐(capsule) 또는 정제(tablet)]에 있어서 함께 또는 부분적으로[예를 들어, 부분품들의 키트(kit of parts)] 투여될 수 있다. 게다가, 본 발명의 컴비네이션의 하나의 성분(element)의 투여는 컴비네이션의 그 밖의 성분의 투여 전(prior to), 동시에(concurrent to) 또는 그 뒤(subsequent)일 수 있다. 만약 본 발명의 화합물 및 하나 또는 그 이상의 유효 성분이 독립된 제형(separate formulations)으로 존재한다면, 이러한 독립된 제형은 동시에 또는 연속적으로 투여할 수 있다.
상기 언급한 질병 및 조건의 치료 또는 예방을 위해서, 본 발명의 화합물은, 예를 들어 A 베타 펩티드 또는 이의 유도체로 면역(immunization) 또는 항-A 베타 펩티드 항체의 투여와 같은 면역학적 접근법(immunological approaches)과 함께 사용될 수 있다.
따라서, 본 발명은 상기 언급한 질병 및 조건의 치료 또는 예방을 위한 의약의 제조를 위한 적어도 하나의 추가적인 유효성분과 함께 본 발명에 따른 화합물의 용도에 관한 것이다.
많은 방사성 동위원소(radioisotope)는 수소, 탄소, 질소, 산소, 인(phosphorus), 황(sulfur), 요오드(iodine), 플루오린(fluorine), 브롬 & 염소의 동위원소(isotopes)를 포함하는 쉽게 이용할 수 있다. 예를 들어 : 2H, 3H, 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 31P, 32P, 35S, 123I, 124I, 125I, 131I, 18F, 75Br, 76Br, 77Br, 82Br & 36Cl.
화학식 (Ⅰ)의 화합물은 유기 화학(organic chemistry)에서 공지된 표준 기술을 사용하여 방사성(radio) 표지될(labeled) 수 있다. 그렇지 않으면, 출발 물질(starting materials) 중의 하나 또는 중간물질(intermediate)에서 치환기(substituent)로서 방사성동위원소(radioisotope)로 표지된 화학식 (Ⅰ) 방사성의 화합물은 화학식 (Ⅰ)의 화합물의 합성에 사용되었다. 예를 들어, Arthur Murry III, D. Lloyd Williams; Organic Synthesis with Isotopes, vol. I and II, Interscience Publishers Inc., N.Y. (1958) and Melvin Calvin et al. Isotopic Carbon John Wiley and Sons Inc., N.Y.(1949)를 참고하라.
방사성 표지된 화합물의 합성은 Amersham Corporation, Arlington Heights, IL; Cambrige Isotopes Laboratories, Inc. Andover, MA; Wizard Laboratories, West Sacramento, CA; ChemSyn Laboratories, Lexena, KS; American Radiolabeled Chemicals, Inc. & St.Louis, MO 과 같은 방사성 표지된 검출 화합물(radio labeled probe compounds)의 수탁 합성(custom synthesis)에서 전문적으로 다루어진 방사성 동위원소 공급자(radioisotope supplier)에 의해 편리하게 수행할 수 있다.
화학식 (Ⅰ)의 화합물의 방사성 표지된 유사체(Radio labeled analogues)는 다양한 질병 분야에서 5-HT4 수용체 리간드의 역할을 평가하기 위해, 임상시험(clinical studies)에 사용될 수 있고, 5-HT4 수용체 리간드는 관련되는 것으로 생각된다.
화학식 (Ⅰ)의 방사성 표지된 화합물은 의학적 치료(medical therapy) 및 진단을 위한 영상제(imaging agent) 및 생체지표(biomarker)로서 유용하다. 이러한 방사성 표지된 화합물은 5-HT4 기능 및 활성을 연구하기 위한 약학적인 도구(pharmacological tools)로서 또한 유용하다. 예를 들어, 동위원소 표지된 화합물(isotopically labeled compounds)은 SPECT[단일 광자 방출 화합물 단층촬영(single photon emission compound tomography)] 또는 PET[양전자방출 단층촬영(positron emission tomography)]에서 특히 유용하다.
약제학적 조성물
치료(therapy)에서의 화학식 (Ⅰ)의 화합물을 사용하기 위해, 이들을 표준 약제학적 실습(standard pharmaceutical practice)에 부합되는 약제학적 조성물 내로 일반적으로 제형화하였다(formulated).
본 발명의 약제학적 조성물은 하나 또는 그 이상의 약제학적으로 허용가능한 담체(pharmaceutically acceptable carriers)를 사용한 일반적인 방식(conventional manner)으로 제형시킬 수 있다. 따라서 본 발명의 유효 화합물(active compounds)을 경구(oral), 구강(buccal), 비강 내(intranasal), 비경구적으로(parenteral)[예를 들어, 정맥 내(intravenous), 근육 내(intramuscular) 또는 피하(subcutaneous)], 또는 직장(rectal) 투여 또는 흡입(inhalation) 또는 주입(insufflations)에 의한 투여에 적합한 형태로 제형화시킬 수 있다.
경구 투여를 위해, 약제학적 조성물은, 결합제(binding agents)[예를 들어, 전젤라틴화 옥수수 전분(pregelatinised maize starch), 폴리비닐피롤리돈(polyvinylpyrrolidone) 또는 히드록시프로필 메틸셀룰로스(hydroxypropyl methylcellulose)]; 충전제(fillers)[예를 들어, 락토스(lactose), 결정 셀룰로스(microcrystalline cellulose) 또는 인산칼슘(calcium phosphate)]; 윤활유(lubricants)[예를 들어, 마그네슘스테아레트(magnesium stearate), 탈크(talc) 또는 실리카(silica)]; 붕괴제(disintegrants)[예를 들어, 감자녹말(potato starch) 또는 전분글리콜산나트륨(sodium starch glycolate)]; 또는 습윤제(wetting agents)[예를 들어, 라우릴 황산 나트륨(sodium lauryl sulphate)]과 같은 약학적으로 허용가능한 부형제(excipient)와 함께 일반적인 방법으로 제조된, 예를 들어 정제 또는 캡슐의 형태로 취할 수 있다. 정제는 본 분야에서 공지된 방법으로 코팅될 수 있다. 경구 투여를 위한 액상 제제(Liquid preparations)는 예를 들어 용액(solution), 시럽(syrup) 또는 현탁액(suspension)의 형태로 취할 수 있거나, 이들은 사용하기 전에 물 또는 그 밖의 적합한 비히클(vehicle)과 함께 구성될 수 있는 건조 생산물(dry product)로서 존재할 수 있다. 이러한 액체 제제(liquid preparations)는, 현탄제(suspending agents)[예를 들어, 소르비톨 시럽(sorbitol syrup), 메틸 셀룰로스(methyl cellulose) 또는 수소화된 식용 지방(hydrogenated edible fats)]; 유화제(emulsifying agents)[예를 들어, 레시틴(lecithin) 또는 아카시아(acacia)]; 비-수성 비히클(non-aqueous vehicles)[예를 들어, 아몬드 오일(almond oil), 유성의 에스테르(oily esters), 에틸알코올(ethyl alcohol)] 및 보존제(preservatives)[예를 들어, 메틸 또는프로필 p-히드록시벤조산염 또는 소르브산(sorbic acid)]과 같은 약제학적으로 허용가능한 첨가제(additives)와 함께 통상적인 방법(conventional means)으로 제조될 수 있다.
구강 투여(buccal administration)를 위해서, 조성물은 통상적인 방법으로 제형화된 정제 또는 캔디(lozenge)의 형태로 취할 수 있다.
본 발명의 유효 화합물은, 통상적인 도뇨 기술(catheterization techniques) 또는 주입(infusion)을 사용하는 것을 포함하는, 주사(injection)에 의해 비경구적 투여(parenteral administration)를 위해 제형화될 수 있다. 주사를 위한 제형은 추가된 보존제(preservative)와 함께, 유닛 제형(unit dosage form), 예를 들어 앰플(ampoules) 또는 다중-투여량 용기(multi-dose containers)로 나타낼 수 있다. 조성물은 유성(oily) 또는 수성의 비히클에서 현탁액, 용액 또는 에멀전(emulsions)과 같은 형태로 취할 수 있고, 서스펜딩(suspending), 안정화제 및/또는 분산제(dispersing agent)와 같은 제형화된 제제를 포함할 수 있다. 그렇지 않으면, 유효 성분은 사용하기 전에 적절한 비히클, 예를 들어 멸균 피로겐-유리수(sterile pyrogen-free water)와 재구성(reconstitution)을 위한 분말 형태일 수 있다.
본 발명의 유효 화합물은, 예를 들어 코코아버터(cocoa butter) 또는 그 밖의 글리세리드(glyceride)와 같은 통상적인 좌약 베이스를 포함하는 좌약 또는 관장(retention enemas)과 같은 직장의 조성물로 또한 제형화될 수 있다.
비강 내 투여(intranasal administration) 또는 흡입(inhalation)에 의한 투여를 위해, 본 발명의 유효 화합물은, 흡입기(inhaler) 또는 취입기(insufflators)를 사용한 캡슐로부터, 또는 분무기(nebulizer) 또는 가압 용기(pressurized container)로부터 에어로졸 스프레이(aerosol spray)의 형태로 통상적으로 수송되었다(delivered). 가압 에어로졸(pressurized aerosol)의 경우에, 적절한 분사제(propellant), 예를 들어 디클로로디플루오로메탄(dichlorodifluoromethane), 트리클로로플루오로메탄(trichlorofluoromethane), 디클로로테트라플루오로메탄(dichlorotetrafluoroethane), 이산화탄소(carbon dioxide) 또는 그 밖의 적절한 가스 및 투여량 유닛(dosage unit)은 계량된 양(metered amount)을 수송하기 위해 제공된 벨브(valve)에 의해 결정될 수 있다. 가압된 용기 또는 분무기를 위한 의약(medicament)은 캡슐에 대해서 유효 화합물의 용액 또는 현탁액(suspension)을 포함할 수 있고; 이는 바람직하게 분말의 형태이어야 한다. 흡입기 또는 취입기에서 사용하기 위한 캡슐 및 카트리지(cartridges)[예를 들어 젤라틴(gelatin)으로부터 만들어짐]는, 본 발명의 화합물 및 젖당(lactose) 또는 전분과 같은 적절한 분말 베이스(powder base)의 분말 믹스(powder mix)를 포함하여 제형화시킬 수 있다.
평균 성인 인간에서 상기에 나타낸 바와 같은 증상(예를 들어, 편두통)의 치료를 위한 에어로졸 제형(Aerosol formulations)은, 각각의 계량된 투여량 또는 에어로졸의 "퍼프(puff)"가 본 발명의 화합물의 20 ㎍ 내지 1000 ㎍을 포함하기 위해 바람직하게 배열되었다. 에어로졸과 함께 전체의 투여량은 100 ㎍ 내지 10 mg 범위 내일 것이다. 투여는 예를 들어 각각의 시간당 1, 2 또는 3 복용량에 대해 주어진, 매일 수 회(several times daily) 예를 들어 2, 3, 4 또는 8 번일 수 있다.
상기에 나타낸 바와 같은 화학식 (Ⅰ)의 화합물 또는 이의 유도체의 유효량(effective amount)은, 통상적인 약제학적 보조제(auxiliaries), 담체 및 첨가제와 함께, 의약을 생산하기 위해 사용될 수 있다.
이러한 치료는 다수의 선택을 포함한다: 예를 들어, 단일 투여량 형태(single dose form)로 동시에 두 가지의 양립될 수 있는 화합물의 투여 또는 분리된 투여량(separate dosage)에서의 개별적인 각각의 화합물의 투여; 또는 공지된 약물학(pharmacology)의 원리(principles)에 따른 약물의 잠재적인 부작용(side-effect)을 최소화하거나 이로운 효과를 최대화하기 위해, 만약 필요로 한다면 동시(at same time) 간격(interval) 또는 별도로(separately) 투여.
유효 화합물의 투여량은 환자의 투여 경로, 나이(age) 및 몸무게(weight), 치료할 질병의 종류(nature) 및 심함(severity)과 같은 요인(factors) 및 유사한 요인에 따라 다양할 수 있다. 그러므로, 화학식 (Ⅰ)의 화합물의 약물학적 유효량(pharmacologically effective amount)에 대한 본원의 모든 참고(reference)는 상기에 언급된 요인을 나타낸다. 상기에서 언급한 증상의 치료를 위해 평균 성인 인간에 경구, 비경구적(parenteral), 비강 내(nasal) 또는 구강(buccal) 투여를 위한 이러한 발명의 유효 화합물의 제안된 투여량(proposed dose)은, 예를 들어 하루에 1 내지 4 번 투여될 수 있는 유닛 투여량(unit dose)당 0.1 내지 200 mg 의 유효 성분이다.
본 발명은 5-HT4 수용체와 관련된(related to 5-HT4 receptors) 다양한 질환의 치료/예방에 유용한 화합물 및 이의 약제학적 제형을 제공한다.
제조 방법( Method of Preparation )
화학식 ()의 화합물은 하기에 나타낸 바와 같은 도식 1( scheme 1)에 의해 제조될 수 있다.
[도식 1]
Figure pct00005

이러한 발명의 과정(process)은, 화학식(Ⅰ) 의 화합물을 수득하기 위해 적절한 용매화합물을 사용하여 아민 화합물 및 화학식 (59)의 에스테르 화합물의 반응을 포함하고, 상기 모든 치환기는 상기한 바와 같이 기재되었다.
상기 반응에서 사용된 용매(solvent)는, 에탄올, 테트라히드로푸란(tetrahydrofuran), 디클로로메탄, 디클로로에탄, 톨루엔, 디메틸포름아미드, 디메틸설폭시화물(dimethyl sulfoxide) 등 또는 이의 및 바람직하게 톨루엔 사용에 의한 혼합물로 이루어진 군으로부터 선택된다. 염기는 상기 반응에서 사용되거나 사용되지 않을 수 있다. 만약 염기를 사용한다면, 상기 반응에서 염기는 수산화나트륨(sodium hydroxide), 수산화칼륨(potassium hydroxide), 탄산 나트륨(sodium carbonate), 탄산칼륨(potassium carbonate) 및 암모니아수(aqueous ammonia)로 이루어진 군으로부터 선택된다. 만약 염기를 사용하지 않는다면, 반응의 지속 기간(duration)은 1 내지 5 시간, 바람직하게 2 내지 3 시간일 수 있다. 염기를 사용한다면, 반응의 지속 기간은 15 내지 20 시간, 바람직하게 16 내지 19 시간일 수 있다.
화학식(59)의 화합물은 제조 10(preparation 10)에 기재된 바와 같이 합성되었다. 아민 화합물(amine compounds)을 제조 방법 1 내지 9 에 언급된 바와 같은 실험적인 절차(experimental procedures)로 제조되었다.
본 발명의 상기 제조 방법에 의해 수득된 화합물을, 전이 금속(transition metals) 등을 사용하여 산화(oxidation), 환원(reduction), 보호(protection), 탈보호(deprotection), 자리옮김 반응(rearrangement reaction), 할로겐화(halogenation), 히드록실화(hydroxylation), 알킬화(alkylation), 알킬티오레이션(alkylthiolation), 탈메틸화(demethylation), O-알킬화(O-alkylation), O-아실화(O-acylation), N-알킬화(N-alkylation), N-알케닐화(N-alkenylation), N-아실화(N-acylation), N-시안화(N-cyanation), N-술포닐화(N-sulfonylation), 커플링 반응(coupling reaction)과 같은 공지된 반응을 사용하여 추가적인 화학적인 변형물에 의해 이러한 발명의 또 다른 화합물로 변형시킬 수 있다.
필요하다면, 하기의 단계 중 하나 또는 하나 이상을 수행할 수 있다,
i) 화학식 (Ⅰ)의 화합물을 화학식 (Ⅰ)의 또 다른 화합물로 전환시킴,
ii) 모든 보호기를 제거시킴; 또는
iii) 약제학적으로 허용될 수 있는 염, 용매화합물 또는 이의 전구체를 형성시킴.
과정 (i)은, 에피머화(epimerisation), 산화, 환원, 알킬화, 및 친핵성(nucleophilic) 또는 친전자성 방향족 치환반응(electrophilic aromatic substitution) 및 에스테르 가수분해(ester hydrolysis) 또는 아미드 결합 형성(amide bond formation)과 같은 통상적인 상호변환 과정(conventional interconversion procedures)을 사용하여 수행될 수 있다.
과정 (ii)에서, 보호기의 예 및 이들의 제거를 위한 수단(means)은 T. W. Greene 'Protective Groups in Organic Synthesis' (J. Wiley and Sons, 1991)에서 발견할 수 있다. 적절한 아민 보호기(amine protecting groups)는, 적절히 가수분해[예를 들어, 염산 또는 트리플루오로아세트산과 같은 산을 사용] 또는 환원[예를 들어, 아세트산에서 아연을 사용하여 2',2',2'-트리클로로에톡시카르보닐기의 환원적 제거(reductive removal) 또는 벤질기의 수소화분해]에 의해 제거될 수 있는, 술포닐(sulfonyl)[예를 들어, 토실(tosyl)], 아실(acyl)(예를 들어, 아세틸, 2',2',2'-트리클로로에톡시카르보닐, 벤질옥시카르보닐 또는 t-부톡시카르보닐) 및 아랄킬(예를 들어, 벤질)을 포함한다. 그 밖의 적절한 아민 보호기(amine protecting groups)는, 가수분해를 촉매하는 산(acid catalyzed hydrolysis)에 의해 제거될 수 있는, 메리필드 수지 결합된(Merrifield resin bound) 2,6-디메톡시벤질기(Ellman linker)와 같은 고체상 수지 결합된 벤질기(solid phase resin bound benzyl group) 또는 가수분해를 촉매하는 염기(base catalyzed hydrolysis)에 의해 제거될 수 있는, 트리플루오로아세틸을 포함한다.
과정 (iii)에서, 약제학적으로 허용되는 염은 상기에 상세히 기재된 바와 같이 적절한 산 또는 산 유도체(acid derivative)와 반응하여 통상적으로 제조될 수 있다. 용매화합물은 적절한 용매로 처리하여 제조될 수 있고, 전구체는 알킬화's(alkylation's), 에스테르화(esterifications) 등과 같은 추가적인 화학적 변환(chemical transformations)에 의해 제조될 수 있다.
화학식 (Ⅰ)의 특정 화합물은 입체이성질체 형태[예를 들어, 부분입체 이성질체(diastereomers) 및 거울상 이성질체(enantiomers)]로 존재할 수 있고, 본 발명은 각각의 이러한 입체이성질체 형태 및 라세미체(racemate)를 포함하는 이의 혼합물로 확대된다. 상이한 입체이성질체 형태는 분해능(resolution)과 같은 일반적인 방법에 의해 서로로부터 분리될 수 있고; 부분입체이성질체 분리(distereoisomeric separations) 등 또는 모든 주어진 이성질체는 입체특이성(stereospecific) 또는 비대칭의 합성(asymmetric synthesis)에 의해 수득될 수 있다. 본 발명은 호변이성질체 형태(tautomeric forms) 또는 이의 혼합물로 또한 확대된다.
원칙으로서 입체이성질체는, 그 자체로(per se) 공지된 방식으로 광학적으로 활성 이성질체(optically active isomers) 로 분리될 수 있는 라세미체(racemate)로서 일반적으로 수득된다. 비대칭의 탄소 원자를 갖는 화학식(Ⅰ)의 화합물의 경우에, 본 발명은 D-형, L-형 및 D,L-혼합물에 관한 것이고, 비대칭의 탄소 원자의 수를 포함하는 화학식 (Ⅰ)의 화합물의 경우에, 부분입체 이성질체 형태(diastereomeric forms) 및 본 발명은 각각의 이러한 입체 이성질체 형태 및 라세미체를 포함하는 이의 혼합물로 확대된다. 비대칭 탄소를 갖고 일반적으로 라세미체로서 수득될 수 있는 화학식 (Ⅰ)의 이러한 화합물은 보통의 방법에 의해 하나를 다른 하나와 분리할 수 있거나, 또는 주어진 이성질체는 입체 특이적(stereo specific) 또는 비대칭 합성(asymmetric synthesis)에 의해 수득될 수 있다. 그러나, 최종 화합물로서 수득된, 출발(start)로부터 광학적으로 활성 화합물, 이에 상응하는 광학적인 활성 거울상이성질체 또는 부분입체이성질체 화합물을 사용하는 것 또한 가능하다(However, it is also possible to employ an optically active compound from the start, a correspondingly optically active enantiomeric or diastereomeric compound then being obtained as the final compound).
화학식 (Ⅰ)의 화합물의 입체이성질체는 하기에 나타낸 하나 또는 그 이상의 방법으로 제조될 수 있다:
i) 하나 또는 그 이상의 시약(reagent)은 이들의 광학적으로 활성 형태(their optically active form)에 사용될 수 있다.
ii) 금속 촉매(metal catalyst)와 함께 광학적 순 촉매(Optically pure catalyst) 또는 키랄 리간드(chiral ligands)는 환원 과정에서 사용될 수 있다. 금속 촉매는 로듐(Rhodium), 루테늄(Ruthenium), 인듐(Indium) 등일 수 있다. 키랄 리간드는 바람직하게 키랄 포스핀(chiral phosphines)일 수 있다(Principles of Asymmetric synthesis, J. E. Baldwin Ed., Tetrahedron series, 14, 311-316).
iii) 입체이성질체의 혼합물은 키랄산(chiral acids) 또는 키랄 아민(chiral amines) 또는 키랄 아미노 알콜(chiral amino alcohols), 키랄 아미노산(chiral amino acids)과 함께 부분입체이성질체 염을 형성하는 것과 같은 통상적인 방법에 의해 변형시킬 수 있다(resolved). 부분 입체 이성질체의 결과적으로 생성된 혼합물을, 분별 결정(fractional crystallization), 크로마토그래피 등과 같은 방법에 의해 분리한 다음에, 유도체를 가수분해하여 또는 중화반응(neutralization reaction)에 의해 광학적으로 활성 산물을 분리하는 추가적인 단계를 실시하였다(Jacques et. al., "Enantiomers, Racemates and Resolution", Wiley Interscience, 1981).
iv) 입체이성질체(stereoisomers)의 혼합물을 키랄 산(chiral acids) 또는 키랄 염기(chiral bases)와 함께 형성된 부분입체 이성질체 염(diastereomeric salts)을 변형시키는(resolving), 미생물 리솔루션(microbial resolution)과 같은 통상적인 방법으로 변형시킬 수 있다(resolved).
사용될 수 있은 키랄 산(Chiral acids)은 타타르산(tartaric acid), 만델산(mandelic acid), 젖산(lactic acid), 캄폴술폰산(camphorsulfonic acid), 아미노산 등일 수 있다. 사용될 수 있는 키랄 염기는 신코나알칼로이드(cinchona alkaloids), 브루신(brucine) 또는 리신(lysine), 아르기닌(arginine) 등과 같은 염기성 아미노산(basic amino acid)일 수 있다. 기하 이성질현상(geometric isomerism)을 포함하는 화학식 (Ⅰ)의 화합물의 경우에, 본 발명은 이러한 기하학적 이성질체(geometric isomers)의 모두와 관련되었다.
적절한 약제학적으로 허용되는 염은 본 분야의 숙련자에게 분명할 것이고, 무기산(inorganic acids), 예를 들어 염산(hydrochloric acid), 브롬화수소산(hydrobromic acid), 황산(sulfuric acid), 질산(nitric acid) 또는 인산(phosphoric acid), 및 유기산(organic acids), 예를 들어 숙신산(succinic acid), 말레산(maleic acid), 아세트산(acetic acid), 푸마르산(fumaric acid), 시트르산(citric acid), 말산(malic acid), 타타르산(tartaric acid), 벤조산(benzoic acid), p-톨루엔산(p-toluic acid), p-톨루엔술폰산(p-toluenesulfonic acid), 벤젠설폰산(benzenesulfonic acid), 메탄술폰산(methanesulfonic acid), 나프탈렌술폰산(naphthalenesulfonic acid)과 함께 형성된 산 부가 염(acid addition salts)과 같은 J. Pharm. Sci., 1977, 66, 1-19 에 기재된 이러한 것을 포함한다. 본 발명은, 이의 범위 내에 모든 가능한 화학량론적 및 비-화학량론적 형태(stoichiometric and non-stoichiometric forms)를 포함한다.
이러한 발명의 일부(part)를 형성하기 위한 약제학적으로 허용가능한 염은, 수소화 나트륨(sodium hydride), 메톡사이드나트륨(sodium methoxide), 나트륨에톡시드(sodium ethoxide), 수산화나트륨(sodium hydroxide), 칼륨 t-부톡사이드(potassium t-butoxide), 수산화칼슘(calcium hydroxide), 아세트산칼슘(calcium acetate), 염화칼슘(calcium chloride), 수산화마그네슘(magnesium hydroxide), 염화마그네슘 등과 같은 염기의 1 내지 6 의 당량(equivalent)을 갖는 화학식 (Ⅰ)의 화합물을 처리하여 제조할 수 있다. 물, 아세톤, 에테르(ether), THF, 메탄올, 에탄올, t-부탄올, 디옥산(dioxane), 이소프로판올(isopropanol), 이소프로필 에테르 또는 이의 혼합물과 같은 용매(Solvent)를 사용할 수 있다.
화학식 (Ⅰ)의 화합물은 결정질(crystalline) 또는 비-결정질 형태(non-crystalline form)로 제조할 수 있고, 만약 결정질이라면, 이는 예를 들어 수화물(hydrate)로서 선택적으로 용매화시킬 수 있다(solvated). 이러한 발명은 가변 양(variable amounts)의 용매(예를 들어, 물)를 포함하는 화합물 뿐만 아니라 이의 범위 내의 화학량론적 용매(stoichiometric solvates)[예를 들어, 수화물(hydrates)]를 포함한다.
이러한 발명의 일부를 형성하는 화학식 (Ⅰ)의 화합물의 다양한 다형체(polymorphs)를 상이한 조건 하에서 화학식 (Ⅰ)의 화합물의 결정화(crystallization)에 의해 제조될 수 있다. 예를 들어, 상이한 용매를 일반적으로 사용하거나 또는 재결정(recrystallization)을 위한 이들 혼합물, 상이한 온도에서의 결정화; 결정화 동안에 매우 빠른 냉각(very fast cooling) 내지 매우 느린 냉각(very slow cooling)의 범위의 냉각의 다양한 방식(various modes). 다형체는 가열(heating) 또는 융해(melting) 후에 화합물의 점진적인 또는 빠른 냉각(fast cooling)에 의해 또한 수득될 수 있다. 다형체의 존재는 고체 프로브 핵자기공명분광학(solid probe NMR spectroscopy), IR 분광법(IR spectroscopy), 시차 주사 열량측정법(differential scanning calorimetry), X-선 회절(powder X-ray diffraction) 또는 이러한 그 밖의 기술에 의해 결정될 수 있다.
이러한 발명의 일부를 형성하는 화학식 (Ⅰ)의 화합물의 약제학적으로 허용가능한 용매화합물(Pharmaceutically acceptable solvates)은, 물, 메탄올, 에탄올과 같은 용매, 아세톤-물, 디옥산-물(dioxane-water), N,N-디메틸포름아미드-물(N,N-dimethylformamide-water) 등과 같은 용매의 혼합물, 바람직하게 물에 화학식 (Ⅰ) 의 화합물을 용해시키는 방법 및 상이한 결정화 기술을 사용하여 재결정화시키는 방법과 같은 통상적인 방법으로 제조될 수 있다.
본 출원서의 전구체(Prodrugs)는 공지된 방법을 사용하여 화학식 (Ⅰ)의 화합물로부터 제조될 수 있다. 적절한 전구약물 유도체(prodrug derivatives)의 선별(selection) 및 제조(preparation)를 위한 통상적인 절차(Conventional procedures)는, 각각의 이의 전체가 본원의 참고문헌으로서 포함되는, 예를 들어 Design of prodrugs (1985); Wihnan, Biochem Soc. Trans.1986, 14, 375-82; Stella et al., Prodrugs: A chemical approach to targeted drug delivery in directed drug delivery, 1985 에 기재되었다.
화학식 (Ⅰ)의 화합물의 호변 이성질체(Tautomers)는 공지된 방법을 사용하여 제조될 수 있다. 적절한 호변 이성질체의 제조를 위한 방법은, 예를 들어 Smith MB, March J (2001); Advanced Organic Chemistry (5th ed.) New York: Wiley Interscience. pp. 1218-1223 and Katritzky AR, Elguero J, et al. (1976) The Tautomerism of heterocycles. New York: Academic Press 에 기재되었다.
화학식 (Ⅰ)의 화합물의 N-옥사이드(N-Oxides)는 공지된 방법을 사용하여 제조될 수 있다. 적절한 N-옥사이드의 제조를 위한 방법은, March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure Michael B. Smith, Jerry March Wiley-Interscience, 5th edition, 2001에 기재되었다.
화학식 (Ⅰ)의 화합물의 수화물은 공지된 방법을 사용하여 제조될 수 있다.
기하 이성질현상(geometric isomerism)을 포함하는 화학식 (Ⅰ)의 화합물의 경우에, 본 발명은 이러한 기하 이성질체(geometric isomers)의 모두에 관한 것이다.
[ 실시예 ]
본 발명의 신규한 화합물은 적절한 물질을 사용한, 하기의 방법(procedure)에 따라 제조되었고, 하기의 특정한 실시예에 의해 추가적인 예를 들었다. 본 발명의 가장 바람직한 화합물은 이러한 예에 이러한 명확하게 진술된 어떠한 것 또는 모두이다. 그러나, 이러한 화합물은 본 발명과 같은 것으로 고려되는 종류(genus)만을 형성하는 것으로 해석되지 않고, 화합물 또는 이의 일부분의 어떠한 컴비네이션(combination)은 스스로 종류를 형성할 수 있다. 하기의 실시예는 본 발명의 화합물의 제조를 위한 추가적으로 상세히 기재하였다. 본 분야의 숙련자는, 하기의 예비 절차(preparative procedures)의 조건 및 방법의 알려진 변형(variation)이 이러한 화합물을 제조하기 위해 사용될 수 있음을 쉽게 이해할 수 있을 것이다.
제조 1 : 화학식 (8)의 화합물의 제조( Preparation )
Figure pct00006

단계 (i) : 화학식 (2) 의 화합물의 제조( Preparation )
메탄술폰산(125 grams)에 용해시킨 화학식(Ⅰ)(R4 = H)의 화합물의 교반시킨(stirred) 용액(20.0 grams, 133.1 mmol)에 2 시간 동안 아지드화 나트륨(sodium azide)(9.0 grams, 39.8 mmol)의 일부를 점적하여(portion wise) 첨가하였다. 온도를 첨가하는 동안에 20 내지 25 ℃로 유지시켰다. 첨가한 후에, 2 시간 중단된 질소 발전(Nitrogen evolution ceased 2 hour)이 완료되었다. 실온에서 추가적인 시간을 교반시킨 후에, 반응 용액을 100 mL 의 물로 희석시켰다. 50 % 수산화칼륨(potassium hydroxide) 용액의 초과량(excess)을 외부의 냉각(external cooling) 없이 조심스럽게 일부를 점적하여 첨가하였다. 발열성 반응(exothermic reaction)은, 에테르로 한번 추출한 용액을 생산하였다. 수성 층(aqueous layer)을 농축된 염산(concentrated hydrochloric acid)으로 산성화시켰다. 침전된 유기산을 여과로 수집하였고, 50 mL 일부의 증류수(distilled water)로 5 번 세척한 다음에, 오산화인(phosphorus pentoxide) 상에서 진공 건조기(vacuum desiccator)에서 건조시켜 화학식 (2)(R4 = H)의 화합물 (17.9 grams)을 수득하였다. 수득률(Yield) : 81 %.
녹는점(Melting Point): 196-198 ℃;
1H-NMR (CDCl3): δ 12.2-11.2 (bs, 1H), 5.80-5.50 (m, 2H), 2.62-2.54 (m, 1H), 2.45-1.80 (m, 7H), 1.80-1.65 (m, 2H), 1.60-1.52 (m, 1H).
IR (cm-1): 3266, 3022, 2924, 2896, 2632, 1682, 1436, 1411, 1331, 1304, 1268, 1244, 1103, 1008, 965, 935, 872, 714, 616.
Mass (m/z): 167 [M+H+].
단계 ( ii ): 화학식(3)의 화합물의 제조
디클로로에탄(50 mL)에 용해시킨 화학식(2)(R4 = H)의 교반시킨 용액 화합물(5 grams, 30.0 mmol)에 트리에틸아민(triethylamine)(8.3 mL, 60.0 mmol) 을 첨가한 다음에, 디페닐포스포릴 아지드(diphenylphosphoryl azide)(7.1 mL, 33 mmol)를 첨가하였다. 반응 혼합물을 실온에서 30 분 동안 교반시킨 다음에 2 시간 동안 환류시켰다(refluxed). 벤질알코올(5.2 mL, 49.9 mmol)을 첨가하고 또 다른 5 시간 동안 환류시켰다. 반응 혼합물을 클로로포름(chloroform) 및 수성의 탄산수소나트륨 용액(aqueous sodium bicarbonate solution)으로 희석하였다. 두 개의 층을 분리하였고, 유기층을 물, 브라인(brine)으로 세척하고, 무수 황산나트륨(anhydrous sodium sulphate) 상에서 건조시키고, 용매(solvent)를 환산 압력(reduced pressure) 하에서 제거하여 정제되지 않은 산물(crude product)을 수득하였고, 이를 화학식 (3)(R4 = H)의 화합물(3.24 grams)을 제공하는 플레쉬 실리카 겔 컬럼(flash silica gel column)으로 정제하였다. 수득률 : 40 %.
1H-NMR (CDCl3): δ 7.42-7.27 (m, 5H), 6.12-6.05 (m, 1H), 5.95 (bd, 1H), 5.88-5.75 (m, 1H), 5.06 (dd, J = 19.6, 12.3 Hz, 2H), 4.15-4.0 (m, 1H), 2.50-2.30 (m, 2H), 2.25-2.15 (m, 1H), 2.10-1.90 (m, 2H), 1.90-1.67 (m, 4H), 1.62-1.50 (m, 1H).
IR (cm-1): 3431, 3364, 3018, 2928, 2145, 1708, 1578, 1507, 1487, 1386, 1216, 1062, 861, 758, 668.
Mass (m/z): 272 [M+H+].
단계( iii ) : 화학식(4)의 화합물의 제조
0 ℃로 냉각시킨 사염화탄소(47 mL)에 용해시킨 화학식 (3)(R4 = H)의 화합물(3.2 grams, 11.8 mmol)의 교반시킨 용액에, 오렌지색(orange color)이 지속될 때까지, 사염화탄소(5% w/v)에 용해시킨 브롬(bromine)의 용액을 첨가하였다. 환산 압력 하에서 휘발성(volatiles)을 제거하여 정제되지 않은 반응 혼합물(crude reaction mixture)을 수득하여, 이를 실리카 겔 플래쉬 크로마토그래피(silica gel flash chromatography)로 정제하여 화학식 (4)(R4 = H)의 화합물(3.4 grams) 및 화학식 (5)(R4 = H)의 화합물(1.32 grams)을 수득하였다.
1H-NMR (CDCl3): δ 7.42-7.27 (m, 5H), 6.12-6.05 (m, 1H), 5.95 (bd, 1H), 5.88-5.75 (m, 1H), 5.06 (dd, J = 19.6, 12.3 Hz, 2H), 4.15-4.0 (m, 1H), 2.50-2.30 (m, 2H), 2.25-2.15 (m, 1H), 2.10-1.90 (m, 2H), 1.90-1.67 (m, 4H), 1.62-1.50 (m, 1H).
IR: 2930, 2857, 2145, 1697, 1585, 1414, 1299, 1101, 1082, 956, 750, 696.
Mass (m/z): 350, 352 [M+H+].
단계( iv ) : 화학식 (5)의 화합물의 제조
0 ℃로 냉각시킨 이소프로판올(10 mL)에 용해시킨 화학식 (4) (R4 = H)의 화합물(6.5 grams, 18.5 mmol)의 교반시킨 용액에, 이소프로판올(74 mL)에 용해시킨 건조 염산염(hydrochloride)의 용액을 첨가하였다. 반응 혼합물을 16 시간 동안 실온에서 교반시켰다. 휘발성을 환산 압력 하에서 제거하고 정제되지 않은 덩어리(crude mass)를 수득하고, 이를 에테르와 함께 가루로 빻아서(triturated) 화학식 (5)(R4 = H)의 화합물(2.4 grams)을 수득하였다. 수득률 : 60 %.
1H-NMR (CDCl3): δ 9.80-9.40 (bd, 2H), 4.90 (bs, 1H), 3.84 (bs, 1H), 3.81 (bs, 1H), 2.65-2.50 (m, 2H), 2.50-2.20 (m, 4H), 2.20-2.05 (m, 2H), 1.95-1.85 (m, 1H), 1.80-1.70 (m, 1H).
IR: 3420, 2938, 2822, 2473, 2051, 1582, 1464, 1428, 1385, 1360, 1333, 1200, 1109, 1000, 749.
Mass (m/z): 216, 218 [M+H+].
단계 (v) : 화학식 (6)의 화합물의 제조
0 ℃로 냉각시킨 건조 테트레히드로푸란(tetrehydrofuran)(42 mL)에 용해시킨 화학식 (5) (R4 = H)의 화합물(4.55 grams, 21 mmol)의 교반시킨 용액에 수소화알루미늄 리튬(lithiumaluminium hydride)[테트라히드로푸란에 용해시킨 1M(in tetrahydrofuran), 31.5 mL, 31.5 mmol]의 용액을 첨가하였다. 반응 혼합물을, 차례로(in sequence) 물(1.2 mL), 수성 수산화나트륨(aqueous sodium hydroxide)(15%, 1.23 mL) 및 물(3.5 mL)을 첨가하여 퀀칭시키기(quenched) 전에 2 시간 동안 실온에서 교반시켰다. 반응 혼합물을 셀라이트(celite)의 작은 패드(small pad)를 통해 여과시키고, 여과물을 무수 황산나트륨(sodium sulphate) 상에서 건조시키고, 용매를 환산 압력 하에서 제거하여 화학식 (6)(R4 = H)의 화합물(2.125 grams)을 수득하였다. 수득률: 74 %.
1H-NMR (CDCl3): δ 3.19 (bs, 1H), 2.52 (bs, 1H), 2.10-1.95 (m, 6H), 1.90-1.85 (m, 2H), 1.82-1.75 (m, 4H).
Mass (m/z): 138 [M+H+].
단계 ( vi ) : 화학식 (7)의 화합물의 제조
0 ℃로 냉각시킨 메탄올(31 mL)에 용해시킨 화학식(6)(R4 = H)의 화합물(2.1 grams, 15.4 mmol)의 교반시킨 용액에 아크릴로니트릴(acrylonitrile)(1 mL, 15.4 mmol)을 첨가하였다. 반응 혼합물을 실온으로 서서히 항온시키고, 16 시간 동안 교반시켰다. 반응의 완료되었을 때, 휘발성을 환산 압력 하에서 제거하고 정제되지 않은 산물(crude product)을 실리카 겔 플래쉬 크로마토그래피로 여과하여 화학식 (7)(R4 = H)의 화합물(2.12 grams)을 수득하였다. 수득률 : 73 %.
1H-NMR (CDCl3): δ 2.94 (t, J = 7.0 Hz, 2H), 2.84 (bs, 2H), 2.44 (t, J = 6.9 Hz, 2H), 2.08-1.95 (m, 6H), 1.81 (bs, 2H), 1.70-1.52 (m, 4H).
Mass (m/z): 191 [M+H+].
단계 ( vii ) : 화학식 (8)의 화합물의 제조
메탄올성 암모니아(methnolic ammonia)(7M, 44 mL)에 용해시킨 화학식 (7)(R4 = H)의 화합물(2.1 grams, 11.04 mmol)의 교반시킨 용액에 레이니-니켈(Raney-Nickel)(40 wt%, 0.84 grams)을 첨가하였다. 반응 혼합물을 16 시간 동안 수소 대기(hydrogen atmosphere) 하에서 교반시켰다. 반응 혼합물을 셀라이트(celite)를 통해 여과시키고, 여과물을 무수 황산 나트륨(anhydrous sodium sulphate) 상에서 건조시켰고, 용매를 환산 압력 하에서 제거하여 화학식 (8)(R4 = H)의 화합물(2.14 grams)을 수득하였다. 수득률 : 100 %.
1H-NMR (CDCl3): δ 3.0-2.70 (m, 6H), 2.15-1.95 (m, 6H), 1.90-1.60 (m, 4H), 1.60-1.50 (m, 4H).
Mass (m/z): 195 [M+H+].
제조 2: 화학식 (10)의 화합물의 제조
Figure pct00007

단계 (i) : 화학식 (9)의 화합물의 제조
아세토니트릴(acetonitrile)(43 mL)에 용해시킨 화학식 (6)(R4 = H)의 교반시킨 혼합 화합물(0.9 grams, 6.5 mmol), 탄산칼륨(potassium carbonate)(1.2 grams, 9.18 mmol) 및 테트라부틸암모늄 요오드화물(tetrabutylammonium iodide)(242 mg, 0.65 mmol)에 클로로아세토니트릴(chloroacetonitrile)(0.48 mL, 7.78 mmol)을 첨가하였다. 반응 혼합물을 5 시간 동안 환류시켰다(refluxed). 휘발성을 제거하였다; 잔여물(residue)을 물로 희석시켰고, 아세트산에틸로 추출하였다. 결합된 유기층을 브라인(brine)으로 세척하였고, 무수 황산 나트륨 상에서 건조시키고, 용매를 환산 압력 하에서 제거하였다. 정제되지 않은 산물을 실리카 겔 플래쉬 크로마토그래피로 여과하여 화학식 (9)의 화합물(0.92 grams)을 수득하였다. 수득률 : 80 %.
1H-NMR (CDCl3): δ 3.65 (s, 2H), 3.0 (bs, 2H), 2.10-2.0 (m, 6H), 1.82 (bs, 2H), 1.65-1.57 (m, 4H);
Mass (m/z): 177 [M+H+].
단계 ( ii ) : 화학식 (10)의 화합물의 제조
0 ℃로 냉각시킨 건조 테트라히드로푸란(10 mL)에 용해시킨 화학식 (9)(R4 = H)의 화합물(919 mg, 5.2 mmol)의 교반시킨 용액에, 수소화 알루미늄리튬(lithiumaluminium hydride)(테트라히드로푸란에 용해시킨 1 M, 7.8 mL)을 첨가하였다. 반응물을 실온으로 서서히 항온시키고(warmed), 30 분 동안 교반시켰다. 반응을 얼음 조각(ice pieces)을 첨가하여 퀀칭시키고(quenched), 셀라이트(celite)의 작은 페드(small pad)를 통해 여과시켰다. 여과물을 건조시키기 위해 증발시키고, 실리카 겔 플래쉬 컬럼 크로마토그래피(silica gel flash column chromatography)로 정제하여 화학식 (10)(R4 = H)의 화합물(0.61 grams)을 수득하였다. 수득률: 64 %.
1H-NMR (CDCl3): δ 2.81 (bs, 2H), 2.78-2.65 (m, 4H), 2.12-1.92 (m, 6H), 1.81 (bs, 2H), 1.65-1.50 (m, 4H).
Mass (m/z): 181 [M+H+].
제조 3: 화학식 (23)의 화합물의 제조
Figure pct00008

단계 (i) : 화학식 (11)의 화합물의 제조
아다만타놀(Adamantanone)(50 grams, 333 mmol)을 15 분의 기간 동안에 얼음 수조 온도(ice bath temperature)에서 질산(nitric acid)(98%, 440 mL)에 교반시키면서 첨가하였다. 반응 혼합물을 72 시간 동안 실온에서 교반시키고 난 다음에, 이산화질소(nitrogen dioxide)의 대부분이 증발될 때까지, 2 시간 동안 60 ℃ 로 가열하였다. 초과량의 질산을 환산 압력 하에서 증류하였다(distilled off). 엷은 황색 오일을 냉각시키면서 굳어지게 하였다(solidified). 반응 혼합물을 물(200 mL) 및 농축 황산(concentrated sulphuric acid)(75 mL)으로 희석시켰다. 결과적으로 생성된 맑은 황색 용액(resultant clear yellow solution)을 1 시간 동안 후드(hood)에서 증기 수조(steam bath)에서 가열하였다. 반응 혼합물을 30 % 수성의 수산화나트륨 용액(aqueous sodiumhydroxide solution)으로 중화시키고(neutralized), 항온시키면서(while warm) 클로로포름으로 추출하였다. 추출물을 결합시키고, 브라인 용액(brine solution)으로 세척하고 진공에서(in vacuum) 농축시켰다. 정제되지 않은 산물을 디클로로메탄(15 mL)에 용해시키고, 보다 많은 침전물(precipitate)이 형성되지 않을 때까지 헥산을 첨가하였다. 고체 물질(solid material)을 여과하여 분리하고, 진공 하에서 건조시켜, 화학식 (11)의 화합물(40.9 grams)을 수득하였다. 수득률 : 74 %.
용융 온도 범위(Melting Range): 278.8-300 ℃;
1H-NMR (CDCl3): δ 2.69 (bs, 2H), 2.36-2.32 (m, 2H), 2.12-2.02 (m, 2H), 2.02-1.88 (m, 6H), 1.80-1.68 (m, 1H).
IR: 3410, 2929, 2855, 2645, 1725, 1539, 1452, 1351, 1288, 1116, 1055, 927, 900, 797;
Mass (m/z): 167 [M+H+].
단계 ( ii ): 화학식 (12)의 화합물의 제조
벤젠(365 mL)에 용해시킨 화학식 (11)의 화합물(20.0 grams, 120.3 mmol)의 교반시킨 용액에 실온에서 40 분의 기간 동안에 트리플루오로메탄술폰산(trifluoromethanesulfonic acid)(10.7 mL, 60.2 mmol)을 첨가하였다. 실온에서 5 분 동안 반응 혼합물을 교반시킨 후에, 이를 4 시간 동안 환류시켰다. 반응 혼합물을 0 ℃로 냉각시키고, 포화 수성 중탄산나트륨(saturated aqueous sodium bicarbonate)(150 mL)을 30 분의 기간 동안에 첨가하였다. 두 개의 층을 분리하였고, 수성의 층을 에테르로 추출하고, 결합된 유기층을 물, 브라인으로 세척하고, 수성 황산나트륨 상에서 건조시키고, 용매를 환산 압력 하에서 증발시켜, 백색의 고형물(white solid)(21.2 grams)로서 화학식 (12)의 화합물을 수득하였다. 수득률 : 78 %.
용융 온도 범위(Melting Range): 53.8-60.9 ℃;
1H-NMR (CDCl3): δ 7.37-7.22 (m, 4H), 7.17-7.10 (m, 1H), 2.67 (bs, 2H), 2.37-2.25 (m, 2H), 2.25-2.15 (m, 4H), 2.15-2.0 (m, 5H).
IR (cm-1): 2912, 2850, 1716, 1597, 1495, 1444, 1294, 1059, 960, 758, 701.
Mass (m/z): 227 [M+H+].
단계 ( iii ) : 화학식 (13)의 화합물의 제조
화학식 (13)의 화합물을, 화학식 (12)의 화합물을 사용하여 제조 1의 단계 (i)의 제조에서 언급한 바와 같은 하기의 동일한 절차(procedure)로 제조하였다.
1H-NMR (CDCl3): δ 7.50-7.30 (m, 4H), 7.27-7.15 (m, 1H), 5.80-5.70 (m, 1H), 5.70-5.60 (m, 1H), 2.90-2.56 (m, 4H), 2.55-2.10 (m, 3H), 2.10-2.0 (m, 1H), 2.0-1.67 (m, 2H).
IR (cm-1): 3500, 3302, 2917, 1689, 1493, 1355, 1248, 947, 758, 699.
Mass (m/z): 243 [M+H+].
단계 ( iv ) : 화학식 (14)의 화합물의 제조
화학식 (14)의 화합물을, 화학식 (13)의 화합물을 사용하여 제조 1의 단계 (ii)의 제조에서 언급한 바와 같은 하기의 동일한 절차로 제조하였다.
1H-NMR (CDCl3): δ 7.45-7.25 (m, 8H), 7.25-7.17 (m, 2H), 6.18-5.70 (m, 2H), 5.20-5.12 (m, 2H), 5.10 (dd, J = 24.1, 12.3 Hz, 1H), 4.20-4.10 (m, 1H), 3.20-3.0 (m, 2H), 2.90-2.81 (m, 1H), 2.27-2.10 (m, 1H), 2.10-2.0 (m, 1H), 1.97-1.70 (m, 4H).
IR (cm-1): 3440, 3019, 1709, 1619, 1486, 1386, 1216, 1072, 957, 757.
Mass (m/z): 348 [M+H+].
단계 (v) : 화학식 (15)의 화합물의 제조
화학식 (15)의 화합물을, 화학식 (14)의 화합물을 사용하여 제조 1의 단계 (iii)의 제조에서 언급한 바와 같은 하기의 동일한 절차로 제조하였다.
1H-NMR (CDCl3): δ 7.45-7.30 (m, 8H), 7.30-7.18 (m, 2H), 5.23-5.13 (m, 2H), 4.70-4.36 (m, 3H), 2.70-2.44 (m, 3H), 2.15-1.70 (m, 6H).
IR (cm-1): 3019, 2927, 1626, 1592, 1485, 1382, 1215, 1084, 956, 860, 757.
Mass (m/z): 426, 428 [M+H+].
단계 ( vi ) : 화학식 (16)의 화합물의 제조
히드로클로라이드 염(hydrochloride salt)으로서 화학식 (16)의 화합물을, 화학식 (15)의 화합물을 사용하여 제조 1의 단계 (iv)에서 언급한 바와 같은 하기의 동일한 절차로 제조하였다.
1H-NMR (CDCl3): δ 9.81 (bs, 1H), 9.76 (bs, 1H), 7.44-7.30 (m, 4H), 7.30-7.25 (m, 1H), 4.96 (bs, 1H), 4.10-3.95 (m, 2H), 2.80-2.30 (m, 6H), 2.20-2.02 (m, 2H), 1.96-1.85 (m, 1H).
IR (cm-1): 3438, 2922, 2787, 2470, 1582, 1494, 1431, 1381, 1348, 1109, 1004, 754, 701.
Mass (m/z): 292, 294 [M+H+].
단계 ( vii ) : 화학식 (17)의 화합물의 제조
화학식 (17)의 화합물을, 화학식 (16)의 화합물을 사용하여 제조 1의 단계 (v)에서 언급한 바와 같은 하기의 동일한 절차로 제조하였다.
1H-NMR (CDCl3): δ 7.40-7.30 (m, 4H), 7.25-7.20 (m, 1H), 3.80-3.70 (m, 3H), 2.48-2.25 (m, 5H), 2.10-1.95 (m, 4H), 1.90-1.80 (m, 2H).
IR (cm-1): 3422, 3153, 2915, 2846, 1599, 1492, 1443, 1105, 1022, 756, 698.
Mass (m/z): 214 [M+H+].
단계 ( viii ) : 화학식 (18)의 화합물의 제조
0 ℃ 로 냉각시킨 디클로로메탄(20 mL)에 용해시킨 화학식 (17)의 화합물(1.3 grams, 6.1 mmol)의 교반시킨 용액에, 트리에틸아민(1.1 mL, 7.9 mmol) 및 Boc 무수물(Boc anhydride)(1.46 grams, 6.7 mmol)을 첨가하였다. 반응 혼합물을 실온으로 서서히 항온시키고, 16 시간 동안 교반시켰다. 휘발성을 환산 압력 하에서 제거하고, 정제되지 않은 덩어리(crude mass)를 실리카 겔 플래쉬 컬럼 크로마토그래피로 정제하여 화학식 (18)의 화합물(1.3 grams)을 수득하였다. 수득률 : 68 %.
1H-NMR (CDCl3): δ 7.40-7.30 (m, 4H), 7.24-7.18 (m, 1H), 4.55-4.48 (m, 1H), 4.42-4.35 (m, 1H), 2.30-2.24 (m, 1H), 2.05-1.83 (m, 7H), 1.78-1.64 (m, 3H), 1.48 (s, 9H).
IR (cm-1): 2984, 2926, 2855, 1687, 1447, 1403, 1361, 1167, 1100, 1077, 753, 702.
Mass (m/z): 314 [M+H+].
단계 ( ix ) : 화학식 (19)의 화합물의 제조
0 ℃로 냉각시킨 화학식 (18)의 화합물(2.0 grams, 6.3 mmol), 사염화탄소(16 mL), 아세토니트릴(16 mL) 및 물(25 mL)의 교반시킨 혼합물에 과요오드산 나트륨(sodiumperiodate)(5.98 grams, 28 mmol) 및 루테늄 (Ⅲ) 염화 수화물[ruthenium (III) chloride hydrate](0.08 grams, 0.4 mmol)을 첨가하였다. 반응 혼합물을 실온으로 서서히 항온시키고, 3 시간 동안 교반시킨 후에, 흑색의 RuO2 를 침전시키기 위해 이소프로필에테르(100 mL)로 희석시키고, 15 분 동안 교반시켰다. 반응 혼합물을 셀라이트의 패드를 통해 여과시킨 다음에, 층(layers)을 분리하였다. 유기 층을 1 N 수산화나트륨 용액(sodium hydroxide solution)으로 세척하였다. 유기 층을 황산 나트륨 상에서 건조시키고, 용매를 환산 압력 하에서 증발시켜 반응하지 않는 출발 물질(unreacted starting material)(1.4 grams)을 수득하였다. 결합된 수성의 층(combined aqueous layer)을 농축 염산으로 산성화시키고, 에틸아세테이트로 추출하였다. 결합된 수성의 층을 브라인으로 세척하고, 황산 나트륨 상에서 건조시키고, 용매를 환산 압력 하에서 제거하여 화학식 (19)의 화합물(0.6 grams)을 수득하였다. 수득률 : 33 %.
1H-NMR (CDCl3): δ 4.45-4.40 (m, 1H), 4.35-4.28 (m, 1H), 2.22-2.18 (m, 1H), 2.08-1.76 (m, 7H), 1.78-1.60 (m, 3H), 1.46 (s, 9H).
IR (cm-1): 3472, 3367, 3018, 2932, 1702, 1678, 1418, 1365, 1216, 1170, 1116, 1103, 758, 668.
Mass (m/z): 280 [M-H+].
단계 (x) : 화학식 (20)의 화합물의 제조
화학식 (20)의 화합물을, 화학식 (19)의 화합물을 사용하기 위해 제조 1의 단계 (ii)에서 언급된 바와 같은 하기의 동일한 절차로 제조하였다.
1H-NMR (CDCl3): δ 7.42-7.30 (m, 4H), 7.30-7.20 (m, 1H), 5.04 (s, 2H), 4.70 (bs, 1H), 4.50-4.42 (m, 1H), 4.38-4.32 (m, 1H), 2.30-2.20 (m, 1H), 2.18-1.87 (m, 5H), 1.85-1.52 (m, 5H), 1.46 (s, 9H).
IR (cm-1): 3406, 3019, 2931, 1592, 1579, 1485, 1389, 1215, 1049, 955, 861, 757, 669.
Mass (m/z): 387 [M+H+].
단계 ( xi ) : 화학식 (21)의 화합물의 제조
0 ℃로 냉각시킨 디클로로메탄(10 mL)에 용해시킨 화학식 (20)의 화합물(0.497 grams, 1.28 mmol)의 교반시킨 용액에 트리플루오로아세트산(1.28 mL)을 첨가하였다. 반응 혼합물을 실온으로 서서히 항온시키고, 2 시간 동안 교반시켰다. 휘발성을 환산 압력 하에서 제거하고, 잔여물(residue)을 10 % 수성의 중탄산나트륨으로 희석시키고, 디클로로메탄으로 추출하여 화학식 (21)의 화합물(0.35 grams)을 수득하였다. 수득률 : 97 %.
1H-NMR (CDCl3): δ 7.42-7.20 (m, 5H), 5.10-5.0 (s, 2H), 4.75 (bs, 1H), 3.80-3.68 (m, 2H), 2.35-2.30 (m, 1H), 2.30-2.10 (m, 8H), 1.80-1.70 (m, 2H).
IR (cm-1): 3431, 3019, 2956, 2868, 1664, 1629, 1593, 1485, 1388, 1288, 1216, 1056, 757, 668.
Mass (m/z): 287 [M+H+].
단계 ( xii ) : 화학식 (22)의 화합물의 제조
화학식 (21)의 화합물(170 mg, 0.59 mmol)에 포름산(formic acid)(2 mL) 및 프롬알데히드(formaldehyde)(4 mL)를 첨가하였고, 반응 혼합물을 4 시간 동안 80 ℃ 에서 교반시켰다. 반응물을 물 및 포화 탄산칼륨(saturated potassium carbonate)으로 퀀칭시키고(quenched), 혼합물을 디클로로메탄으로 추출하였다(extract). 추출물을 황산나트륨 상에서 건조시키고, 부피로 감소시키고, 잔류물(residue)을 실리카 겔에서 플래쉬 크로마토그래피로 정제하여 화학식 (22)(R5 = 메틸)의 화합물(200 mg)을 수득하였다. 수득률 : 양적(Quantitative).
1H-NMR (CDCl3): δ 7.40-7.20 (m, 5H), 5.05 (s, 2H), 4.65 (bs, 1H), 3.08-2.97 (m, 2H), 2.53 (s, 3H), 2.32-2.20 (m, 2H), 2.20-2.14 (m, 1H), 2.06-1.95 (m, 3H), 1.70-1.50 (m, 5H).
IR (cm-1): 3432, 3019, 2929, 2857, 1719, 1592, 1487, 1379, 1284, 1216, 1049, 757, 668.
Mass (m/z): 301 [M+H+].
단계 ( xiii ) : 화학식 (23)의 화합물의 제조
질소 대기(nitrogen atmosphere) 하에서 메탄올(1.6 mL)에 용해시킨 화학식 (22)(R5 = 메틸)의 화합물의 교반시킨 용액에 Pd/C(10%, 0.20 grams)을 첨가하였다. 수소로 충전된 이중충 풍선(double-layered balloon)을 사용하였다. 실온에서 16 시간 동안 교반시킨 후에, 반응 혼합물을 셀라이트의 작은 패드를 통해 여과시키고, 여과물을 환산 압력 하에서 증발시켜 화학식 (23)(R5 = 메틸)의 화합물(0.2 grams)을 수득하였다. 수득률 : 90 %.
1H-NMR (CDCl3): d 3.10-3.0 (m, 2H), 2.52 (s, 3H), 2.20-2.10 (m, 1H), 2.10-1.84 (m, 5H), 1.70-1.60 (m, 2H), 1.50-1.35 (m, 3H).
IR (cm-1): 3413, 3019, 2928, 2854, 1627, 1581, 1486, 1383, 1216, 1084, 954, 757, 668.
Mass (m/z): 167 [M+H+].
제조 4 : 화학식 (27)의 화합물의 제조
Figure pct00009

단계(i) : 화학식 (24)의 화합물의 제조
0 ℃로 냉각시킨 디클로로메탄(47 mL)에 용해시킨 화학식 (17)의 화합물(2.5 grams, 11.73 mmol)의 교반시킨 용액에 트리에틸아민(2.45 mL, 17.6 mmol), 4-디메틸아미노피리딘(122 mg. 1.0 mmol) 및 아세트산무수물(acetic anhydride)(1.56 mL, 15.2 mmol)을 첨가하였다. 반응 혼합물을 실온으로 서서히 항온시키고, 2 시간 동안 교반시켰다. 휘발성을 환산 압력 하에서 제거하고, 정제되지 않은 생산물을 물로 용해시키고 아세트산에틸(ethylacetate)로 추출하였다. 결합 유기층(combined organic layer)을 무수 황산나트륨 상에서 건조시키고, 용매를 제거하여 화학식 (24)의 화합물(3.0 grams)을 수득하였다. 수득률 : 100 %.
1H-NMR (CDCl3): δ 7.40-7.30 (m, 4H), 7.25-7.15 (m, 1H), 5.10-4.95 (m, 1H), 4.25-4.18 (m, 1H), 2.35-2.25 (m, 1H), 2.12 (s, 3H), 2.05-1.55 (m, 10H).
Mass (m/z): 256 [M+H+].
단계 ( ii ) : 화학식 (25)의 화합물의 제조
화학식 (25)의 화합물을, 화학식 (24)의 화합물을 사용하여 제조 3의 단계 (ix)에서 언급한 바와 같은 하기의 동일한 절차로 제조하였다.
1H-NMR (DMSO-d6): δ 4.70-4.63 (m, 1H), 4.10-4.02 (m, 1H), 2.15-2.05 (m, 1H), 1.94 (s, 3H), 1.90-1.75 (m, 5H), 1.75-1.55 (m, 5H).
Mass (m/z): 224 [M+H+].
단계 ( iii ) : 화학식 (26)의 화합물의 제조
실온에서 아세토니트릴(7 mL)에 용해시킨 화학식 (25)의 화합물(400 mg, 1.79 mmol)의 교반시킨 용액에 피리딘(0.16 mL, 1.97 mmol), Boc 무수물(Boc anhydride)(470 mg, 2.15 mmol)을 첨가하였다. 1 시간 후에, 고체의 탄화수소암모늄(solid ammonium bicarbonate)(230 mg, 2.9 mmol)을 첨가하였고, 반응 혼합물을 12 시간 동안 교반시켰다. 휘발성을 진공 하에서 제거하고, 정제되지 않은 생성물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화학식 (26)의 화합물(250 mg)을 수득하였다. 수득률 : 63 %.
1H-NMR (DMSO-d6): δ 7.03 (bs, 1H), 6.79 (bs, 1H), 4.72-4.67 (m, 1H), 4.12-4.06 (m, 1H), 2.15-2.08 (m, 1H), 1.94 (s, 3H), 1.90-1.55 (m, 10H).
Mass (m/z): 223 [M+H+].
단계 ( iv ) : 화학식 (27)의 화합물의 제조
0 ℃로 냉각시킨 테트라히드로푸란에 용해시킨 건조 화학식 (26)의 화합물(240 mg, 1.08 mmol)의 교반시킨 용액에, 테트라히드로푸란(3.5 mL, 3.5 mmol)에 용해시킨 1 M 용액의 수소화알루미늄리튬(lithium aluminum hydride)을 첨가하였다. 반응 혼합물을 실온으로 서서히 항온시킨 다음에 6 시간 동안 환류시켰다(refluxed). 반응 혼합물을 0 ℃ 로 냉각시키고, 얼음 조각(ice pieces)을 조심스럽게 첨가하고, 셀라이트의 작은 패드를 통해 여과시키기 전에 30 분 동안 교반시켰다. 여과물을 증발시키고, 정제되지 않은 생산물을 실리카 겔 플래쉬 컬럼 크로마토그래피로 여과하여 화학식 (27)(R5 = 메틸)의 화합물(160 mg)을 수득하였다. 수득률 : 76 %.
1H-NMR (CDCl3): δ 3.10-3.0 (m, 2H), 2.80-2.70 (q, 2H), 2.36 (s, 2H), 2.20-1.20 (m, 9H), 1.11 (t, 3H), 0.90-0.75 (m, 2H).
Mass (m/z): 195 [M+H+].
제조 5 : 화학식 (32)의 화합물의 제조
Figure pct00010

단계 (i) : 화학식 (29)의 화합물의 제조
메탄술폰산(12.5 grams)에 용해시킨 화학식 (28)의 화합물(2.0 grams, 13.2 mmol)의 교반시킨 용액에, 2 시간 동안 아지드화화나트륨(sodium azide)(0.9 grams, 3.98 mmol)의 일부를 점적하여(portion wise) 첨가하였다. 첨가하는 동안에 온도를 20 내지 25 ℃ 로 유지하였다. 첨가가 완료된 후에, 질소 발전(Nitrogen evolution)이 2 시간 동안 중단되었다(ceased). 실온에서 추가적인 시간 동안 교반시킨 후에, 반응 용액을 100 mL 의 물로 희석시켰다. 초과량의 50 % 수산화칼륨 용액을 외부의 냉각(external cooling) 없이 조심스럽게 이의 일부를 점적하여 첨가하였다. 발열 반응(exothermic reaction)은, 아세트산에틸로 추출된 용액을 생산하였다(yielded). 결합 유기층을 브라인으로 세척하고, 무수 황산 나트륨 상에서 건조시키고, 용매를 환산 압력 하에서 제거하여, 정제되지 않은 산물을 수득하였고, 이를 실리카 겔 플래쉬 컬럼 크로마토그래피로 정제하여 화학식 (29)의 화합물(1.56 grams)을 수득하였다. 수득률 : 71 %.
1H-NMR (CD3OD): δ 3.30-3.15 (m, 7H), 2.48-2.40 (m, 1H), 2.25-2.10 (m, 2H), 2.10-2.02 (m, 1H), 2.0-1.92 (m, 1H), 1.88-1.82 (m, 1H).
Mass (m/z): 167 [M+H+].
단계 ( ii ) : 화학식 (30)의 화합물의 제조
건조 테트라히드로푸란(36 mL)에 용해시킨 화학식 (29)의 화합물(1.5 grams, 9.0 mmol)의 교반시킨 용액에, 테트라히드로푸란에 용해시킨 보란(borane)을 첨가하였다(1M, 18 mL). 반응 혼합물을 16 시간 동안 환류시켰다. 반응 혼합물을 0 ℃로 냉각시키고, 1 N 염산 용액을 첨가하여 퀀칭시켰다. 층(Layer)을 분리시키고, 수성의 층을 아세트산에틸로 세척한 다음에 50 % 수산화나트륨 용액으로 염기성화시키고(basified), 1 : 9 메탄올 : 클로로포름 시스템(1:9 methanol: chloroform system)으로 추출하였다. 결합된 유기 층을 무수 황산 나트륨 상에서 건조시키고, 정제되지 않은 산물을 실리카 겔 플래쉬 크로마토그래피로 정제하여 화학식 (30)의 화합물(1.16 grams)을 수득하였다. 수득률 : 85 %.
1H-NMR (CDCl3): δ 3.30-3.03 (m, 5H), 2.90-2.75 (m, 4H), 2.18-2.08 (m, 2H), 2.05-1.88 (m, 2H), 1.68-1.58 (m, 2H).
Mass (m/z): 153 [M+H+].
단계 ( iii ) : 화학식 (31)의 화합물의 제조
화학식 (31)의 화합물을, 화학식 (30)의 화합물을 사용하여 제조 1의 단계 (vi)에 언급한 바와 같은 하기의 동일한 절차로 제조하였다.
1H-NMR (CDCl3): δ 3.32-2.80 (m, 11H), 2.47 (t, J = 6.8 Hz, 2H), 2.18-2.10 (m, 1H), 2.0-1.95 (m, 1H), 1.95-1.83 (m, 1H), 1.70-1.60 (m, 3H).
Mass (m/z): 206 [M+H+].
단계 ( iv ) : 화학식 (32)의 화합물의 제조
화학식 (32)의 화합물을, 화학식 (31)의 화합물을 사용하여 제조 1의 단계 (vi)에 언급한 바와 같은 하기의 동일한 절차로 제조하였다.
1H-NMR (CDCl3): δ 3.30-3.20 (m, 1H), 3.15-3.07 (m, 1H), 3.0-2.40 (m, 11H), 2.15-2.07 (m, 1H), 2.07-1.50 (m, 7H).
Mass (m/z): 210 [M+H+].
제조 6 : 화학식 (41)의 화합물의 제조
Figure pct00011

단계 (i) : 화학식 (34)의 화합물의 제조
에테르(1M, 253 mL)에 용해시킨 갓 제조한 메틸마그네슘 요오다이드(methyl magnesium iodide)를, 0 ℃ 에서 테트라히드로푸란(195 mL)에 용해시킨 화학식 (33)의 화합물(22 grams, 93.3 mmol)에 카놀라(canola)를 통해 첨가하였다. 0.5 시간 동안 0 ℃ 에서 교반시킨 후에, 포화 수성 염화암모늄 용액(saturated aqueous ammonium chloride solution)을 첨가하여 반응 혼합물을 퀀칭시켰다. 유기층을 분리하고, 수성 층을 디에틸에테르로 추출하였다. 결합 유기층을 물, 브라인으로 세척하고, 무수 황산 나트륨 상에서 건조시키고, 용매를 환산 압력 하에서 제거하여, 황백색(off-white) 고형물로서의 화학식 (34)의 화합물(22.4 grams)을 수득하였다. 수득률 : 95 %.
용융 온도 범위(Melting Range) : 98-100.4 ℃;
1H-NMR (CDCl3): δ 7.42-7.28 (m, 4H), 7.24-7.18 (m, 1H), 2.47-2.42 (m, 1H), 2.32-2.25 (m, 1H), 2.14-2.01 (m, 3H), 1.96-1.85 (m, 5H), 1.80-1.67 (m, 2H), 1.60-1.54 (m, 2H), 154-1.45 (m, 1H), 1.41 (s, 3H).
Mass (m/z): 243 [M+H+].
단계 ( ii ) : 화학식 (35)의 화합물의 제조
아세트산(5.8 mL) 및 테트라히드로푸란(29 mL)의 혼합물에 용해시킨 화학식 (34)의 화합물(6.6 grams, 27.3 mmol)을, 15분의 기간 동안에 얼음 수조에 냉각시킨 차이염소산(4%, 272 mL) 용액(ice bath cooled sodiumhypochloride solution)에 추가적인 깔때기(addition funnel)를 통해 점적하여 첨가하였다(added drop wise). 고체의 요오드화 테트라부틸암모늄(Solid tetrabutylammonium iodide)(1.0 grams, 2.7 mmol)을 첨가하고, 반응 혼합물을 1.5 시간 동안 교반시켰다. 두 개의 층을 분리하였고, 수성의 층을 디이소프로필에테르로 추출하였고, 결합된 유기층을 물, 프라인으로 세척하고, 황산 나트륨 상에서 건조시키고, 용매를 환산 압력 하에서 제거하였다. 잔류물을 에탄올(14 mL)에 용해시키고, 고체의 수산화칼륨(solid potassium hydroxide)을 첨가하고, 혼합물을 1 시간 동안 환류시켰다. 용매를 환산 압력 하에서 증발시키고, 정제되지 않은 산물을 컬럼 크로마토그래피로 정제하여, 점성액( viscous liquid)으로서 화학식 (35)의 화합물(2.85 grams)을 수득하였다. 수득률 : 44 %.
1H-NMR (CDCl3) δ 7.38-7.26 (m, 4H), 7.24-7.17 (m, 1H), 2.86-2.80 (m, 1H), 2.59-2.50 (m, 1H), 2.30-2.20 (m, 1H), 2.22 (s, 3H), 2.10-1.92 (m, 4H), 1.92-1.75 (m, 4H), 1.82-1.70 (m, 1H).
IR (cm-1): 2924, 2867, 1697, 1445, 1356, 1223, 757, 699;
Mass (m/z): 241 [M+H+].
단계 ( iii ) : 화학식 (36)의 화합물의 제조
0 ℃ 로 냉각시킨 사염화탄소(carbon tetrachloride)(24 mL), 아세토니트릴(24 mL) 및 물(36 mL), 제조1 에서 수득된 바와 같은 화학식 (35)의 화합물의 교반시킨 혼합물에 과요오드산 나트륨(sodiumperiodate)(11.2 grams, 52.2 mmol)을 첨가한 다음에 루테늄 (Ⅲ) 염화 수화물[ruthenium (III) chloride hydrate](0.13 grams, 0.6 mmol)을 첨가하였다. 반응 혼합물을 실온으로 서서히 항온시키고, 2 시간 동안 교반시켰다. 흑색의 RuO2 를 침전시키기 위해 반응 혼합물을 이소프로필에테르(100 mL)로 희석시키고, 15 분 동안 교반시켰다. 반응 혼합물을 셀라이트의 패드를 통해 여과시킨 다음에 유기층을 1 N 수산화나트륨 용액(3x25 mL)으로 추출하였다. 유기 층을 황산나트륨 상에서 건조시키고; 용매를 진공 하에서 증발시켜, 반응하지 않은 출발 물질(unreacted starting material)(1.32 grams, 5.5 mmol)을 수득하였다. 수성 층을 농축된 염산으로 산성화시키고, 아세트산에틸로 추출하였다. 결합 유기층을 브라인으로 세척하고, 황산나트륨 상에서 건조시키고, 용매를 환산 압력 하에서 제거하여, 황백색의 고형물(off-white solid)로서 화학식 (36)의 화합물(0.9 gram)을 수득하였다. 수득률 : 35 %.
용융 온도 범위(Melting Range) : 90-95.0 ℃;
1H-NMR (CDCl3) 2.80-2.72 (m, 1H), 2.56-2.50 (m, 1H), 2.44-2.37 (m, 1H), 2.20 (s, 3H), 2.18-2.09 (m, 1H), 2.02-1.85 (m, 4H), 1.85-1.72 (m, 3H), 1.68-1.62 (m, 1H).
IR (cm-1) :2935, 1694, 1413, 1357, 974, 746.
Mass (m/z): 207 [M-H+].
단계 ( iv ) : 화학식 (37)의 화합물의 제조
화학식 (37)의 화합물을, 화학식 (36)의 화합물을 사용하여 제조 3의 단계 (x)에서 언급한 바와 같은 하기의 동일한 절차로 제조하였다.
1H-NMR (CDCl3): δ 7.40-7.27 (m, 5H), 5.05 (s, 2H), 4.95 (bs, 1H), 2.75-2.65 (m, 1H), 2.47 (bs, 1H), 2.50-2.42 (m, 1H), 2.28-2.15 (m, 1H), 2.17 (s, 3H), 2.10-1.82 (m, 4H), 1.80-1.70 (m, 2H), 1.70-1.53 (m, 2H).
Mass (m/z): 314 [M+H+].
단계 (v) : 화학식 (38)의 화합물의 제조
화학식 (38)의 화합물을, 화학식 (37)의 화합물을 사용하여 제조 3의 단계 (xiii)에서 언급한 바와 같은 하기의 동일한 절차로 제조하였다.
1H-NMR (CDCl3): δ 2.72-2.65 (m, 1H), 2.52-2.47 (m, 1H), 2.17 (s, 3H), 2.15-2.08 (m, 1H), 1.98-1.86 (m, 2H), 1.80-1.50 (m, 7H).
Mass (m/z): 180 [M+H+].
단계 ( vi ) : 화학식 (39)의 화합물의 제조
디메틸 프롬아미드(2.5 mL)에 용해시킨 화학식 (38)의 화합물(173 mg, 1.0 mmol)의 용액에, 무수 트리에틸아민(0.4 mL, 2.9 mmol)을 첨가하고, 현탁액(suspension)을 실온에서 2 시간 동안 교반시켰다. 1,4-디브로모푸탄(0.17 mL, 1.2 mmol)을 첨가하고, 혼합물을 26 시간 동안 60 ℃ 에서 가열하였다. 차가운 혼합물에, 물(15 mL)를 첨가하고, 용액을 아세트산에틸로 세척하였다. 수상(aqueous phase)을 2 N 수산화나트륨으로 염기성화하고, 아세트산 에틸로 추출하였다. 결합된 유기 추출물(combined organic extracts)을 물로 세척하고, 무수 황산나트륨으로 건조시키고, 여과하고, 용매를 건조시키기 위해 진공에서 제거하여 화학식 (39)(R5 = 피롤리딘-1-일)의 화합물(117 mg)을 수득하였다. 수득률 : 52 %.
1H-NMR (CDCl3): δ 2.80-2.68 (m, 4H), 2.68-2.63 (m, 1H), 2.53-2.48 (m, 1H), 2.24-2.19 (m, 1H), 2.18 (s, 3H), 2.0-1.90 (m, 2H), 1.90-1.50 (m, 11H);
Mass (m/z): 234 [M+H+].
단계( vii ) : 화학식 (40)의 화합물의 제조
0 ℃ 에서 수산화나트륨(6.3 grams, 158.0 mmol), 물(54.0 mL) 및 1,4 디옥산(7 mL)의 교반시킨 용액에 브롬(bromine)(3.2 mL, 59.0 mmol)을 첨가하고 5 분 동안 교반시켰다. 따라서, 형성된 하이포아브롬산염 용액(formed hypobromite solution)을, 얼음 수조 온도에서 1,4-디옥산(14 mL)에 용해시킨 화학식 (39)(R5 = 피롤리딘-1-일)의 화합물(3.0 grams, 10.53 mmol)의 교반시킨 용액에 점적하여 첨가하였다. 반응 혼합물을 실온으로 서서히 항온시키고 1 시간 동안 교반시켰다. 반응 혼합물을 0 ℃로 냉각시키고, 5 N 염산으로 산성화시키고(pH 2-3), 아세트산에틸로 세척하였다. 수성의 층을 건조시키기 위해 증발시키고, 정제되지 않은 산물을 실리카 겔 플래쉬 크로마토그래피로 정제하여 화학식 (40)(R5 = 피롤리딘-1-일)의 화합물(2.27 grams)을 수득하였다. 수득률 : 75 %.
1H-NMR (CDCl3): δ 11.69 (bs, 1H), 3.70-3.56 (m, 2H), 3.05-2.92 (m, 2H), 2.90-2.83 (m, 1H), 2.66-2.58 (m, 1H), 2.40-2.20 (m, 3H), 2.18-1.60 (m, 11H).
Mass (m/z): 236 [M+H+].
단계 ( viii ) : 화학식 (41)의 화합물의 제조
화학식 (40)(R5 = 피롤리딘-1-일)의 화합물(3.0 grams, 10.45 mmol) 클로로포름(21 mL)의 교반시킨 용액에 농축 황산(concentrated sulphuric acid)(4.2 mL, 78.9 mmol)을 첨가한 다음에, 고체의 아지드화나트륨(sodiumazide)(2.38 g, 36.6 mmol)을 일부에 첨가하여(added in portions), 반응물의 온도를 40 ℃ 이상으로 올라가지 않게 하였다. 첨가가 완료된 후에, 반응 혼합물을 45 ℃ 로 항온시키고, 2 시간 동안 교반시켰다. 반응 혼합물을 0 ℃ 로 냉각시키고, 물로 희석시키고, 아세트산에틸로 추출하였다. 수성 층을 50 % 의 수산화나트륨 용액으로 염기화시키고, 클로로포름으로 추출하였다. 결합 유기 층을 브라인으로 세척하고, 수산화나트륨 상에서 건조시키고, 용매를 환산 압력 하에서 제거하여, 황백색 고형물(2.0 grams)로서의 화학식 (41)(R5 = 피롤리딘-1-일)의 화합물을 수득하였다. 수득률 : 76 %.
1H-NMR (CDCl3): δ 2.80-2.60 (m, 4H), 2.40-2.33 (m, 1H), 2.15-2.06 (m, 1H), 2.0-1.92 (m, 1H), 1.90-1.40 (m, 13H).
Mass (m/z): 207 [M+H+].
제조 7 : 화학식 (43)의 화합물의 제조
Figure pct00012

질소 하에서, 건조 메탄올(6.6 mL)에 용해시킨 2-[(2-피리디닐)메틸]-1-아자비시클로[2.2.2]옥탄-3-원 (42) [1 gram, 4.6 mmol, 1 당량(equivalent)]에 에테르에 용해시킨 1 M 용액의 염화아연(zincchloride)을 첨가하였다(0.9 mL, 0.9 mmol, 0.2 당량). 30 분 동안 주위 온도(ambient temperature)에서 교반시킨 후에, 이러한 혼합물을 고체의 포름산 암모늄(solid ammonium formate)(3.48 grams, 55.37 mmol, 11.96 당량)으로 처리하였다. 주위 온도에서 한 시간 더(another hour) 교반시킨 후에, 고체의 수소화붕소나트륨(sodium cyanoborohydride)(0.581 grams, 9.2 mmol, 2 당량)을 일부에 첨가하였다. 반응물을 밤새 주위 온도에서 교반시킨 다음에, 물(5 mL)을 첨가하여 종료시켰다(terminated). 퀀칭시킨 반응물은 5 M 수산화나트륨(10 mL)과 클로로포름(20 mL) 사이를 분할하였다(partitioned). 수성의 층을 클로로포름(20 mL)으로 추출하고, 결합된 유기 층을 황산 나트륨(sodium sulphate)으로 건조시키고, 여과시키고 농축시켰다. 이는 2.97 g 의 황색의 검 산물(yellow gum product)(43, R6 = 2-피리디닐)을 남겼다. GC-MS 분석은, 미량의 이에 상응하는 알코올(a trace of the corresponding alcohol)과 함께 상기 산물이 시스 및 트랜스 아민(cis and trans amines)의 90 : 10 혼합물임을 나타내었다. 수득률 : 98 %.
1H-NMR (CDCl3): δ 8.55 (d, J = 5.0 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.25 (d, J = 7.9 Hz, 1H), 7.13 (dd, J = 7.3, 5.0 Hz, 1H), 3.15-2.70 (m, 8H), 2.0-1.30 (m, 5H);
Mass (m/z): 218 [M+H+].
제조 8 : 화학식 (46)의 화합물의 제조
Figure pct00013

단계 (i) : 화학식 (44)의 화합물의 제조
아세토니트릴(106 mL)에 용해시킨 피페리딘-4-원(3.6 grams, 26.5 mmol)의 히드로클로라이드 염(hydrochloride salt)의 교반시킨 용액에 탄산 세슘(cesium carbonate)(25.9 grams, 79.7 mmol)을 첨가하였다. 30 분 동안 교반시킨 후에, 클로로부탄(4.16 mL, 39.85 mmol) 다음에 요오드화나트륨(sodium iodide)(11.96 grams, 79.7 mmol). 반응 혼합물을 2 시간 동안 환류시키고, 셀라이트의 패드를 통해 여과시켰다. 여과물을 환산 압력 하에서 건조시키기 위해 증발시키고, 정제되지 않은 산물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화학식 (44)(R5 = n-부틸)의 화합물을 수득하였다. 수득률 :71 %.
1H-NMR (CDCl3): δ 2.85-2.70 (m, 4H), 2.55-2.40 (m, 6H), 1.60-1.50 (m, 2H), 1.45-1.30 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H).
Mass (m/z): 156 [M+H+].
단계 ( ii ) : 화학식 (45)의 화합물의 제조
에탄올(85 mL)에 용해시킨 화학식 (44)(R5 = n-부틸)의 화합물(2.9 grams, 18.7 mmol) 피리딘(pyridine)(2.5 mL, 32.1 mmol)의 용액에 염산 히드록실아민(hydroxylamine hydrochloride)(2.23 grams, 32.1 mmol)을 첨가하고 2 시간 동안 환류시켰다. 휘발성을 환산 압력 하에서 제거하고; 정제되지 않은 산물을 물에 용해시키고, 클로로포름에 용해시킨 10 % 메탄올성 암모니아(methanolic ammonia)로 추출하였다. 결합된 유기 층을 무수 Na2SO4 상에서 건조시키고, 용매를 환산 압력 하에서 증발시켜 화학식 (45)(R5 = n-부틸)의 옥심 화합물(oxime compound)(2.0 grams)을 수득하였다. 수득률 : 63.0 %.
1H-NMR (CDCl3): δ 7.22 (bs, 1H), 2.80-2.55 (m, 6H), 2.50-2.35 (m, 4H), 1.60-1.50 (m, 2H), 1.40-1.30 (m, 2H), 0.93 (t, J = 7.2 Hz, 3H).
Mass (m/z): 171 [M+H+].
단계 ( iii ) : 화학식 (46)의 화합물의 제조
n-프로판올(37 mL)에 용해시킨 화학식 (45)(R5 = n-부틸)의 화합물(1.6 grams, 9.39 mmol)의 교반시킨 용액에 금속 나트륨(sodium metal)(2.3 grams, 100 mmol)의 일부에 첨가하였다. 반응 혼합물을 1 시간 동안 환류시켰다. 반응 혼합물을 n-프로판올, 물로 희석시키고, 30 분 동안 교반시켰다. 휘발성을 환산 압력 하에서 제거하고, 정제되지 않은 산물을 실리카 겔 플래쉬 크로마토그래피로 정제하고 화학식 (45)(R5 = n-부틸)의 아민 화합물(1.0 grams)을 수득하였다. 수득률 : 68 %.
1H-NMR (CDCl3): δ 2.95-2.83 (m, 2H), 2.73-2.60 (m, 1H), 2.40-2.27 (m, 2H), 2.10-1.93 (m, 2H), 1.90-1.80 (m, 2H), 1.55-1.25 (m, 6H), 0.91 (t, J = 7.3 Hz, 3H).
Mass (m/z): 157 [M+H+].
제조 9 : 화학식 (53)의 화합물의 제조
Figure pct00014

단계 (i) : 화학식 (48)의 화합물의 제조
0 ℃ 로 냉각시킨 디클로로메탄(22 mL)에 용해시킨 화학식 (47)의 화합물(1.0 gram, 5.44 mmol)의 교반시킨 용액에 벤질아민(0.62 mL, 5.72 mmol), 아세트산(0.3 mL, 5.44 mmol)을 첨가한 다음에 소듐 트리아세톡시 보로하이드라이드(sodium triacetoxy borohydride)(1.8 grams, 8.51 mmol)를 첨가하였다. 반응물을 실온으로 서서히 항온시키고, 7 시간 동안 교반시켰다. 반응물을 0 ℃로 냉각시킨 후에 수성의 탄산수소 나트륨(aqueous sodium bicarbonate) 용액을 첨가하여, 반응물을 퀀칭시켰다. 두 개의 층을 분리시키고, 수성 층을 디클로로메탄으로 추출하고, 결합된 유기 층을 브라인으로 세척하고, 무수의 황산 나트륨 상에서 건조시키고, 용매를 환산 압력 하에서 제거하였다. 따라서 수득된 정제되지 않은 산물을 실리카 겔 플래쉬 컬럼 크로마토그래피로 정제하여 화학식 (48)의 화합물(1.18 grams)을 수득하였다. 수득률 : 79 %.
1H-NMR (CDCl3): δ 7.40-7.20 (m, 5H), 3.81 (s, 2H), 3.65-3.42 (m, 2H), 3.42-3.28 (m, 2H), 3.25-3.08 (m, 1H), 2.12-2.02 (m, 1H), 1.83-1.70 (m, 1H), 1.46 (s, 9H).
Mass (m/z): 277 [M+H+].
단계 ( ii ) : 화학식 (49)의 화합물의 제조
메탄올(16.6 mL)에 용해시킨 화학식 (48)의 화합물(1.15 grams, 4.16 mmol)의 교반시킨 용액에 10 % Pd/C (345 mg)를 첨가하였다. 이중충 풍선(double-layered balloon)을 통해 수소 압력(Hydrogen pressure)을 적용하고, 반응물을 16 시간 동안 교반시켰다. 반응물을 셀라이트의 작은 패드를 통해 여과시키고, 여과물을 환산 압력 하에서 제거하였다. 정제되지 않은 산물을 실리카 겔 플래쉬 컬럼 크로마토그래피로 정제하여 화학식 (49)의 화합물을 수득하였다. 수득률 : 82 %.
1H-NMR (CDCl3): δ 3.65-3.45 (m, 3H), 3.45-3.33 (m, 1H), 3.20-3.0 (m, 1H), 2.12-2.02 (m, 1H), 1.80-1.65 (m, 1H), 1.46 (s, 9H).
Mass (m/z): 187 [M+H+].
단계 ( iii ) : 화학식 (50)의 화합물의 제조
0 ℃로 냉각시킨 디클로로메탄(13 mL)에 용해시킨 화학식 (49)의 화합물(620 mg, 3.33 mmol)의 교반시킨 용액에 트리에틸아민(0.69 mL, 5.0 mmol), 4-디메틸아미노피리딘(6.5 mg, 0.5 mmol) 및 아세트산무수물(acetic anhydride)(0.35 mL, 3.66 mmol)을 첨가하였다. 1 시간 동안 반응물을 교반시킨 후에, 반응물을 디클로로메탄으로 희석시키고, 물, 브라인으로 세척하고, 무수 황산 나트륨 상에서 건조시키고, 용매를 환산 압력 하에서 제거하여 화학식 (50)의 화합물(759 mg)을 수득하였다. 수득률 : 100%.
1H-NMR (CDCl3): δ 5.54 (bs, 1H), 4.52-4.42 (m, 1H), 3.61 (dd, J = 11.4, 6.1 Hz, 1H), 3.42 (t, J = 7.4 Hz, 2H), 3.18 (dd, J = 11.4, 3.8 Hz, 1H), 2.22-2.10 (m, 1H), 1.99 (s, 3H), 1.90-1.80 (m, 1H), 1.47 (s, 9H).
Mass (m/z): 229 [M+H+].
단계 ( iv ) : 화학식 (51)의 화합물의 제조
0 ℃ 로 냉각시킨 화학식 (50)의 화합물에 이소프로판올(3M, 5 mL)에 용해시킨 건조 염산염(hydrochloride)의 용액을 첨가하였다. 반응물을 1 시간 동안 실온에서 교반시키고; 휘발성을 환산 압력 하에서 제거하였다. 정제되지 않은 산물을 헥산(hexane)과 함께 가루로 빻고(triturated) 그 다음에 에테르와 함께 가루로 빻아, 히드로클로라이드 염(hydrochloride salt)(506 mg,)으로서의 화학식 (51)의 화합물을 수득하였다. 수득률 : 93 %.
1H-NMR (DMSO-d6): δ 9.39 (bs, 1H), 9.34 (bs, 1H), 8.34 (bs, 1H), 4.28-4.18 (m, 1H), 3.33-3.22 (m, 2H), 3.22-3.12 (m, 1H), 3.0-2.88 (m, 1H), 2.10-2.0 (m, 1H), 1.85-1.72 (m, 1H), 1.80 (s, 3H).
Mass (m/z): 129 [M+H+].
단계 (v) : 화학식 (52)의 화합물의 제조
화학식 (52)(R4 = H)의 화합물을, 화학식 (51)의 화합물을 사용하여 제조 9의 단계 (i)에서 언급한 바와 같은 하기의 동일한 절차에 의해 제조하였다. 수득률 : 52 %.
1H-NMR (CDCl3): δ 5.81 (bs, 1H), 4.55-4.40 (m, 1H), 3.0-2.80 (m, 1H), 2.75-2.60 (m, 1H), 2.50-2.35 (m, 1H), 2.30-2.0 (m, 5H), 1.98 (s, 3H), 2.0-1.75 (m, 6H), 1.75-1.60 (m, 5H), 1.50-1.40 (m, 2H).
Mass (m/z): 263 [M+H+].
단계 ( vi ) : 화학식 (53)의 화합물의 제조
화학식 (52)(R4 = H)의 화합물(249 mg, 0.95 mmol)에 6 N 용액의 염산(4 mL)을 첨가하였고, 반응물을 4 시간 동안 환류시켰다. 휘발성을 환산 압력 하에서 제거하고, 정제되지 않은 산물을 메탄올에 용해시킨 암모니아로 희석하고, 무기염(inorganic salts)을 여과하였다. 여과물을 환산 압력 하에서 농축시키고, 화학식 (53)(R4 = H)의 화합물(208 mg)을 수득하였다. 수득률 : 100 %.
1H-NMR (DMSO-d6): δ 7.56 (bs, 2H), 3.70-3.60 (m, 1H), 2.83-2.70 (m, 1H), 2.68-2.52 (m, 2H), 2.38-2.25 (m, 1H), 2.20-2.02 (m, 4H), 1.90-1.83 (m, 2H), 1.83-1.60 (m, 9H), 1.40-1.30 (m, 2H).
IR (cm-1): 3313, 3103, 2985, 2909, 2848, 2523, 1601, 1579, 1495, 1444, 1382, 1217, 1158, 1145, 1068, 1046, 1031, 877.
Mass (m/z): 221 [M+H+].
제조 10 : 화학식 (59)의 화합물의 제조
Figure pct00015

단계 (i) : 화학식 (55)의 화합물의 제조
0 ℃로 냉각시킨 메탄올(188 mL)에 용해시킨 화학식 (54)(R1 = H)의 화합물(12.9 grams, 94.06 mmol)의 교반시킨 용액에 30 분의 기간 동안 염화티오닐(thionyl chloride)(27.4 mL, 376.2 mmol)을 첨가하였다. 반응 혼합물을 실온으로 서서히 항온시킨 다음에 18 시간 동안 환류시켰다. 휘발성을 환산 압력 하에서 제거하고; 잔류물을 아세트산에틸로 희석시키고, 얼음-수조 온도로 냉각시켰다. 탄산수소나트륨의 10 % 수용액을 첨가하고, 두 개의 층을 분리하였다. 유기층을 브라인으로 세척하고, 무수 황산나트륨 상에서 건조시키고, 용매를 환산 압력 하에서 제거하여 화학식 (55)(R1 = H)의 화합물(12.2 grams, 85.8 % 수득률)을 수득하였다.
1H-NMR (CDCl3): δ 7.86 (d, J = 8.0 Hz, 1H), 7.27 (t, J = 8.4 Hz, 1H), 6.70-6.60 (m, 2H), 5.90-5.50 (bs, 2H), 3.87 (s, 3H).
Mass (m/z): 152 [M+H+].
단계 ( ii ) : 화합물 화학식 (56)의 제조
0 ℃로 냉각시킨 디클로로메탄(174 mL)에 용해시킨 화학식 (55)(R1 = H)의 화합물(13.2 grams, 87.3 mmol)의 교반시킨 용액에 아세트산(10 mL, 174 mmol) 및 2,2-디메톡시프로판(64.1 mL, 523.6 mmol)을 첨가하였다. 동일한 온도에서 15 분 동안 교반시킨 후에, 소듐 트리아세톡시 보로하이드라이드(sodium triacetoxy borohydride)(30.3 grams, 143.2 mmol)을 첨가하고, 반응 혼합물을 실온으로 서서히 항온시키고, 16 시간 동안 교반시켰다. 반응 혼합물을 디클로로메탄으로 희석하고, 10 % 수성 탄산수소나트륨 용액, 브라인으로 세척하고, 무수 황산 나트륨 상에서 건조시키고, 용매를 환산 압력 하에서 제거하였다. 정제되지 않은 산물을 실리카 겔 플래쉬 컬럼 크로마토그래피로 정제하여 화학식 (56)(R1 = H, R2 = 이소프로필)의 화합물(12.2 grams)을 수득하였다. 수득률 : 73 %.
1H-NMR (CDCl3): δ 7.90 (d, J = 8.0 Hz, 1H), 7.69 (bs, 1H), 7.34 (t, J = 8.5 Hz, 1H), 6.71 (d, J = 8.5 Hz, 1H), 6.55 (t, J = 7.5 Hz, 1H), 3.85 (s, 3H), 3.80-3.65 (m, 1H), 1.27 (d, J = 6.3 Hz, 6H).
Mass (m/z): 194 [M+H+].
단계 ( iii ) : 화합물 화학식 (57)의 제조[ preparation of compound formula(57)]
0 ℃로 냉각시킨 메탄올 및 물(126 mL)의 1 : 2 혼합물에 용해시킨 화학식 (56)(R1 = H, R2 = 이소프로필)의 화합물(12.2 grams, 63.1 mmol)의 교반시킨 용액에 수산화나트륨(2.5 grams, 63.1 mmol)을 첨가하였다. 반응 혼합물을 실온으로 서서히 항온시킨 다음에 16 시간 동안 환류시켰다. 휘발성을 환산 압력 하에서 제거하고, 잔류물을 몇 시간(several hours) 동안 70 ℃로 진공 하에서 건조시켜 화학식 (57)(R1 = H, R2 = 이소프로필)의 화합물(12.4 grams)을 수득하였다. 수득률 : 97.7 %.
1H NMR (D2O): δ 7.62 (d, J = 8.0 Hz, 1H), 7.25 (t, J = 8.3 Hz, 1H), 6.81 (d, J = 8.3 Hz, 1H), 6.65 (t, J = 7.5 Hz, 1H), 3.62-3.50 (m, 1H), 1.07 (d, J = 6.2 Hz, 6H).
Mass (m/z): 178 [M-H+].
단계 ( iv ) : 화합물 화학식 (58)의 제조
0 ℃로 냉각시킨 건조 디클로로메탄(25 mL)에 용해시킨 화학식 (57)(R1 = H, R2 =이소프로필)의 화합물(5.1 grams, 25.3 mmol)의 교반시킨 현탁액(stirred suspension)에 트리포스겐(triphosgene)(15 grams, 50.56 mmol)을 첨가하였다. 반응 혼합물을 실온으로 서서히 항온시키고, 16 시간 동안 교반시켰다. 물 및 디클로로메탄을 첨가하고 두 개의 층을 분리하였다. 유기 층을 수성 탄산수소나트륨, 브라인으로 세척하고, 무수 황산 나트륨 상에서 건조시키고, 용매를 환산 압력 하에서 제거하여 화학식 (58)(R1 = H, R2 = 이소프로필)의 화합물(6.25 grams, crude mass)을 수득하였고, 이를 추가적인 정제없이 그 다음의 반응을 위해 채취하였다(taken up).
1H-NMR (CDCl3): δ 8.18 (d, J = 8.0 Hz, 1H), 7.74 (t, J = 8.3 Hz, 1H), 7.33 (d, J = 8.3 Hz, 1H), 7.28 (t, J = 7.5 Hz, 1H), 4.82-4.75 (m, 1H), 1.62 (d, J = 6.2 Hz, 6H).
Mass (m/z): 206 [M+H+].
단계 (v) : 화합물 화학식 (59)의 제조
0 ℃로 냉각시킨 건조 디메틸포름아미드에 용해시킨 화학식 (58)(R1 = H, R2 =이소프로필)의 화합물[6.25 grams, 앞서 기재한 반응에서 수득된 정제되지 않은 덩어리(crude mass)]의 교반시킨 용액에 말론산디메틸(dimethylmalonate)(5.2 mL, 45.6 mmol) 및 수소화 나트륨(sodium hydride)[미네랄 오일(mineral oil)에 분산된(dispersed) 60 %, 2.0 grams, 50.2 mmol]을 첨가하였다. 반응 혼합물을 실온에서 교반시킨 다음에 100 ℃ 에서 2 시간 동안 교반시켰다. 용매를 환산 압력 하에서 제거하고, 정제되지 않은 덩어리를 얼음-물 혼합물(ice-water mixture)로 희석시켰다. 따라서, 수득된 혼합물을 농축 염산 용액으로 산성화시키고 디클로로메탄으로 추출하였다. 결합 유기층을 브라인으로 세척하고, 무수 황산 나트륨 상에서 건조시키고, 용매를 환산 압력 하에서 제거하였다. 정제되지 않은 산물을 실리카 겔 플래쉬 컬럼 크로마토그래피로 정제하여 화학식 (59)(R1 = H, R2 = 이소프로필)의 화합물(2.6 grams)을 수득하였다. 수득률 : 2 단계 동안(for 2 steps) 39 %.
1H-NMR (CDCl3): δ 14.05 (s, 1H), 8.22 (d, J = 8.0 Hz, 1H), 7.64 (t, J = 8.4 Hz, 1H), 7.51 (d, J = 8.5 Hz, 1H), 7.23 (t, J = 7.5 Hz, 1H), 5.90-5.10 (bs, 1H), 4.04 (s, 3H), 1.63 (d, J = 6.2 Hz, 6H).
Mass (m/z): 262 [M+H+].
[ 실시예 1]
N-[(2- 아자트리시클로[3.3.1.1 3,7 ]덱 -2-일) 프로필]-4-히드록시-1-이소프로필-2-옥소-1,2- 디히드로퀴놀린 -3- 카르복사미드 히드로클로라이드의 제조
톨루엔(toluene)(11 mL)에 용해시킨 화학식 (59)(R1 = H, R2 =이소프로필)의 화합물(305 mg, 1.15 mmol)의 교반시킨 용액에 화학식 (8)의 화합물(453.6 mg, 2.29 mmol)을 첨가하고, 반응 혼합물을 2 시간 동안 환류시켰다. 휘발성을 환산 압력 하에서 제거하고, 정제되지 않은 산물을 실리카 겔 플래쉬 컬럼 크로마토그래피로 정제하고, 산물을 이소프로판올성 HCl(isopropanolic HCl)로 처리하여 N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일) 프로필]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드(384 mg)을 수득하였다. 수득률 : 77 %.
1H-NMR (DMSO-d6): δ 17.26 (s, 1H), 10.44 (bs, 1H), 9.33 (bs, 1H), 8.10 (d, J = 7.8 Hz, 1H), 7.83 (d, J = 8.7 Hz, 1H), 7.76 (t, J = 8.2 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 5.50-5.10 (bs, 1H), 3.60 (bs, 2H), 3.50-3.40 (m, 2H), 3.40-3.30 (m, 2H), 2.25-2.10 (m, 4H), 2.05-1.90 (m, 6H), 1.78 (bs, 2H), 1.75-1.68 (m, 2H), 1.55 (d, J = 6.9 Hz, 6H);
IR (cm-1): 3425, 3220, 2938, 2724, 2635, 2571, 2500, 1640, 1571, 1499, 1416, 1335, 1189, 1008, 761;
Mass (m/z): 424 [M+H+].
[ 실시예 2]
N-[(2- 아자트리시클로[3.3.1.1 3,7 ]덱 -2-일) 프로필]-4-히드록시-1-이소부틸-2-옥소-1,2- 디히드로퀴놀린 -3- 카르복사미드 히드로클로라이드의 제조
톨루엔(5 mL)에 용해시킨 화학식 (59)(R1 = H, R2 =이소부틸)의 화합물(141 mg, 0.54 mmol)의 교반시킨 용액에, 탄산칼륨(71.3 mg, 0.512 mmol) 및 화학식 (8)의 화합물(100.1 mg, 0.512 mmol)을 첨가하였고, 반응 혼합물을 3 시간 동안 환류시켰다. 휘발성을 환산 압력 하에서 제거하고, 정제되지 않은 산물을 실리카 겔 플래쉬 컬럼 크로마토그래피로 정제하고, 산물을 이소프로판올성 HCl(isopropanolic HCl)로 처리하여 N-[(2-아자트리시클로[3.3.1.13, 7]덱-2-일) 프로필]-4-히드록시-1-이소부틸-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드(159.4 mg)를 수득하였다. 수득률 : 68 %.
1H- NMR (DMSO-d6): δ 17.32 (s, 1H), 10.45 (bs, 1H), 9.35 (bs, 1H), 8.10 (d, J = 7.9 Hz, 1H), 7.79 (t, J = 8.1 Hz, 1H), 7.66 (d, J = 8.7 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 4.15 (d, J = 6.7 Hz, 2H), 3.65-3.58 (m, 2H), 3.50-3.40 (m, 2H), 3.40-3.25 (m, 2H), 2.25-2.05 (m, 5H), 2.05-.1.87 (m, 6H), 1.78 (bs, 2H), 1.72-1.65 (m, 2H), 0.90 (d, J = 6.6 Hz, 6H).
IR (cm-1): 3397, 3218, 2950, 2936, 2439, 1642, 1569, 1499, 1413, 1183, 1017, 763, 670.
Mass (m/z): 438 [M+H+].
[ 실시예 3]
N-[1-( 트리시클로[3.3.1.1 3,7 ]덱 -2-일) 피롤리딘 -3-일]-4-히드록시-1-이소프로필-2-옥소-1,2- 디히드로퀴놀린 -3- 카르복사미드의 제조
건조 디메틸포름아미드(2.5 mL)에 용해시킨 화학식 (59)(R1 = H, R2 = 이소프로필)(108.3 mg, 0.41 mmol)의 교반시킨 용액에 탄산칼륨(57 mg, 0.42 mmol), 화학식 (53)의 화합물(100 mg, 0.45 mmol)을 첨가하고, 반응물을 18 시간 동안 130 내지 135 ℃로 가열하였다. 반응물을 0 ℃ 로 냉각시키고, 물로 희석시키고, 에테르로 추출하였다. 결합 유기 층을 브라인으로 세척하고, 무수 황산나트륨 상에서 건조시키고, 용매를 환산 압력 하에서 제거하였다. 정제되지 않은 산물을 실리카 겔 플래쉬 컬럼 크로마토그래피로 정제하여 N-[1-(트리시클로[3.3.1.13,7]덱-2-일) 피롤리딘-3-일]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드(54 mg)를 수득하였다. 수득률 : 29 %.
1H-NMR (CDCl3): δ 17.16 (s, 1H), 10.60 (bs, 1H), 8.23 (d, J = 7.8 Hz, 1H), 7.75-7.50 (m, 2H), 7.40-7.20 (m, 1H), 5.80-5.10 (bs, 1H), 4.65-4.52 (m, 1H), 2.90-2.75 (m, 2H), 2.70-2.60 (m, 1H), 2.55-2.42 (m, 1H), 2.40-2.15 (m, 4H), 2.0-1.90 (m, 2H), 1.90-1.75 (m, 4H), 1.75-1.20 (m, 7H), 1.64 (d, J = 7.0 Hz, 6H);
IR (cm-1): 3190, 2904, 2848, 2786, 1910, 1639, 1547, 1410, 1323, 1172, 995, 747, 704.
Mass (m/z): 450 [M+H+].
[ 실시예 4 내지 27]
실시예 4 내지 27 의 화합물을 몇몇의 비-결정적인 변이(non-critical variations)를 갖는 실시예 1 내지 3 에 기재된 바와 같은 하기의 절차로 제조하였다.
Figure pct00016

Figure pct00017

Figure pct00018

Figure pct00019

Figure pct00020

Figure pct00021

Figure pct00022

[ 실시예 28 내지 71]
본 분야의 숙련자는 상기에 기재한 하기의 절차에 의해 실시예 28 내지 71 의 화합물을 제조할 수 있다.
Figure pct00023

Figure pct00024

Figure pct00025

Figure pct00026

생물학적 검정( Biological Assays )
[ 실시예 72]
5- HT 4 수용체( receptor )에 대한 EC 50 값의 측정( Determination )
재조합 인간 5-HT4 수용체 및 pCRE-Luc 수용체 시스템(recombinant human 5-HT4 receptor and pCRE-Luc reporter system)이 발현된(expressing) 안정된 CHO 세포주를 세포-기저 검정(cell-based assay)을 위해 사용하였다. 상기 검정은 화합물이 GPCRs에 결합하는 것을 측정하기 위해 비-방사성 기저 접근법(non-radioactive based approach)을 제공한다. 이러한 특정한 검정에서, 수용체의 활성 또는 저해에 의해 조절되는(modulated) 세포 내의 고리형 AMP(intracellular cyclic AMP)의 수준을 측정하였다. 재조합 세포는 cAMP 반응 요소(cAMP response element)의 조절 하에서 발광효소 리포터 유전자(luciferase reporter gene)를 포함한다(harbor).
상기 세포를, 10 % 소태아혈청(fetal bovine serum, FBS)를 포함하는 Hams F12 배지(medium)에서 96 웰의 투명한 바닥을 갖는 백색의 플레이트(96 well clear bottom white plates)에서 성장시켰다. 화합물 또는 표준 작용물질(agonist)을 첨가하기 전에, 세포를 밤새 혈청이 없는 곳에 두었다(cells were serum starved overnight). 테스트 화합물의 농도를 증가시키는 것은 세포에 대해 OptiMEM 배지에 첨가하였다(Increasing concentrations of test compounds were added in OptiMEM medium to the cells). 4 시간 동안 CO2 항온기(incubator)에서 37 ℃로 인큐베이션(incubation)을 지속하였다. 배지를 제거하고, 세포를 인산완충액(phosphate buffered saline)으로 세척하였다. 세포를 용해시키고(lysed), 발광효소 활성도(luciferase activity)를 발광측정장치(Luminometer)에서 측정하였다. 발광 유닛(Luminescence unit)은, Graphpad 소프트웨어를 사용한 화합물의 농도에 대해서 표시하였다(plotted). 화합물의 EC50 값을, 50 % 까지(by 50 %) 발광효소 활성도를 자극하는데 필요한 농도로서 나타내었다.
Figure pct00027

참고문헌 : Jeanne. M et al., Isolation of the serotoninergic 5-HT4 receptor from human heart and comparative analysis of its pharmacological profile in C6-glial and CHO cell lines,. Br.J.Pharmacol. 2001, 129, 771-781; Evgeni.G et al., 5-Hydroxytryptamine 4(a) Receptor is coupled to the Gα Subunit of Heterotrimeric G13 Protein, J. Biol. Chem. 2002, 277(23), 20812-20819.
[ 실시예 73]
설치류의 약물동태학적 연구( Rodent Pharmacokinetic Study )
NIN (National Institute of Nutrition, Hyderabad, India)로부터 구입한 수컷 위스터 랫(Male Wister rats)을 실험 동물(experimental animal)로서 사용하였다. 세마리 내지 5 마리의 동물을 각각의 케이지(cage)에 거처를 제공하였다(housed). 투여하는 날(dosing day)의 하루 전에, 경정맥 카테터(jugular vein catheter)의 외과적인 설치(surgical placement)를 위해 아이소플루레인(isoflurane)으로 수컷 위스터 랫(225-250 grams)을 마취시켰다(anesthetized). 동물을 밤새 단식을 유지시키고(kept fasted), 12 시간 명암 주기(light/dark cycle 주기)를 유지시켰다. 세 마리의 랫(rat)에 0일과 2일에 NCE(5 mg/Kg)을 경구(orally) 및 정맥 내(intravenously)로 투여하였다.
각각의 시점에서 혈액을 경정맥(jugular vein)에 의해 재취하였다. 플라즈마(Plasma)를 분석될 때까지 -20 ℃로 냉동시켜 저장하였다. 플라즈마에서 NCE 화합물의 농도를 LC-MS/MS 방법을 사용하여 결정하였다. 일정 시점(Schedule time points) : 투여전(Pre dose) 투여 후(after dosing) 0.25 시간, 0.5 시간, 1 시간, 1.5 시간, 2 시간, 3 시간, 4 시간, 6 시간, 8 시간, 10 시간, 12 시간 및 24 시간(n=3). NCE 화합물을, 고체상 추출법(solid phase extraction technique)을 사용한 입증된(validated) LC-MS/MS 방법에 의해 수량화하였다. NCE 화합물을 플라즈마에서 2 내지 2000 ng/mL의 눈금범위(calibration range)에서 수량화하였다. 연구 샘플(Study samples)을 배치(batch)에서 눈금 샘플(calibration samples)을 사용하여 분석하였고, 품질 관리 샘플(quality control samples)은 배치(batch) 전역에 분포되어 있다(spread across).
약물동태학적 파라미터(Pharmacokinetic parameters) Cmax, Tmax, AUCt, T1 /2 및 생물학적 이용도(Bioavailability)를 소프트웨어 WinNonlin 버전 5.0.1 을 사용하여 비-구획 모델(non-compartmental model)에 의해 계산하였다.
Figure pct00028

[ 실시예 74]
설치류 뇌 침투 연구( Rodent Brain Penetration Study )
NIN(National Institute of Nutrition, Hyderabad, India)로부터 구입한 수컷 위스터 랫(Male Wister rats)(230 - 280 grams)을 실험 동물로서 사용하였다. 세 마리 동물을 각각의 케이지(cage)에 거처를 제공하였다(housed). 동물에게 물 및 먹이(food)를 실험하는 동안에 임의로(ad libitum) 제공하였고, 12 시간 명암 주기(light/dark cycle)로 유지시켰다.
뇌 침투(Brain penetration)를 랫에서 별개의 방식(discrete manner)으로 측정하였다. 투여하는 날(dosing day) 하루 전에, 수컷 위스터 랫(225 - 250 grams)을 적응시켰다(acclimatized). 적응 후에, 랫을 각각의 그룹에서 몸무게에 따라서 분류하였고, 3 마리의 동물을 각각의 케이지에 두었고, 물 및 먹이에 자유롭게 접근할 수 있게 하였다. 각각의 시점(0.5 시간, 1 시간, 및 2 시간)에서, n=3 동물을 사용하였다.
NCE 화합물을 물에 용해시키고, 10 mg/kg [유리 염기(free base)]으로 경구적으로 투여하였다. 이소프란(isofurane)을 사용하여 심장천자(cardiac puncture)를 통해 혈액 샘플(Blood samples)을 제거하였고(removed), 무감각증 동물을 뇌 조직을 수집하기 위해 희생시켰다. 플라즈마를 분리하였고, 뇌 샘플을 균질화시키고, 분석할 때까지 - 20 ℃에서 냉동시켜 저장하였다. 플라즈마 및 뇌에서 NCE 화합물의 농도를 LC-MS/MS 방법을 사용하여 결정하였다.
고체상 추출법(solid phase extraction technique)을 사용한 입증된 LC-MS/MS 방법에 의해 플라즈마 및 뇌 호모제네이트(brain homogenate)에서의 NCE 화합물을 수량화하였다(quantified). 플라즈마 및 뇌 호모제네이트에서 1 내지 500 ng/mL 의 눈금 범위로 수량화하였다. 연구 샘플을 배치에서의 눈금 샘플(calibration samples)을 사용하여 분석하였고, 품질 관리 샘플(quality control samples)은 배치(batch) 전역에 분포되어 있다. 뇌-혈액 비율(brain-blood ratio)의 정도를 계산하였다(Cb/Cp).
Figure pct00029

[ 실시예 75]
신경전달물질( Neurotransmitters )의 가능한 조절( modulation )을 위한 설치류 뇌 미세 투석 연구( Brain Micro dialysis Study )
R.C.C (RCC, Hyderabad, India)로부터 구입한 수컷 스프래그-돌리 랫(Male Sprague Dawley rats)(230 - 280 grams)을 실험 동물로서 사용하였다.
그룹 할당(Group allocation) 그룹 1 : 비히클(물; 5 mL/kg; p.o.), 그룹 2 : NCE (3 mg/kg; p.o.). 수술 절차(Surgical Procedure) : 랫을 아이소플루레인(isoflurane)으로 마취시키고, 스테레오텍식 프레임(Stereotaxic frame)에 두었다. 가이드 캐뉼라(Guide cannula)(CMA/12)를 하기의 좌표(coordinates), the atlas of Paxinos and Watson (1986)에 따라서, 브레그만(bregma)으로부터 상대적인(relative) AP: +3.2 mm, ML: -3.2 mm 및 뇌 표면으로부터의 DV: -1.0 mm 를 사용하여 전두 피질(frontal cortex)에 두었다. 동물은 여전히 마취되어 있으면서, 미세 투석 프로브(micro dialysis probe)(CMA/12, 4 mm, PAES)를 가이드 캐뉼라를 통해 삽입하였고, 제자리에 고정시켰다. 수술 후에 연구를 위해 동물을 처리하기 전에 48 내지 72 시간의 회복 기간을 유지시켰다.
실험(experiment)의 기간(day)에서, 동물을 순응(acclimatization)시키기 위해 홈 케이지(home cages)로 이동시키고, 주입한 프로브를 1.5 mL/분의 비율로 1.3 mM CaCl2 (Sigma), 1.0 mM MgCl2 (Sigma), 3.0 mM KCl (Sigma), 147.0 mM NaCl (Sigma), 1.0 mM Na2HPO4.7H2O and 0.2 mM NaH2PO4.2 H2O (pH to 7.2)로 구성된 수정된 Ringer's 용액으로 관류(灌流)시키고(perfused), 1 시간 동안 안정화(stabilization) 시켰다. 안정화 기간 후에, 5 개의 바살(five basals)을 투여하기 전에 20 분 간격으로 수집하였다. 투석액 샘플(Dialysate samples)을 CMA/170 냉장한 프랙션 컬렉터(refrigerated fraction collector)를 사용한 유리 바이알(glass vials)에 수집하였다.
4 개의 분획을 수집한 후에, 비히클 또는 NCE(3 mg/kg 또는 10 mg/kg)을 위관 영양법(gavages)으로 투여하였다. 투여 후에 4 시간이 될 때까지 관류액(perfusate)을 수집하였다.
투석액 샘플(dialysate samples)에서 아세틸콜린 농도를 LC-MS/MS (API 4000, MDS SCIEX) 방법으로 측정하였다. 아세틸콜린을 투석액에서 0.250 내지 8.004 ng/mL의 눈금 범위으로 수량화하였다.
미세투석 실험(microdialysis experiments)이 완료되었을 때, 동물을 희생시키고, 이들의 뇌를 제거하고, 10 % 포르말린(formalin) 용액에 저장하였다. 각각의 뇌를 크라이오스탯(cryostat) (Leica)에서 50 μ로 얇게 썰고(sliced), 염색시키고(stained), 프로브의 배치(probe placement)를 확인하기 위해 현미경으로 조사하였다. 부정확한 프로브의 배치를 갖는 동물로부터의 데이터는 폐기하였다.
미세 투석 데이터를, 약물을 투여하기 전에 4 개의 샘플의 평균 절대값(average absolute value)(in fM/10 mL)으로 나타낸 베이스라인(baseline)의 백분률 변화(평균 ±S.E.M)로서 나타내었다.
NCE (3 mg/kg) 및 비히클 처리의 효과를 일원배치 ANOVA(one-way ANOVA)로 통계학상으로 평가한 다음에 Dunnett's 다중 비교 테스트(Dunnett's multiple comparison tests)로 평가하였다. 모든 통계학상의 측정에서, p < 0.05 는 중요하게 고려되었다. Graph Pad Prism 프로그램을 통계학상으로 데이터를 평가하였다.
[ 실시예 76]
대상 인식 작업 모델( Object Recognition Task Model )
이러한 발명의 화합물의 인지-증진 특성(cognition-enhancing properties)을 동물 인지(animal cognition)의 모델을 사용하여 추정하였다: 대상 인식 작업 모델.
N. I. N. (National Institute of Nutrition, Hyderabad, India)로부터 수득한 수컷 위스터 랫(230 - 280 grams)을 실험 동물로서 사용하였다. 4 마리의 동물을 각각의 케이지에 거처를 제공하였다. 동물을 하루 전에 20 % 먹이 차단(food deprivation)을 유지시키고, 실험 동안에 임의로 물을 제공하였고, 12 시간 명암 주기에서 유지시켰다. 또한 랫이 어떠한 대상(any objects)의 부재에서 1 시간 동안 각각의 무대(individual arenas)에 길들였다(habituated).
익숙한 대상(the familiar)(T1) 및 선택 시도(choice trial)(T2)의 한 시간 전에, 12 마리 랫의 하나의 그룹에게 비히클(vehicle)(1 mL/Kg)을 경구적으로 주었고, 또 다른 세트의 동물에게 경구적으로 또는 i.p. 으로 화학식 (Ⅰ)의 화합물을 주었다.
실험을 아크릴(acrylic)로 구성된 50 x 50 x 50 cm 오픈필드(open field)에서 실시하였다. 익숙하게 하는 단계(familiarization phase)(T1)에서, 황색 마스킹테이프(yellow masking tape)로만(a1 및 a2) 덮혀진 두 개의 동일한 대상[플라스틱 병(plastic bottles), 12.5 cm 높이 x 5.5 cm 지름]을 벽으로부터 10 cm 두 개의 인접한 코너에 배치시킨, 오픈 필드에 랫을 3 분 동안 개별적으로 두었다. 장기적인 기억 테스트(long-term memory test)를 위해 (T1) 시도(trial)의 24 시간 후에, 동일한 랫을, 이들이 (T1) 시도에 둔 것과 같은 동일한 무대(arena)에 두었다. 선택 단계(T2)에서 랫을 하나의 익숙한 대상(familiar object) 및 하나의 새로운 대상(b)의 존재[호박색(Amber color) 유리병, 12 cm 높이 및 5 cm 지름]에서 3 분 동안 오픈 필드를 탐구하는 것을(explore) 허용하였다. 익숙한 대상은 유사한 질감(textures), 색깔(colors) 및 크기(sizes)를 나타내었다. T1 및 T2 시도(trial) 동안에, 각각의 대상의 탐구(explorations)[킁킁거리며 냄새를 맡기(sniffing), 핥기(licking), 저작(chewing) 또는 1 cm 미만의 거리에서 대상을 향하여 코를 향하면서 코털(vibrissae)을 움직임을 갖음]를 스톱워치(stopwatch)에 의해 별도로 기록하였다. 대상에 앉기(Sitting)는 탐구 활동(exploratory activity)으로서 간주하지 않았지만 이는 좀처럼 관찰되지 않았다.
T1 은 익숙한 대상을 탐구하는데 이용한 전체 시간이다(a1+a2).
T2 는 익숙한 대상 및 새로운 대상을 탐구하는데 이용한 전체 시간이다(a3+b).
대상 인식 테스트를 Ennaceur, A., Delacour, J., 1988, A new one-trial test for neurobiological studies of memory in rats - Behavioural data, Behav. Brain Res., 31, 47-59 에 기재된 바와 같이 실시하였다.
몇몇 대표적인 화합물은 증가된 새로운 대상 인식 즉; 새로운 대상에서의 증가된 탐구 시간 및 보다 높은 변별도 지수(higher discrimination index)를 나타내는 긍정적인 효과(positive effects)를 나타내었다.
Figure pct00030

[ 실시예 77]
수중 미로( Water Maze )
수중 미로는 물로 채워진 1.8 m 지름; 0.6 m 높이의 원형의 물 미로 투브(circular water maze tub)로 이루어져있다. 모든 랫에 대해서 변함없이 유지시킨(which remained constant for all the rats), 4개의 가상적인 사분면(four imaginary quadrants) 중 하나의 중심에 플랫폼(platform)을 물 표면 아래 1.0 cm 에 두었다. 교육을 습득하기 전에 랫에게 비히클 또는 테스트 화합물을 투여하였고 비히클 또는 테스트 화합물의 투여 후 30 분에; 스콜폴라민(scopolamine)을 투여하였다. 랫을 서서히 낮추었고, 발을 첫 번째로 물에 놓았다. 랫이 플랫폼을 발견하기 위해 60 초 동안 수영하게 하였다. 만약 이러한 시간 동안에 플랫폼이 발견된다면, 실험을 중지하고, 미로에서 내보내지기 전에(before being removed from the maze) 랫을 30 초 동안 플랫폼에 머무르게 하였다. 만약 플랫폼이 60 초의 시도 동안에 발견되지 않는다면, 그 다음에 랫을 플랫폼에 손으로 두었다. 각각의 랫은 하루에 4 번의 시도를 받았다. 각각의 동물이 플랫폼을 풀(pool)로부터 제거하는 단일 120 초 프로브 시도(single 120 seconds probe trial)를 받은 5 일째 되는 날에 과제(task)의 기억력(Retention)을 평가하였다. 습득 훈련(acquisition training) 동안에 목표 사분면(target quadrant)(ms)(플랫폼이 놓여있는 사분면)에서의 소비된 시간(Time spent)을 프로브 시도(probe trial)에 대해서 계산하였다. 플랫폼에 도착하기 위한 반응시간(Latency)(ms), 수영 속도(cm/s) 및 경로 길이(path length)(cm)를 습득 실험(acquisition trials)에서 측정하였다.

Claims (19)

  1. 하기의 화학식(Ⅰ)의 화합물
    [화학식 Ⅰ]
    Figure pct00031


    (이 식에서,
    R1 은 수소(hydrogen), 히드록시(hydroxy), 할로겐(halogen), 할로알킬(haloalkyl), 할로알콕시(haloalkoxy), 니트로(nitro), 아미드(amide), 아민(amine), 시아노(cyano), 카르복실(carboxylic), 시클로알킬(cycloalkyl), 알킬(alkyl), 알켄닐(alkenyl), 알키닐(alkynyl), 알콕시(alkoxy), 아릴(aryl), 아랄킬(aralkyl), 헤테로아릴(heteroaryl), 헤테로아랄킬(heteroaralkyl) 또는 헤테로시클릴(heterocyclyl)을 나타내고;

    R2 는 수소, 알킬, 시클로알킬, 아릴, 아랄킬, 헤테로아릴, 헤테로아랄킬 또는 헤테로시클릴을 나타내고;
    Figure pct00032


    R3 은 하기를 나타내고;
    Figure pct00033


    R4 는 수소, 히드록시(hydroxy), 아민, 알킬, 알콕시, 아릴, 아릴옥시(aryloxy), 시클로알킬, 시클로알콕시(cycloalkoxy), 헤테로아릴, 헤테로아랄킬 또는 헤테로시클릴을 나타내고;

    R5 은 수소, 알킬, 시클로알킬 또는 헤테로시클릴을 나타내고;

    R6 은 헤테로아릴을 나타내고;

    R7 및 R8 은 수소, 알킬, 시클로알킬 또는 헤테로시클릴을 나타내고;

    선택적으로 'N' 원자와 함께 R7 및 R8 은, C, O, N, S 중에서 선택한 하나 또는 그 이상의 헤테로원자(heteroatoms)를 포함하는 4 내지 9 원환(4 to 9 member rings)을 형성할 수 있다).
  2. 제1항에 있어서,
    R1 은 수소, 히드록시, 할로겐, 할로알킬, 할로알콕시, 니트로, 아미드, 아민, 시아노, 카르복실, 시클로알킬, 알킬, 알켄닐, 알키닐, 알콕시, 아릴, 아랄킬, 헤테로아릴, 헤테로아랄킬 또는 헤테로시클릴을 나타내는 화합물.
  3. 제1항에 있어서,
    R2 는 수소, 알킬, 시클로알킬, 아릴, 아랄킬, 헤테로아릴, 헤테로아랄킬 또는 헤테로시클릴을 나타내는 화합물.
  4. 제1항에 있어서,
    R3 은 하기를 나타내는 화합물.
    Figure pct00034

    Figure pct00035

  5. 제1항에 있어서,
    R4 는 수소, 히드록시, 아민, 알킬, 알콕시, 아릴, 아릴옥시, 시클로알킬, 시클로알콕시, 헤테로아릴, 헤테로아랄킬 또는 헤테로시클릴을 나타내는 화합물.
  6. 제1항에 있어서,
    R5 는 수소, 알킬, 시클로알킬 또는 헤테로시클릴을 나타내는 화합물.
  7. 제1항에 있어서,
    R6 는 헤테로아릴을 나타내는 화합물.
  8. 제1항에 있어서,
    R7 는 수소, 알킬, 시클로알킬 또는 헤테로시클릴을 나타내는 화합물.
  9. 제1항에 있어서,
    R8 은 수소, 알킬, 시클로알킬 또는 헤테로시클릴을 나타내는 화합물.
  10. 제1항에 있어서,
    하기로 이루어진 군으로부터 선택된 화합물:
    N-[(2-아자트리시클로[3.3.1.13,7]덱(dec)-2-일)프로필]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
    N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-1-이소부틸-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
    N-[1-(트리시클로[3.3.1.13,7]덱-2-일)피롤리딘-3-일]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(5-히드록시-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(5-페닐-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
    N-[(1,4-디아자트리시클로[4.3.1.13,8]운덱-4-일)프로필]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로-퀴놀린-3-카르복사미드;
    N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-1-이소부틸-6-메톡시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-6-클로로-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-6-플루오로-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-6-브로모-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-6-아미노-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[2-(피리딘-3-일 메틸)-1-아자비시클로[2.2.2]옥트-3-일]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[2-(피리딘-2-일 메틸)-1-아자비시클로[2.2.2]옥트-3-일]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-(2-메틸-2-아자트리시클로[3.3.1.13,7]덱-5-일)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로-퀴놀린-3-카르복사미드;
    N-(2-이소프로필-2-아자트리시클로[3.3.1.13,7]덱-5-일)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로-퀴놀린-3-카르복사미드;
    N-(2-벤질-1-아자비시클로[2.2.2]옥트-3-일)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)에틸]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
    N-(2-부틸-2-아자트리시클로[3.3.1.13,7]덱-5-일)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
    N-(2-에틸-2-아자트리시클로[3.3.1.13,7]덱-5-일 메틸)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
    N-(1-부틸 피페리딘-4-일)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
    N-[(1-(피롤리딘-1-일)트리시클로[3.3.1.03,7]노난-3-일]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로-퀴놀린-3-카르복사미드;
    N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-6-니트로-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-(2-아자트리시클로[3.3.1.13,7]덱-5-일)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
    N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-1-메틸-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
    N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-1-벤질-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
    N-[(4-(모르폴린-4-일)시클로헥실)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
    N-(4-(피롤리딘-1-일)시클로헥실)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드 히드로클로라이드;
    N-(2-메틸-2-아자트리시클로[3.3.1.13,7]덱-5-일)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-(2-메틸-2-아자트리시클로[3.3.1.13,7]덱-5-일)-1-시클로프로필-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-(2-메틸-2-아자트리시클로[3.3.1.13,7]덱-5-일)-4-히드록시-1-이소부틸-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[2-(피리딘-2-일메틸)-1-아자비시클로[2.2.2]옥트-3-일]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[2-(피리딘-2-일메틸)-1-아자비시클로[2.2.2]옥트-3-일]-1-시클로프로필-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[2-(피리딘-2-일메틸)-1-아자비시클로[2.2.2]옥트-3-일]-4-히드록시-1-이소부틸-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-1-시클로프로필-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-1-벤질-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-2-옥소-1-(피리딘-2-일메틸)-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-2-옥소-1-(피리딘-3-일메틸)-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-1-시클로펜틸-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-1-시클로헥실-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(5-히드록시-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-1-시클로헥실-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(5-히드록시-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-1-이소부틸-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(5-히드록시-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-1-시클로프로필-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(5-히드록시-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-1-시클로펜틸-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(5-히드록시-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-2-옥소-1-(테트라히드로피란-4-일)-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-2-옥소-1-(테트라히드로피란-4-일)-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(5-히드록시-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-1-벤질-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(5-히드록시-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-2-옥소-1-(피리딘-2-일메틸)-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(5-페닐-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-2-옥소-1-(피리딘-2-일메틸)-1,2-디히드로퀴놀린-3-카르복사미드
    N-[(5-페닐-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-1-시클로프로필-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(5-페닐-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-1-이소부틸-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(5-페닐-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-2-옥소-1-(2-메틸벤질)-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[1-(테트라히드로피란-4-일메틸)피페리딘-4-일]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[1-(테트라히드로피란-4-일메틸)피페리딘-4-일]-1-시클로프로필-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[1-(테트라히드로피란-4-일메틸)피페리딘-4-일]-4-히드록시-1-이소부틸-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[1-(테트라히드로피란-4-일메틸)피페리딘-4-일]-1-벤질-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-(1-페네틸 피페리딘-4-일)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(1-(피롤리딘-1-일) 트리시클로[3.3.1.03,7]노난-3-일]-1-시클로프로필-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(1-(피롤리딘-1-일) 트리시클로[3.3.1.03,7]노난-3-일]-1-시클로헥실-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(1-(피롤리딘-1-일) 트리시클로[3.3.1.03,7]노난-3-일]-1-벤질-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(1-(피롤리딘-1-일) 트리시클로[3.3.1.03,7]노난-3-일]--4-히드록시-2-옥소-1-(피리딘-2-일메틸)-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(1-(피롤리딘-1-일) 트리시클로[3.3.1.03,7]노난-3-일]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(1-(피롤리딘-1-일) 트리시클로[3.3.1.03,7]노난-3-일]-1-시클로프로필-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(1-(피롤리딘-1-일) 트리시클로[3.3.1.03,7]노난-3-일]-1-시클로헥실-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-(2-메틸-2-아자트리시클로[3.3.1.13,7]덱-5-일메틸)-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-(2-메틸-2-아자트리시클로[3.3.1.13,7]덱-5-일메틸)-1-시클로프로필-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-(2-메틸-2-아자트리시클로[3.3.1.13,7]덱-5-일메틸)-1-벤질-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-(2-메틸-2-아자트리시클로[3.3.1.13,7]덱-5-일메틸)-4-히드록시-1-이소부틸-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-(2-메틸-2-아자트리시클로[3.3.1.13,7]덱-5-일메틸)-1-시클로헥실-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-(2-에틸-2-아자트리시클로[3.3.1.13,7]덱-5-일메틸)-1-시클로펜틸-4-히드록시-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(5-메톡시-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드;
    N-[(5-부톡시-2-아자트리시클로[3.3.1.13,7]덱-2-일)프로필]-4-히드록시-1-이소프로필-2-옥소-1,2-디히드로퀴놀린-3-카르복사미드; 및 이의 유도체(derivatives), 전구체(prodrugs), 호변 이성질체(tautomers), 입체 이성질체(stereoisomers), 다형체(polymorphs), 용매화합물(solvates), 수화물(hydrates), 대사물질(metabolites), N-옥사이드(N-oxides) 및 약제학적으로 허용가능한 염(pharmaceutically acceptable salts).
  11. 화학식 (Ⅰ)의 화합물-모든 치환기(substitutions)는 제1항에서 기재한 바와 같다-을 수득하기 위해, 적절한 용매(solvent)를 사용하여,
    화학식 (59)의 에스테르 화합물(ester compound)과
    [화학식 59]
    Figure pct00036


    아민 화합물(amine compound)을 반응시키는 것을 포함하는,
    Figure pct00037

    제1항의 화학식(Ⅰ)의 화합물의 제조 방법.
  12. 제1항에 따른 화합물의 치료학적 유효량(therapeutically effective amount)과 함께 제1항 내지 제11항 중 어느 한 항에 따른 화합물 또는 약제학적으로 허용가능한 담체(pharmaceutically acceptable carrier), 희석제(diluent), 수용체(recipient) 또는 용매 화합물(solvate)을 포함하는 약제학적 조성물.
  13. 제12항에 있어서,
    상기 약제학적 조성물은 정제(tablet), 캡슐(capsule), 분말(powder), 캔디(lozenges), 좌약(suppositories), 시럽(syrup), 용액(solution), 현탁액(suspension) 또는 주사가능한 물질(injectable)의 형태이고, 상기 형태는 단일 투여(single dose) 또는 다중 투여 유닛(multiple dose units)으로 투여되는 약제학적 조성물.
  14. 제12항에 있어서,
    5-HT3 수용체 조절인자(5-HT3 receptor modulators), 5-HT6 수용체 조절인자(5-HT6 receptor modulators), 양성자 펌프 억제제(proton pump inhibitors), 선택적 세로토닌 재흡수 저해제(selective serotonin reuptake inhibitors), 삼환계 항우울제(tricyclic antidepressants), 콜레시스토키닌 수용체 조절인자(cholecystokinin receptor modulators), 모틸린 수용체 조절인자(motilin receptor modulators), 산화질소 합성효소 억제제(nitric oxide synthase inhibitors), GABAB 수용체 작용물질 또는 조절인자(GABAB receptor agonists or modulators), 뉴로키닌 수용체 조절인자(Neurokinin receptor modulators), 칼시토닌 유전자-관련 펩티드 수용체 조절인자(calcitonin gene-related peptide receptor modulators), 자극성 완화제(stimulant laxatives), 삼투성 완화제(osmotic laxatives), 변연화제(fecal softeners), 식이섬유 보충물(fiber supplements), 제산제(antacids), GI 이완제(GI relaxants), 로페라미드(loperamide), 디페녹시레이트(diphenoxylate), 방독 화합물(anti-gas compounds), 항-구토 도파민 D2 길항물질(anti-emetic dopamine D2 antagonists), 비만α-세포 안정제(mast-cell stabilizing agents), DPP IV 억제제(DPP IV inhibitors), 아세틸콜린에스테라제 억제제(acetylcholinesterase inhibitors), α2-아드레날린수용체 길항물질(α2-adrenoceptor antagonists), NMDA 수용체 길항물질(NMDA receptor antagonists), M1 무스카린 수용체 작용물질(M1 muscarinic receptor agonists), 알로스테릭 조절인자(allosteric modulators), 히스타민 H2 수용체 길항물질(histamine H2 receptor antagonists), 히스타민 H3 수용체 길항물질(histamine H3 receptor antagonists), 잔틴 유도체(Xanthin derivatives), 칼슘 채널 차단제(calcium channel blockers), 프로스타글란딘 유사체(prostaglandin analogues), 아편계 진통제(opioid analgesics), 소마토스타틴 유사체(somatostatin analogues) 또는 C1 채널 활성제(C1 channel activators)로 이루어진 군으로부터 선택된 하나 또는 그 이상의 추가적인 유효성분(active ingredient)을 포함하는 약제학적 조성물.
  15. 제12항 내지 제14항 중 어느 한 항에 있어서,
    5-HT4 수용체와 관련된 질환(diseases related to 5-HT4 receptor)을 치료 및 예방하기 위한 약제학적 조성물.
  16. 제1항 내지 제10항 중 어느 한 항에서 나타낸 바와 같은 화학식 (1) 의 화합물의 치료학적 유효량을 이를 필요로 하는 환자에게 제공하는 것을 포함하는, 상기 환자에게 5-HT4 수용체에 의해 영향을 받는 질환(disorder affected by the 5-HT4 receptor)의 치료 방법.
  17. 제1항 내지 제10항 중 어느 한 항에 따른 화합물의 치료학적 유효량을 투여하는 것을 포함하는, 위 식도 역류 질환(gastroesophageal reflux disease), 위장 질환(gastrointestinal disease), 위 운동 장애(gastric motility disorder), 비궤양성 소화불량(non-ulcer dyspepsia), 기능성 소화불량(functional dyspepsia), 과민성대장 증후군(irritable bowel syndrome), 변비(constipation), 소화불량(dyspepsia), 식도염(esophagitis), 위 식도 질환(gastroesophageal disease), 구역(nausea), 중추신경계 질환(central nervous system disease), 알츠하이머병(Alzheimer's disease), 인지기능장애(cognitive disorder), 구토(emesis), 편두통(migraine), 신경 질환(neurological disease), 통증(pain)과 같은 질환, 및 심부전(cardiac failure) 및 심장 부정맥(heart arrhythmia)과 같은 심혈관 질환(cardiovascular disorders)의 치료 방법.
  18. 5-HT4 수용체와 관련된 질환의 치료 및 예방을 위한 의약(medicament)의 제조(manufacture)에 있어서 제1항 내지 제10항 중 어느 한 항에 따른 화합물의 용도.
  19. 방사성 표지된(radiolabeled), 제1항에서 청구된 화합물.
KR1020127007464A 2009-09-14 2009-12-29 5-ht₄ 수용체 리간드로서의 1,2-디히드로-2-옥소퀴놀린 화합물 KR101386354B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN2224CH2009 2009-09-14
IN2224/CHE/2009 2009-09-14
PCT/IN2009/000745 WO2011030349A1 (en) 2009-09-14 2009-12-29 L -dihydro-2-oxoquinoline compounds a 5-ht4 receptor ligands

Publications (2)

Publication Number Publication Date
KR20120081986A true KR20120081986A (ko) 2012-07-20
KR101386354B1 KR101386354B1 (ko) 2014-04-16

Family

ID=42126528

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127007464A KR101386354B1 (ko) 2009-09-14 2009-12-29 5-ht₄ 수용체 리간드로서의 1,2-디히드로-2-옥소퀴놀린 화합물

Country Status (17)

Country Link
US (1) US8598204B2 (ko)
EP (1) EP2507225B1 (ko)
JP (1) JP5540099B2 (ko)
KR (1) KR101386354B1 (ko)
CN (1) CN102639526B (ko)
AU (1) AU2009352490B2 (ko)
CA (1) CA2771885C (ko)
DK (1) DK2507225T3 (ko)
EA (1) EA020227B1 (ko)
ES (1) ES2578628T3 (ko)
HK (1) HK1173140A1 (ko)
IL (1) IL218525A (ko)
MX (1) MX2012002608A (ko)
NZ (1) NZ598505A (ko)
SG (1) SG178557A1 (ko)
WO (1) WO2011030349A1 (ko)
ZA (1) ZA201201429B (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2423212B1 (en) * 2009-04-24 2016-06-01 Nissan Chemical Industries, Ltd. Process for production of 2-azaadamantane compound from bicyclocarbamate compound
RU2549551C2 (ru) * 2009-06-19 2015-04-27 Эббви Инк. Производные диазагомоадамантана и способы их применения
JP6180432B2 (ja) 2011-12-22 2017-08-16 コネクシオス ライフ サイエンシズ プライベート リミテッド アザアダマンタン誘導体およびその使用
RU2557249C1 (ru) * 2014-03-03 2015-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный технический университет" Способ получения 1-гидрокси-4-адамантанона
CN106957252B (zh) * 2014-11-19 2019-11-19 连云港恒运药业有限公司 一种质子泵抑制剂中间体及其制备方法
IL297543A (en) 2017-11-30 2022-12-01 Arrakis Therapeutics Inc Nucleic acid-binding photoprobes and their uses
WO2019111218A1 (en) 2017-12-08 2019-06-13 Cadila Healthcare Limited Novel heterocyclic compounds as irak4 inhibitors
CN115677567A (zh) * 2022-11-15 2023-02-03 大唐环境产业集团股份有限公司 一种4-氨基-1-哌啶丙醇的合成方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726187A (en) 1992-10-16 1998-03-10 Smithkline Beecham Plc N-alkylpiperidinyl-4-methyl carboxylic esters/amides of condensed ring systems as 5-HT4 receptor antagonists
JPH07324087A (ja) * 1994-04-04 1995-12-12 Taisho Pharmaceut Co Ltd 複素環化合物
US7405235B2 (en) * 2001-05-04 2008-07-29 Paratek Pharmaceuticals, Inc. Transcription factor modulating compounds and methods of use thereof
TWI351282B (en) * 2004-04-07 2011-11-01 Theravance Inc Quinolinone-carboxamide compounds as 5-ht4 recepto
US7407966B2 (en) * 2004-10-07 2008-08-05 Epix Delaware, Inc. Thienopyridinone compounds and methods of treatment
DE602005016446D1 (de) 2004-11-05 2009-10-15 Theravance Inc 5-HT4-Rezeptoragonistenverbindungen
WO2006069125A1 (en) 2004-12-22 2006-06-29 Theravance, Inc. Indazole-carboxamide compounds
EP1856110B1 (en) 2005-02-22 2011-06-22 Pfizer Inc. Oxyindole derivatives as 5ht4 receptor agonists
DK1856114T3 (en) 2005-02-25 2014-11-17 Raqualia Pharma Inc Benzisoxazol-DERIVATIVES
US7446114B2 (en) * 2005-03-02 2008-11-04 Theravance, Inc. Quinolinone compounds as 5-HT4 receptor agonists
CA2615611C (en) 2005-07-22 2011-09-27 Pfizer Inc. Indazole derivatives
US8557994B2 (en) * 2009-07-27 2013-10-15 Daljit Singh Dhanoa Deuterium-enriched pyridinonecarboxamides and derivatives

Also Published As

Publication number Publication date
HK1173140A1 (en) 2013-05-10
JP2013504561A (ja) 2013-02-07
IL218525A0 (en) 2012-07-31
KR101386354B1 (ko) 2014-04-16
EP2507225B1 (en) 2016-06-01
DK2507225T3 (en) 2016-07-04
CN102639526B (zh) 2014-06-04
SG178557A1 (en) 2012-03-29
IL218525A (en) 2014-12-31
US8598204B2 (en) 2013-12-03
CA2771885A1 (en) 2011-03-17
EA201270421A1 (ru) 2012-09-28
CN102639526A (zh) 2012-08-15
AU2009352490B2 (en) 2013-06-20
AU2009352490A1 (en) 2012-04-19
JP5540099B2 (ja) 2014-07-02
NZ598505A (en) 2013-01-25
CA2771885C (en) 2014-04-08
EA020227B1 (ru) 2014-09-30
US20120277216A1 (en) 2012-11-01
MX2012002608A (es) 2012-04-02
ZA201201429B (en) 2012-10-31
WO2011030349A1 (en) 2011-03-17
ES2578628T3 (es) 2016-07-28
EP2507225A1 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
KR101386354B1 (ko) 5-ht₄ 수용체 리간드로서의 1,2-디히드로-2-옥소퀴놀린 화합물
AU2010337837B2 (en) Alpha4beta2 neuronal nicotinic acetylcholine receptor ligands
KR101376145B1 (ko) α₄β₂ 니코틴성 아세틸콜린 수용체 리간드로서 비시클릭 화합물
TW201625600A (zh) 胺基酯衍生物
AU2009355487C1 (en) Bicyclic compounds as alpha4beta2 nicotinic acetylcholine receptor ligands

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161219

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180105

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190110

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200108

Year of fee payment: 7