KR20120027235A - 나노와이어를 가지는 다중-접합 광전지 - Google Patents

나노와이어를 가지는 다중-접합 광전지 Download PDF

Info

Publication number
KR20120027235A
KR20120027235A KR1020117027151A KR20117027151A KR20120027235A KR 20120027235 A KR20120027235 A KR 20120027235A KR 1020117027151 A KR1020117027151 A KR 1020117027151A KR 20117027151 A KR20117027151 A KR 20117027151A KR 20120027235 A KR20120027235 A KR 20120027235A
Authority
KR
South Korea
Prior art keywords
junction
substrate
nanowires
doped
photovoltaic cell
Prior art date
Application number
KR1020117027151A
Other languages
English (en)
Other versions
KR101633953B1 (ko
Inventor
제리 엠. 올손
Original Assignee
솔 발테익스 에이비
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 솔 발테익스 에이비 filed Critical 솔 발테익스 에이비
Publication of KR20120027235A publication Critical patent/KR20120027235A/ko
Application granted granted Critical
Publication of KR101633953B1 publication Critical patent/KR101633953B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0475PV cell arrays made by cells in a planar, e.g. repetitive, configuration on a single semiconductor substrate; PV cell microarrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/061Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being of the point-contact type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/953Detector using nanostructure
    • Y10S977/954Of radiant energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Photovoltaic Devices (AREA)

Abstract

광을 전기에너지로 변환시키기 위한 다중-접합 광전지는 표면(31)을 가지는 기판(3)을 포함하고, 기판(3)의 표면(31)에서의 영역(4)은 기판(3)에 제1 p-n 접합이 형성되도록 도핑된다. 광전지는, 도핑된 영역(4)이 기판(3)에서 위치하게 되는 위치에서 기판(3)의 표면(31) 위에 배열되는 나노와이어(2)를 가져, 제2 p-n 접합이 나노와이어(2)에서 형성되어 제1 p-n 접합과 직렬로 연결된다.

Description

나노와이어를 가지는 다중-접합 광전지{MULTI-JUNCTION PHOTOVOLTAIC CELL WITH NANOWIRES}
본 발명은 활성요소로서 나노와이어를 포함하는 광전지에 관한 것이다.
에너지 가격이 급격히 높아지고 또한 화석연료 사용의 단점이 점차로 명백해짐에 따라서 태양광 전지에 대한 관심이 지난 몇 년 동안에 증가하여 왔다. 게다가, 기술 돌파구는, 고효율 광전지(태양광 전지)의 대량 제조 가능하다는 것을 암시한다.
예컨대, p-n접합과 쇼트키 다이오드와 같은 정류접합(rectifying junctions)들은 광검출기뿐만 아니라 태양광 전지 장치들에 사용되는 광전지를 만들기 위해 반도체 재료로 제조된다. 광전지는 광(빛)을 전기로 변환하는데, 광은 p-n접합을 조사하여 반대로 대전된 입자쌍:전자와 홀(hole)을 생성한다. 이들 전하들은 정류접합에 의해 분리되어 전류를 생성한다. 광검출기는 유사한 원리로 동작한다.
통상적인 광전지는 전면과 후면 콘택(contact)을 가지는, 적어도 두 개의 비대칭으로 도핑된(doped) 반도체로 구성되는 평면 장치이다. 통상적인 광전지에 있어서, 광은 전면 콘택들에 의해 형성되는 그리드(grid) 사이로 도입되고, 여기에서 광은 n-타입 층과 p-타입 층에 의해 흡수되어 전자-홀 쌍이 생성된다. 전자-홀 쌍은 p-n접합에 의해 분리되고 또한 광전지를 가로질러 전압이 발생한다. 전지 콘택들을 가로질러 부하를 형성함으로써 가용 전력을 얻을 수 있고, 따라서 광전지는 복사(radiation)를 가용 전기에너지로 직접 변환한다.
광에서 전기로 변환효율을 제한하는 한 가지 요소는, p-n접합을 가로질러 역전류 누설이 발생한다는 것이다. 평면 전지에 있어서, p-n접합의 면적이 증가할수록 역전류 누설은 증가한다.
평면 전지에 대해 바람직하지 않은 역전류 누설을 줄이기 위해 많은 방식이 있지만, 역전류 누설의 감소가 p-n접합의 면적에 의해 제한되는 방법들이 사용되고, 평면 전지에 있어서 면적을 감소시키는 것은, 전지가 보다 작아져 보다 적은 광을 수집하게 된다는 것을 의미한다. 상이한 전지 기하학적구조를 사용함으로써, 전지의 전체 면적을 줄이는 일이 없이 p-n접합의 영역을 줄이는 것이 가능하다.
한 가지 성공적인 비-평면 기하학구조는 미국특허 제4,234,352호에 기술되어 있는, 실리콘 점-접합(dot-junction) 광전지이다. 이 특허에서, 점-접합 전지가 기술되어 있는데, 실리콘 기판의 한 표면은 국부적으로 도핑된 일련의 n+ 영역들과 p+영역들(점 접합들)을 가져, 도핑된 영역들의 면적이 점-접합 전지의 전체 면적에 비해 상당히 작아지게 된다. p+영역들은 벌크를 가지는 p-n접합을 형성하고, n+영역들은 n-타입 콘택들을 위한 저 저항도의 영역을 형성한다.
그러나, 역전류 누설이 제한된다고 하더라도, 점-접합의 효율은 여전히 최적이지 못하다. 예컨대, 점-접합 각각은 단일 띠 간격(babd gap) 태양광 전지이기 때문에, 태양광 스펙트럼에서 포톤(photon)들이 가지는 광범위한 범위의 에너지를 효율적으로 변환할 수 없는 관계로 효율이 제한된다. 이상적인 제한에서, 띠 간격 에너지와 동일한 에너지를 가지는 포톤만이 효율적으로 전기로 변환된다. 전지 재료의 띠 간격 아래의 포톤은 소멸되고; 이들은 전지를 통과하거나 또는 재료 내에서 단지 열로 변환된다. 띠 간격 에너지를 초과하는 포톤들의 에너지 또한 띠 끝(band dege)으로 캐리어 이완(carrier relaxation)에 인해 소멸되어 발열한다.
따라서, 점-접합 광전지는 감소된 역전류 누설에 관해 장점이 있다고 하더라도, 점 접합 태양광 전지는 여전히 포톤 에너지 효율의 관점에서 보면 단점을 가진다. 즉, 태양광 스펙트럼의 많은 부분이 소멸되어 발열되고 또한 전기로 변환되지 않는다.
다른 배경기술은 특허서류 EP1944811호에 의해 반영된다.
상기 설명에서 보아, 본 발명의 목적은 상기 기술들과 선행기술의 개선사항을 제공하는 것이다. 특히, 광전지가 보다 효율적으로 광을 전기로 변환하도록 점-접합 광전지를 개선하는 것이 목적이다.
그러므로, 광을 전기에너지로 변환하기 위한 다중-접합 광전지가 제공된다. 광전지는 표면을 가지는 기판을 포함하는데, 기판에 제1 p-n접합이 형성되도록 기판의 표면에서 소정의 영역이 도핑된다. 광전지는, 도핑된 영역이 기판에 위치하게 되는 위치에서 기판의 표면 상에 배열되는 나노와이어를 가져, 나노와이어에서 제2 p-n접합이 형성되고 또한 제1 p-n접합과 직렬로 연결된다.
나노와이어"에서" 형성된 p-n접합의 의미는, p-n접합의 p-타입과 n-타입 부분들 둘 다가 나노와이어에 형성되거나, 또는 나노와이어가 p-n접합의 p-타입과 n-타입 부분들 중 단지 하나만을 포함하는 한편, 접합의 다른 부분은 도핑된 영역에서 광전지의 다른 부분에서, 예컨대 나노와이어와 연결된 콘택에서 기판에 형성되는 가능성을 포함한다.
나노와이어가 기판의 표면 위에 배열되기 때문에, 나노와이어가 기판의 표면에서부터 성장하거나, 또는 기판의 표면 위에 또는 표면에 위치한다고 말할 수 있다.
본 발명의 광전지는, 두 개의 p-n접합들(다이오드들) 각각이 스펙트럼의 각 부분에 걸쳐 광을 흡수하기 위한 특유의 띠 간격 에너지 각각을 가질 수 있다는 점에서 장점이 있다. 두 개의 p-n접합들은 협동하여 태양광 스펙트럼을 가능한 많이 흡수도록 선택되어, 가능한 많은 태양광 에너지로부터 전기를 생성하여, 태양광 전지의 효율을 증가시킨다. 간략하게 설명하면, 기판의 도핑된 영역에 배열된 나노와이어에 의해서, 제2 p-n접합은 제1 p-n접합에 인접하게 배열되어 있어서, 최종 광전지는 소위 다중-접합 광전지의 원리와 장점을 취하게 된다.
게다가, 나노와이어가 제2 p-n접합을 형성되는데 사용되기 때문에, 추가적인 장점들을 달성한다. 예컨대 통상적인 평면 Ⅲ-Ⅴ 다중-접합 태양광 전지와 비교하면, 이들 장점들은, 나노와이어에 보다 많은 p-n접합 소자들을 배열하기가 보다 쉽기 때문에 높은 효율값을 달성할 가능성과, 전위(dislocation)를 피하기 위하여 큰 기판 면적에 대한 정확한 격자정합(lattice matching)의 필요성을 줄이는 것과, 그리고 높은 정도의 조성 균질성(compositional homogeneity)를 얻기가 보다 쉽기 때문에 개선된 기능성을 포함한다.
전형적으로, 제1 p-n접합은 점 접촉 광다이오드(point contact diode)인 한편 제2 p-n접합은 축방향 광다이오드(axial photodiode) 또는 방사상 광다이오드(radial photodiode)이다. 또한, 나노와이어가 세장된 구조(elongated structure) 보다는 보다 그루터기 같은(stump-like)을 형상을 가지도록 나노와이어는 매우 짧을 수 있다는 것을 알아야 한다. 그러나, 나노와이어가 매우 짧을 수 있다 하더라도, 핵형성(nucleation)(성장) 시간에 대한 상이한 시간 값과 별개로 긴 나노와이어와 동일한 방식으로 성장한다.
전형적으로, 기판은 상이하게 도핑된 부분들을 포함할 수 있다고 말할 수 있는데, 한 부분은 도핑된 영역을 포함하는 반면 나머지 부분은 도핑되지 않거나 또는 상기 도핑된 영역과는 상이한 방식으로 도핑된다. 기판의 도핑된 영역과 나머지 부분들 간의 기능적 차이는, 상기 영역이 기판에서 제1 p-n접합을 형성하도록 상기 영역이 도핑된다는 점에 있다. 그러므로, 도핑된 영역은 도핑과 그리고 p-n접합이 형성된다는 점에 의해 구별할 수 있다.
제1 p-n접합이 형성될 수 있는 한 도핑된 영역의 정확한 크기는 다중-접합 광전지 배후의 원리에 대해 관련되지 않는다. 그러나, 도핑된 영역의 크기는 전형적으로 900 나노미터 미만일 수 있다. 보다 상세히는, 도핑된 영역의 크기는 예컨대 100 내지 300 나노미터의 범위 이내일 수 있고, 또한 상기 크기는 기판의 표면에서부터 보았을 때 도핑된 영역의 직경 또는 그 깊이를 언급할 수 있다.
제2 p-n접합이 나노와이어에 형성될 수 있다. 즉, 나노와이어는 제2 p-n접합을 포함하도록 형성될 수 있는데, 이는 나노와이어가 제2접합을 포함할 수 있다는 것, 즉 접합의 p-타입과 n-타입 부분 둘 다를 포함하는 것을 의미하는데, 이는 기판 또는 전기적 콘택과 관련해 나노와이어를 성장하고 또한 와이어를 배열할 때 높은 정도의 융통성을 제공한다.
도핑된 영역은 이온주입(ion implantation), 도펀트 확산(dopant diffusion), 이종에피택시(heteroepitaxy) 및 동종에피택시(homoepitaxy)중 소정의 하나에 의해 형성될 수 있는데, 상기 방법은 그 표면에 도핑된 영역을 가지는 기판의 제조에 융통성을 제공한다.
나노와이어는 도핑된 영역과 직접 접촉할 수 있고, 보다 상세히 설명하면, 나노와이어가 도핑된 영역 위에서 성장(즉, 위에서 배열)할 수 있다. 이는, 제2 p-n접합에서 흡수되지 않은 광 스펙트럼의 부분이 제1 p-n접합에 의해 흡수될 수 있다는 이해를 기반으로 하면, 광전지의 효율을 증가시킬 수 있다는 것을 보장할 수 있다는 점에서 상당한 장점이라 할 수 있다. 바람직하게, p-n접합들은, 짧은 파장을 가지는 광은 제2(상부) p-n접합에 의해 흡수되는 한편 상대적으로 긴 파장을 가지는 광은 제1(하부) p-n접합에 의해 흡수되도록 구성된다.
나노와이어는 도핑된 영역과 에피택셜 관계에 있을 수 있는데, 이는 태양광 전지의 효율을 증가시키기 위해 두 개의 p-n접합들의 띠 간격 구성의 보다 좋은 적응을 제공한다.
다중-접합 광전지는 제1 p-n접합과 제2 p-n접합 사이에 배열되는 제3 p-n접합을 포함할 수 있다. 제3 p-n접합은 바람직하게, 나노와이어를 성장시키는 공정 동안에 형성되고 또한 제1 및 제2 p-n접합들 간의 전기적 접속을 형성하는 역할을 하는 터널 다이오드(tunnel diode)(에사키 다이오드(Esaki diode))이다. 제3 p-n접합 대신에 또는 이에 대한 보완으로서, 다중-접합 광전지는 제1 및 제2 p-n접합들을 직렬로 연결하기 위하여, 제1 p-n접합과 제2 p-n접합 사이에 배열되는, 금속의 전도성 접속소자를 포함할 수 있다.
나노와이어는 표면의 법선방향(normal direction)을 따라 테이퍼되는(tapered) 쉘(shell)에 의해 둘러싸일 수 있는데, 상기 쉘은 쉘과 나노와이어 사이에 p-n접합이 형성되도록 도핑된다. 이는 쉘의 최적 형상비(aspect ratio)가 이루어지도록 하여, 많은 양 또는 적은 양의 고-에너지 광이 (쉘을 포함하는)나노와이어 구조를 통과하여 기판에 형성되는 제1 p-n접합에 도달할 수 있게 된다. 이는, 이 특정 실시예에서, 제1(하부) 전지가 광을 거의 받지 못하여 장치에서 전체 전류를 제한하기 때문에 보다 효율적인 다중-접합 광전지를 제공한다.
기판은 실리콘 또는 도핑된 실리콘, 또는 게르마늄 또는 도핑된 게르마늄 또는 선택적으로 실리콘-게르마늄 합금으로 구성되는 반도체 재료로 만들 수 있다. 나노와이어는 Ⅲ-Ⅴ족 반도체 재료를 포함하는 반도체 재료로 만들 수 있으며, 상기 Ⅲ-Ⅴ족 반도체 재료는 도핑 영역을 생성하기 위해 기판에 확산되는 도펀트 원자들로 이루어지는 확산원(diffusion source)일 수 있다. 이들 재료의 선택, 및 특히 재료의 조합은 다중-접합 태양광 전지를 효율적인 비용으로 제조할 수 있도록 해준다.
상기에 이어서, 상기 기판은 도핑된 영역을 생성하기 위한 도펀트 원자로서 작용하는 Ⅲ-Ⅴ족 재료를 포함할 수 있다.
다중-접합 광전지는 광원을 향하는 기판의 표면을 가지게 배열되도록 구성될 수 있다. 이는, 기판의 도핑된 영역, 즉 점-접촉 다이오드가, 광전지가 동작 상태에 있을 때 광을 향하게 되는 기판의 측면에 배열된다는 것을 의미한다. 이는 공지된 많은 점-접촉 태양광 전지들과는 상이하고 또한 전기를 생산하기 위해 태양 에너지를 효율적으로 사용하게 될 때 제1 및 제2 p-n접합들 간에 효율적인 협력이 이루어지게 된다.
다중-접합 광전지는 기판의 표면에서 다수의 영역들을 포함할 수 있는데, 영역들 각각은, 영역들이 기판에 제1 p-n접합을 각각 형성하도록 도핑되고, 다수의 나노와이어들이 기판의 표면에서부터 성장(즉, 표면 상에 "배열")하는데, 도핑된 영역들 각각의 위치에서 나노와이어 각각이 성장하여, 나노와이어 각각이 제1 p-n접합에 대해 직렬로 접속되는 제2 p-n 접합을 형성한다.
여기에서, 하나 이상의 다수의 수단들, 그러나 실제로 적어도 1×104mm-2 쌍의 도핑된 영역들과 나노와이들, 즉 제1 및 제2 p-n접합의 쌍들이 기판 위에 형성된다.
다중-접합 광전지가 기판의 표면에서 다수의 영역들을 포함하면, 영역들 각각은, 영역들이 각각 기판에 제1 p-n접합을 형성하고, 또한 다수의 나노와이어들이 기판의 표면에서부터 성장(즉, 표면 위에 "배열")하도록 도핑된다. 그럼 다음, 나노와이어 각각이 제1 p-접합 각각과 직렬로 접속되는 제2 p-n접합을 형성하도록 나노와이어 각각 도핑된 영역들 각각의 위치에 배열된다. 다수의 도핑된 영역들과 나노와이어들의 경우에, 상기에서 설명한 다양한 특징들이 도핑된 영역들과 나노와이어들 중 몇몇에 대해 또는 전체에 대해 구현될 수 있다.
본 발명에 따라 역전류 누설이 줄어드는 효과가 있다.
도 1은 본 발명에 따른 다중-접합 태양광 전지를 설명하는 도면.
도 2는 도 1의 태양광 전지의 부분도.
도 3 내지 7은 도 2와 유사하지만, 태양광 전지의 다른 실시예들을 설명하는 부분도.
도 8a 내지 8f는 제1실시예에 따라 태양광 전지구조가 어떻게 제조되는지를 설명하는 도면.
도 9a 내지 9e는 제2실시예에 따라 태양광 전지구조가 어떻게 제조되는지를 설명하는 도면.
본 발명의 실시예들을 첨부도면을 참조하여 예로써 설명한다.
도 1을 참조하면, 다중-접합 광(태양광)전지(1)는 p-도핑 Si(실리콘)으로 만드는 평면 기판(3)을 포함한다. 기판(3)은 태양광 전지(1)에 조사되는 광(L)을 향하게 도는 상부표면(31)을 가진다. 즉, 상부표면(31)은 기판(3)의 상부, 전면측이다. Al(알루미늄)으로 만드는 평면의 후면 콘택(9)이 상부표면(31)에 대향하는 기판(3)의 하부표면 상에 배열된다. 기판(3)의 상푸표면(31)에 n-도핑 영역(4)이 위치한다. 이 영역(4)은 돔형이고, 영역(4)의 평면부는 상부표면(31)에 의해 형성도는 평면과 정렬된다. 따라서, 돔형 영역(4)의 만곡부는 기판(3)으로 돌출한다. 그러나, 영역(4)의 크기는 기판(3)의 전체 두께보다 작다. 나노와이어(2)는 도핑 영역(4)의 중앙부에서 기판(3) 상에 위치한다. 이는, 나노와이어(2)의 세로축에 의해 규정되는 기하학적 축(geometrical axis)은 도핑된 영역(4)의 중심을 관통해 연장한다. 즉 달리 말하면, 표면(31)의 법선방향(N)에서 보았을 때 나노와이어(2)는 도핑된 영역(4)의 상부에 배열된다.
바람직하게, 나노와이어(2)는 표면의 법선방향(N)과 평행하지만, 법선방향(N)에 경사진 관계로 배열될 수 있다.
기판(3)의 상부표면(31)은 SiO2(이산화실리콘)의 절연층(18)으로 커버될 수 있는 한편, 나노와이어(2)는 층(8)을 통해 통과해 돌출하여 층(3)과 전기적 접촉을 형성한다. 절연층(8)을 위한 다른 재료들은 SixNy, AlxOy, HfO2 및 SiOxNy 를 포함한다.
나노와이어(2)는 나노와이어(2)를 위한 지지체를 제공하는 지지, 절연층(7)에 매립된다. 지지층(7)은 절연층(8)의 상부 위에 배열되고 또한 이 특정 실시예에서는 SixNy, AlxOy, HfO2, SiOxNy, 중합체, 보로포스포실리케이트 글래스(borophosphosilicate glass) 또는 스핀-온-글래스(spin-on-glass) 등과 같은 절연 및 피복 유전재로로 만들어진다. 선택적으로, 나노와이어는 공기로 에워싸일 수 있다.
지지층(7)은, 나노와이어(2)의 그 최상부 부분이 TCO(6) 내로 돌출하기 때문에 나노와이어(2)와 전기적으로 접촉하는 TCO(6)(투명하고 또한 전도성인 산화층)으로 커버된다. 층(6)은 다르게 전도성 중합체 또는 다른 투명한 전도체로 구성될 수 있다. 설명하지는 않았지만, 나노와이어에 대한 오믹 콘택을 형성하기 위하여, 얇은 금속층이 나노와이어와 TCO 사이에 배열될 수 있다. TCO(6)와 후면 콘택(9)은 다중-접합 태양광 전지(1)에 의해 생성되는 전기를 사용하는 전기적 장치(미도시0에 연결되도록 구성될 수 있다.
도 2를 참조하면, 도 1에서 화살표 A로 표시되는 다중-접합 태양광 전지(1)의 부분이 확대되어 상세히 설명된다. 여기서 p-도핑된 기판(3)과 n-도핑된 영역(4)은 제1 p-n접합(11), 즉 점 접촉 다이오드를 형성한다. 물론 제1 p-n접합은 기판(6)의 n-도핑된 Si와 도핑된 영역(4)의 n-도핑된 Si 사이의 경계를 형성하는 완벽한 표면뿐만; 참조번호(11)로 표시되는 부분에서 형성된다.
도핑된 영역(4) 상에 나노와이어(2)가 성장하거나, 또는 위치하고, 그리고 나노와이어(2)의 최하단부(22)는 n+-도핑된 GaAsP(Gallium arsenide phosphide)로 만들어진다. n+-도핑된 GaAsP 부분(22) 위의 나노와이어(2)의 부분은 나노와이어(2)의 중간층(23)을 형성하고 그리고 GaAsP로 만들어지지만 n+-도핑 대신에 p+-도핑된다. 이는, 나노와이어(2)의 저부(22)와 중간부(23) 사이에 무겁게 도핑된(p+-n+) 접합(13)이 형성된다는 것을 의미하고, 접합(13)은 전형적으로 터널 다이오드를 형성한다.
나노와이어의 중간층(23) 위의 나노와이어(2)의 부분은 나노와이어(2)의 상부층(240을 형성한다. 이 부분(24)은 p-도핑되고 또한 예컨대 GaAs(Gallium arsenide)로 만들어지고 그리고 절연층(8)에서 나노와이어(2)의 상부까지 연장하는 n-도핑된 GsAs의 층(25)으로 둘러싸인다. 여기서, p-도핑된 상부 나노와이어 부분(24)과 n-도핑된 둘러싸는 층(25)은 제2 p-n접합(12)을 형성한다. 즉, n-도핑된 GaAs 층(25)과 접촉하는 상부 p-도핑 GaAs 나노와이어 부분(24)의 원주표면을 따라 연장하는 소위 방사상 다이오드를 형성한다.
나노와이어(2)의 저부(22)와 중간부(23) 사이에 형성되는 앞서 설명한 무겁게 도핑된 접합(13)은 "제3 p-n접합"(13)으로 언급하고 또한 제1 p-n접합(11)과 제2 p-n접합(12) 사이에 전기적 연결을 형성하는 소위 터널 다이오드를 형성한다.
도 3을 참조하면, 다중-접합 태양광 전지의 다른 실시예가 확대되어 도시되어 있다. 여기서, 도 2의 실시예와 비교하면, n-도핑된 Si 영역(4)은 무겁게 도핑된 (n+) Si 영역(41)을 포함하고, 그 형상은 도핑된 영역(4)의 형상에 대응하지만 도 3에서 알 수 있는 바와 같이 보다 작은 기하학적 치수를 가진다. 게다가, 도 2의 n+-도핑된 GaAsP 나노와이어 부분(22)이 생략되어, p+-도핑된 GaAsP 나노와이어 부분(23')이 n+-Si 영역(41) 위에 성장한다. 이는, p+-n+ 접합(13')이 나노와이어(2)와 기판(3) 사이의 계면에 위치한다는 것을 의미한다. 도 3의 접합(13')은 도 2의 접합(13)에 기능적으로 대응하는 한편, 접합(11 및 12)들은 두 실시예에서 동일하다.
도 4를 참조하면, 다중-접합 태양광 전지의 또 다른 실시예가 확대되어 도시되어 있다. 여기서, 도 2의 실시예와 비교하면, n-도핑된 둘러싸는 층(25)은 나노와이어(2)의 최상부 n-도핑 GaAs부(25')로 기능적으로 대체되었다. 상기 최상부(25')는 나노와이어(2)의 상기 기술한 중간 p+-GaAsP부(23)의 상부에 배열되는 나노와이어(2)의 p-도핑 GaAs부(24')의 상부에 있다. 도 4의 p-도핑 GaAs부(24')는 도 4의 p-도핑 GaAsqn24)에 대응하는데, 이는, 최상부(25')와 부분(24') 사이에 p-n 접합(12')이 형성된다는 것을 의미한다. 상기 접합(12')은 도 2의 접합(12)에 대응하는 p-n 다이오드를 형성하는 한편, 접합(11 및 13)은 도 2와 도 4의 실시예에서와 동일하다.
도 5를 참조하면, 다중-접합 태양광 전지의 또 다른 실시예가 확대되어 도시되어 있다. 여기서, 도 4의 실시예와 비교하면, n-도핑 Si 영역(4)은 무겁게 도핑된 (n+) Si 영역(41)을 포함하고, 그 형상은 도핑 영역(4)의 형상에 대응하지만, 도 5에서 알 수 있듯이 기하학적 크기는 작다. 게다가, 도 4의 n+-도핑된 GaAsP 나노와이어부분(22)은 생략되어, p+-도핑된 GaAsP 나노와이어부분(23')은 n+-Si 영역(41) 위에 성장한다. 상기 p+-도핑된 GaAsP 부분(23')은 도 4의 p+-도핑된 GaAsP 부분(23)에 기능적으로 대응한다. 따라서, p+-n+ 접합(13')이 나노와이어(2)와 기판(3) 사이의 계면에 위치한다. 도 5의 접합(13')은 도 2 또는 도 4의 접합(13)에 기능적으로 대응하는 한편, 도 4의 접합(12')은 도 5의 접합(12')과 동일하다.
도 6을 참조하면, 다중-접합 태양광 전지의 또 다른 실시예가 설명되어 있다. 이는 도 2의 실시예와 비슷하지만, i) 짧은 그루터기(24")만을 형성하는 나노와이어의 최상부, p-도핑 부분과, ii) 원뿔형을 가지는 둘러싸는 층(25"), 또는 쉘과, 그리고 iii) 여기서 TCO 층인 지지층(7')이 다르다. 여기서, p-도핑된 상부 나노와이어부(24")와 n-도핑된 둘러싸는 층(25")은 제2 p-n 접합(12")을 형성하는데, 이는 n-도핑된 GaAs층(25")과 접촉하는 상부 p-도핑된 GaAs 나노와이어부(24")의 원주표면을 따라 연장하는 방사상 다이오드 형태이다.
도 6에서와 같이, 원뿔형 형태의 나노와이어를 둘러싸는 층 대신에, 둘러싸는 층은 도 7에서 설명되는 바와 같이 피라미드 또는 실린더(25") 형태를 가질 수 있다. 그러나, 도 6의 실시예와 같은 이 실시예에서, 나노와이어(2)는 절연층(8)의 상부 표면(81) 위로 상대적으로 짧은 간격으로 연장하는 그루터기를 형성한다.
절연층 표면(81) 위로 상기 간격 또는 높이는 바람직하게 나노와이어의 폭(또는 직경)의 10배 미만이거나, 또는 보다 바람직하게는 5배 미만이거나 또는 특히 바람직하게는 나노와이어의 폭의 2배 미만이다. 공지된 나노와이어와 비교하면, 도 6와 7의 실시예들의 나노와이어들은 상당이 짧아서, 나노와이어와 둘러싸는 층 사이에 형성된 p-n 접합(12")의 면적은 상대적으로 작아서, p-n 접합을 가로질러 감소된 역전류 누설이 일어나게 한다.
모든 실시예들에 있어서, 나노와이어는 세 개 이상의 측면을 가지는 각기둥(prismatic) 단면형상을 가질 수 있다는 알아야만 한다. 나노와이어를 둘러싸는 층들에 대해서도 동일하게 적용된다.
동작 동안에, 다중-접합 태양광 전지(1)는, 그의 전면측이 태양 또는 다른 광원(30), 예컨대 실내 램프를 향하도록 배열되는데, 포토 에너지가 전기를 생산하는데 사용되게 된다. 태양광 전지(1)가 적절히 배열되기만 하면, 기판(3)의 표면(31)의 법선(N)은 광원(30)을 향하게 되어, 광선(L)이 법선(N)에 관해 소정의 각도로 태양광 전지(1) 위에 조사된다.
나노와이어(2)는 기판(3) 위에 에피택셜로 성장하고 그리고 제1 및 제2 p-n 접합들(11, 12, 12') 각각은 태양으로부터의 광의 특정 대역(띠)을 흡수하도록 조정된다. 도핑된 영역(4)가 나노와이어 부분(24, 25, 24', 25')들과 함께 기판(3)의 띠 간격은 통상적이고 또한 적합한 공정들에 따라 서로에 대해 최적화 된다. 와이어의 한정된 두께로 인해, 기판과 와이어 간의 접합에서, 또는 와이어에서 소정의 수직 접합에서 격자 정합이 항상 필요하지 않다.
제1접합(11)과 제2접합(12, 12')은, 상부에서 가장 높은 띠 간격 재료를 통해 광학적으로 직렬이다. 광이 이동하는 방향에서, 최상부의 제2 p-n 접합(12, 12')은 전체 스펙트럼을 수용하고 그리고 제2 p-n 접합(12, 12')의 띠 간격 위의 포톤들으 상기 접합(12, 12')에서 흡수된다. 제2접합(12, 12')의 띠 간격 아래의 포톤들은 하부의 제1 p-n 접합(11)으로 통과하여 제1접합에서 흡수되게 된다. 여기서, "상부"접합은, 접합이 "하부"접합 보다는 TOC(6)에 가까운 것을 의미한다.
실시예에서 특정 재료들에 대한 띠 간격(Eg)의 몇몇 전형적인 값들은, SI 기판의 경우에 있어서 와이어는 Eg=1.69eV를 가지는데, 이는 GaAs0 .8P0 .2 에 거의 대응한다(이론적인 효율 48%). Ge(게르마늄)기판의 경우에 있어서, 와이어는 Eg=1.42eV를 가지는데, 이는 거의 GaAs에 대응한다(이론적 효율 48%). 와이어의 하부에서 재료는 와이어의 나머지 보다 0.2eV 높은 값을 가진다. 그러나, 실제로, Si의 띠 간격(1.1eV)과 2.0eV 사이의 소정의 띠 간격은 Si 기판에 대해 충분할 수 있고 또한 Ge의 띠 간격(0.67eV)과 1.7eV 사이의 소정의 띠 간격은 Ge 기판에 대해 충분할 수 있다.
태양광 전지(1)는 탠덤형(tandem)의 전기적 접속을 사용하는데, 이는 p-n 접합(11, 12, 12', 12", 13, 13')들은 전기적으로 직렬로 연결되고 그리고 결합된 전지(1)는 두 개의 단자들, 즉 TCO(6)(도 6 또는 7의 실시예의 경우에는 7')와 평면의 후면 콘택(9)을 가진다는 것을 의미한다. p-n 접합(11, 12, 12', 12", 13, 13')들이 직렬로 접속되기 때문에, 각 접속(11, 12, 12', 12", 12. 13")을 통과하는 전류는 동일하다. 언급하였듯이, 효율 감소를 피하기 위하여 접합들(11, 12, 12', 12")의 최대 전원전류가 동일하게 되도록 이들 제1 및 제2접합(11, 12, 12', 12")들의 띠 간격이 최적화된다. 다르게는, 제2(상부)접합들의 유효 광흡수가 감소되어, 비-최적화 띠 간격 조합들에 대해 전류 정합(current matching)을 달성한다. 제3접합(13, 13')들은 제1 및 제2접합들(11, 12, 12', 12") 간에 커넥터로서 역할한다.
설명하였듯이, 도 3 내지 7의 실시예들의 p-n 접합들에 대해 대응하는 상황을 적용할 수 있다.
보다 상세히 설명하면, 기판(3)은 이온주입, 도펀트 확산을 사용하여, 이종에피택셜 성장 동안에 확산을 통해, 또는 다른 통상적이고 적합한 공정을 통해 n-도핑된 영역이 제공된 통상적인 p-도핑된 Si 웨이퍼로 만들 수 있다.
도 8a 내지 8f를 참조하여 태양광 전지(1)를 제조하기 위한 방법이 예시된다. 여기서 후면 콘택(9)은 기판(3)에 부착되는데(도 8a), 이는 본 기술분야 내에서 적합한 소정의 공지된 방법에 따라 나노와이어의 성장 전 또는 후에 이루어진다. 다음에, p-도핑된 기판(3)의 상부표면(31)이 유전층(8)으로 커버된다(도 8b). 이 층(8)은 패턴화되어 층(8) 내에 20 내지 200 나노미터의 직경을 가지는 구멍(10)을 형성한다(도 8c). 상기 구멍(10)은 밑의 기판(3)을 Ⅴ족 소오스 가스에 노출시켜 구멍(10)의 중심에 작은 n-도핑된 영역(4)이 형성되도록 한다(도 8d). 상세히 설명하면, 구멍(10)이 형성되면, 기판(3)의 (구멍(10)에 의한) 노출부가 확산 도핑 공정을 사용하여 P(phosphorus) 또는 As(arsenic)와 같은 Ⅴ족 재료에 의해 n-도핑되어, 확산된 영역(4)은 예컨대 약 100 내지 300 나노미터의 직경을 가진다. 또한, 아래에서 기술하는 나노와이어(2)의 이종에피택셜 성장 동안에, 즉 개별적인 확산단계를 사용하는 일이 없이 기판의 확산 도핑을 수행하는 것이 가능하다. 바람직한 도핑방법은 상기에서 기술하였는데; 보다 적합하다면 사용할 수 있는, 예컨대 이온주입과 같이, 반도체를 도핑하는 많은 다른 공지방법들이 있다. 이렇게 형성된 도핑된 영역(4)은 거의 1×1016㎤ 또는 이보다 큰 과도 캐리어 농도를 가진다.
또한 기판(3) 상에 성장한 나노와이어는 표면(31) 위에 제공된 유전 형판(dielectric template)(8) 내 구멍(10)에 의해 인도된다. 유전 형판(8)은 기판의 상부표면(31)을 완전히 커버하지만, 도핑된 영역(4) 중앙의 구멍(10)은 커버하지 않아, 도핑된 영역(4)을 노출시킨다. 상기 구멍(10)은 20 내지 200 나노미터의 직경을 가지고 또한 도핑된 영역(4)의 노출된 영역에서 핵형성(nucleation)의 가능성을 증가시킴으로써 나노와이어 핵형성(성장)을 인도한다. 증가된 핵형성 가능성을 가지는 이 영역을 핵형성 시작위치라고 부른다.
더 상세히 설명하면, 구멍(10)은 나노와이어 성장을 위한 핵형성 시작위치를 규정되는 유전 형판으로 작용하고, 또한 상기에서 도면과 관련해 기술한 나노와이어에 대응하도록, 기판 표면(31)의 도핑된 영역(4) 위에 나노와이어를 둘러싸는 소정의 층(25) 또는 쉘(25", 25")을 포함해, 에피택셜로 성장한 직립 나노와이어(2)가 형성된다.
나노와이어(2)를 성장시키기 위한 적합한 방법은 기술분야에 공지되어 있고 또한 예컨대 여기에서 참조로 사용되는 PCT출원 제 WO2007/102781호에 도시되어 있다. 계속하여, 촉매와 같은 입자를 사용하는 일이 없이, 여기에서 기술한 방법과 다른 방법을 사용하여 기판(3)의 도핑된 영역(40에서부터 나노와이어(2)가 성장할 수 있다.
나노와이어(2)가 다 성장하면, 나노와이어(2)의 상부 부분은, 예컨대 와이어를 드러내기 위해 화학기상증착과 역-식각(back-etch)를 사용함으로써 지지층(7)에 의해 커버된다. 마지막으로, 지지층(7)은 예컨대 스퍼터링(sputtering)을 통해 TCO(6)에 의해 커버되어, 나노와이어(2)의 최상부는 TCO(6)에 매립되어 전기적 접촉을 하게 된다(도 8f). 선택적으로, TCO가 나노와이어를 커버하는 경우에, TCO는 지지층을 대체할 수 있다.
상기에서 설명한 제조방법의 대안으로서, 도 9a 내지 9e에 도시된 바와 같이 촉매입자를 공정에서 사용할 수 있다.
다시, 기판(3)은 통상적인 p-도핑된 Si-웨이퍼이고, 기판(3)의 배면에는 Al 후면 콘택(9)이 부착되는데(도 9a), 앞서 언급하였듯이 본 기술분야 내에서 적합한 소정의 공지된 방법에 따라 나노와이어 성장 전 또는 후에 수행된다. 다음에, 전형적으로 금(Au)으로 만드는 촉매입자(15)가, 절연성 유전층(8)에 있는 구멍(도 8c의 10)을 통한 증착에 의해, 또는 절연성 유전층(8)으로 상부표면(31)을 커버함으로써 기판(3)의 상부표면(31) 위에 위치한다. 각각의 경우에 있어서, 입자(15)는 층(8)내 구멍 내에 잔류하여, 입자(15)의 상부가 노출된다. 즉, 입자(15)는 층(8)에 의해 커버되지 않는다(도 9b). 이후에, Ⅲ 및 Ⅴ족-함유 화합물들이 입자(15) 상에 분해된다. 그런 다음, 입자(15)는 성장 종(growth species)들로 포화되고 그리고 높은 입자 압력과 농도로 인해 입자(15) 아래 성장 종들이 입자 아래 영역(4)에서 기판(3) 내로 확산된다(도 9c). 예컨대 300 나노미터의 전형적인 직경을 가지는 n-도핑된 돔-형 영역(4)이 입자(15) 아래에 생성되도록 확산을 위한 성장 종들과, 시간과 온도가 선택된다.
이후에, 상기에 도면과 관련해 기술한 나노와이어 대응하도록, 여기에서 참조로 사용되는 미국특허 제7,335,908호에 기술된 소위 VLS(vapor-liquid-solid) 매카니즘을 사용하여 나노와이어(2)를 성장시킨다(도 9d). 나노와이어(2)의 성장 동안에 상기에서 기술한 도핑공정이 어느 정도 지속될 수 있는데, 결과는 차이가 없다.
앞서와 같이, 나노와이어(2)가 성장하면, 입자(15)를 포함해, 나노와이어(2)의 최상부가 거의 지지층(7)으로 커버된다. 마지막으로, 나노와이어(2)의 최상부와 입자(15)가 TCO(6)에 매립되어 전기적으로 접촉하도록, 지지층(7)은 TCO(6)로 커버된다(도 9e).
도 3과 도 5에 설명된 태양광 전지에 대해서, 무겁게 도핑된 (n+) Si 영역(41)은 도핑된 영역(4)을 생성할 때와 동일한 확산 도핑공정을 사용하여 만들어지지만, 도핑된 영역(41)이 전형적으로 거의 1×1019㎤ 또는 이보다 큰 과도 캐리어 농도를 가지도록 다른 공정을 사용하여 만들어질 수 있다. 도면에서 설명한 태양광 전지에 대해, 각 실시예의 나노와이어는 상기에서 기술한 방법들 중 소정의 것을 사용하여 성장한다.
실제로, 도 1에 설명한 것과 같이, 여러 개의 동일한 나노와이어(2, 2", 2'")들과 대응하는 도핑 영역(4, 4', 4")들이 기술분야에서 통상적인 것과 같이 기판(3) 위에 동시에 형성된다. 이는, 대량의 나노와이어들이 기판(3)의 표면(31) 위에 배열되어 표면으로부터 돌출하게 되는 글래스-형 구조를 이루게 된다. 전형적으로, 도핑된 영역들은 도핑된 영역들의 직경의 적어도 두 배로, 서로로부터 간격을 두고서 배열된다.
물론, 여기에서 나타낸 측정치, 범위 및 값들은 태양광 전지에 대한 특정한 필요성과 요구사항에 적합하도록 될 수 있으며, 또한 선택적으로 도핑된 부분(25)과 p-n 접합(12)은 쇼트키 장벽으로 대체될 수 있다.
상기 설명에서의 재료들은 예를 위한 것이고, 상기의 모든 것들은 다음 대체재료의 소정 조합 하에서 원칙적으로 동등하게 타당하다: 실리콘 기판 재료는 게르마늄 또는 SixGe1 -x 합금으로 대체할 수 있다. 와이어 재료는 Ⅲ-Ⅴ족 반도체들의 InxGa1-xAsyP1-y 계열 내에서 주로 선택하지만, Ⅲ 및 Ⅴ족으로서 Al 및 Sb로 각각 부분 치환할 수 있거나, 또는 InxGa1 - xN 계열을 사용할 수 있다. 재료의 실제 선택은, 이상적인 띠 간격과, 흡수와 전력변환을 달성하기 위하여, 세부적인 분석과 실험에 따라 다를 수 있다.
그러나, 제한하는 것은 아니지만, 기판에 대한 적절한 재료는:Si, GaAs, GaP, GaP:Zn, GaAs, InAs, InP, GaN, Al2O3, SiC, Ge, GaSb, ZnO, InSb, SOI(silicon-on-insulator), CdS, ZnSe, CdTe를 포함한다.
제한하는 것은 아니지만, 나노와이어와 나노와이어 세그먼트에 대해 적절한 재료는: AlGaInN, AlInP, BN, GaInP,GaAs, GaAs(p), GaAsP, GaAlInP, GaN, GaP, GaInAs, GaInN, GaAlInP, GaAlInAsP, GaInSb, Ge, InGaP:Si, InGaP:Zn, InAs, InN, InP, InAsP, InSb, Si, ZnO 를 포함한다. 가능한 도너(donor) 도펀트는 Si, Sn, Te, Se, S 등이고, 억셉터(acceptor) 도펀트는 Zn, Fe, Mg, Be, Cd 등이다. 나노와이어 기술은 GaN, InN 및 AlN과 같은 질화물을 사용할 수 있게 한다는 것을 알아야 한다.
본 명세서는 광전지에 관해 기술하지만, 광검출기 또는 광방출 다이오드와 같은 다른 광-전자의 영역에서 사용을 발견할 수 있다는 것이 예상된다.
비록 본 발명의 다양한 실시예들을 기술하고 도시하였다 하더라도, 본 발명의 이들 실시예에 한정되는 것이 아니고, 첨부 청구항에 규정된 본 발명의 범위 내에서 다양한 방식으로 실시될 수 있을 것이다. 특히, 각 p-n 접합의 극성은 p-on-n 또는 n-on-p(역전)일 수 있고 또한 보다 많은 접합들을 포함할 수 있다.

Claims (14)

  1. 표면(31)을 가지는 기판(3)을 포함하고, 기판(3)의 표면(31)에서의 영역(4)은 기판(3)에 제1 p-n 접합(11)이 형성되도록 도핑되는, 광을 전기적 에너지로 변환시키기 위한 다중-접합 광전지에 있어서, 도핑된 영역(4)이 기판(3) 상에 위치하게 되는 위치에서 기판(3)의 표면(31) 상에 나노와이어(2)가 배치되어, 제2 p-n 접합(12)이 나노와이어(2)에 형성되여 제1 p-n 접합(11)과 직렬로 접속되는 것을 특징으로 하는 다중-접합 광전지.
  2. 제1항에 있어서, 상기 제2 p-n 접합(12)이 나노와이어(3)에 형성되는 것을 특징으로 하는 다중-접합 광전지.
  3. 제1항 또는 제2항에 있어서, 상기 도핑된 영역(4)은 이종접합, 이온주입, 도펀트 확산 및 동종에피택시 중 소정의 하나에 의해 형성되는 것을 특징으로 하는 다중-접합 광전지.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 나노와이어(2)는 상기 도핑된 영역(4)과 직접 접촉하는 것을 특징으로 하는 다중-접합 광전지.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 나노와이어(2)는 상기 도핑된 영역(4) 위에 성장하는 것을 특징으로 하는 다중-접합 광전지.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 나노와이어(2)는 상기 도핑된 영역(4)과 에피택셜 관계인 것을 특징으로 하는 다중-접합 광전지.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 제1 p-n 접합(11)과 상기 제2 p-n 접합(12) 사이에 제3 p-n 접합(13)이 배열되는 것을 특징으로 하는 다중-접합 광전지.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 나노와이어(2)는, 쉘(25")과 나노와이어(2) 사이에 p-n 접합(12")이 형성되도록 도핑되는 상기 테이퍼된 쉘(25")에 의해 표면(31)의 법선방향(N)으로 둘러싸이는 것을 특징으로 하는 다중-접합 광전지.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 기판(3)은 실리콘 또는 도핑된 실리콘으로 구성되는 반도체재료로 만들어지는 것을 특징으로 하는 다중-접합 광전지.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 기판은 게르마늄 또는 도핑된 게르마늄으로 구성되는 반도체재료로 만들어지는 것을 특징으로 하는 다중-접합 광전지.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서, 상기 나노와이어(2)는 Ⅲ-Ⅴ족 반도체재료를 포함하는 반도체재료로 만들어지는 것을 특징으로 하는 다중-접합 광전지.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서, 상기 Ⅲ-Ⅴ족 재료는 도핑된 영역(4)을 생성하기 위해, 기판(3) 내로 들어가는 도펀트 원자들의 확산원인 것을 특징으로 하는 다중-접합 광전지.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서, 광전지는 기판(3)의 표면(31)이광원(30)을 향하도록 구성되는 것을 특징으로 하는 다중-접합 광전지.
  14. 제1항 내지 제13항 중 어느 한 항에 있어서, 기판(3)의 표면(31)에서 다수의 영역(4, 4")들을 포함하고, 영역(4, 4")들 각각은 영역(4, 4")들이 기판(3)에 제1 p-n 접합(11, 11")을 각각 형성하도록 도핑되고, 다수의 나노와이어(2, 2")들은 기판(3)의 표면(31)에서부터 성장하고, 나노와이어(2, 2") 각각이 제1 p-n 접합(11, 11") 각각과 직렬로 연결되는 제2 p-n 접합(12, 12")을 형성하도록 나노와이어(2, 2") 각각은 도핑된 영역(4, 4") 각각에 위치하는 것을 특징으로 하는 다중-접합 광전지.
KR1020117027151A 2009-04-15 2010-04-13 나노와이어를 가지는 다중-접합 광전지 KR101633953B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0950244-4 2009-04-15
SE0950244 2009-04-15

Publications (2)

Publication Number Publication Date
KR20120027235A true KR20120027235A (ko) 2012-03-21
KR101633953B1 KR101633953B1 (ko) 2016-06-27

Family

ID=42983041

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117027151A KR101633953B1 (ko) 2009-04-15 2010-04-13 나노와이어를 가지는 다중-접합 광전지

Country Status (6)

Country Link
US (1) US8952354B2 (ko)
EP (1) EP2419938A2 (ko)
JP (1) JP5479574B2 (ko)
KR (1) KR101633953B1 (ko)
CN (1) CN102484147B (ko)
WO (1) WO2010120233A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160061997A (ko) * 2013-08-14 2016-06-01 노르웨이전 유니버시티 오브 사이언스 앤드 테크놀러지(엔티엔유) 레이디얼 p-n 접합 나노와이어 태양전지

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101803035B (zh) 2007-06-19 2016-08-24 昆南诺股份有限公司 基于纳米线的太阳能电池结构
JP5626847B2 (ja) * 2010-04-22 2014-11-19 日本電信電話株式会社 ナノ構造体およびその製造方法
JP2013016787A (ja) * 2011-06-08 2013-01-24 Nissan Motor Co Ltd 太陽電池およびその製造方法
GB201113464D0 (en) * 2011-08-03 2011-09-21 Sunflake As Nanostructure, nanostructure fabrication method and photovoltaic cell incorporating a nanostructure
GB201211038D0 (en) * 2012-06-21 2012-08-01 Norwegian Univ Sci & Tech Ntnu Solar cells
CN104603952B (zh) * 2012-07-06 2017-07-21 昆南诺股份有限公司 径向纳米线江崎二极管装置和方法
US9012883B2 (en) * 2012-12-21 2015-04-21 Sol Voltaics Ab Recessed contact to semiconductor nanowires
CN103050564B (zh) * 2012-12-21 2016-04-06 北京邮电大学 一种基于多节纳米线径向pn结的太阳能电池及制备方法
SE537287C2 (sv) * 2013-06-05 2015-03-24 Sol Voltaics Ab En solcellsstruktur och en metod för tillverkning av densamma
WO2014199462A1 (ja) * 2013-06-12 2014-12-18 株式会社日立製作所 太陽電池セルおよびその製造方法
FR3011381B1 (fr) * 2013-09-30 2017-12-08 Aledia Dispositif optoelectronique a diodes electroluminescentes
EP3016148A1 (en) 2014-10-28 2016-05-04 Sol Voltaics AB Dual layer photovoltaic device
US10593818B2 (en) * 2016-12-09 2020-03-17 The Boeing Company Multijunction solar cell having patterned emitter and method of making the solar cell
TW201840013A (zh) * 2017-02-02 2018-11-01 瑞典商索爾伏打電流公司 多接面pv應用中具有高透明度之奈米結構子電池
JP7103027B2 (ja) * 2018-07-30 2022-07-20 富士通株式会社 化合物半導体装置、化合物半導体装置の製造方法、発電装置及び電源装置
CN109616553B (zh) * 2018-11-22 2020-06-30 中南大学 一种新型纤锌矿GaAs核壳纳米线光电探测器的制备方法
CN111162141A (zh) * 2019-12-20 2020-05-15 燕山大学 一种多结纳米线太阳能电池的制备方法
CN111180554B (zh) * 2020-01-08 2023-01-03 燕山大学 一种混合结构太阳能电池的制备方法
TW202243225A (zh) * 2021-04-16 2022-11-01 聯華電子股份有限公司 影像感測器結構及其製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060135701A (ko) * 2003-12-23 2006-12-29 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 전기 소자 및 pn 이형 접합 형성 방법
KR20080044183A (ko) * 2006-11-15 2008-05-20 제너럴 일렉트릭 캄파니 비정질-결정성 탠덤형 나노구조 태양전지
JP2008182226A (ja) * 2007-01-11 2008-08-07 General Electric Co <Ge> 多層膜−ナノワイヤ複合体、両面及びタンデム太陽電池
WO2008156421A2 (en) * 2007-06-19 2008-12-24 Qunano Ab Nanowire-based solar cell structure

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234352A (en) 1978-07-26 1980-11-18 Electric Power Research Institute, Inc. Thermophotovoltaic converter and cell for use therein
JP3681423B2 (ja) * 1993-11-02 2005-08-10 松下電器産業株式会社 半導体微細柱の集合体,半導体装置及びそれらの製造方法
AU2001295618A1 (en) * 2000-10-19 2002-04-29 Carlos J. R. P. Augusto Method of fabricating heterojunction photodiodes integrated with cmos
US7335908B2 (en) 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
JP4235440B2 (ja) * 2002-12-13 2009-03-11 キヤノン株式会社 半導体デバイスアレイ及びその製造方法
US7091120B2 (en) * 2003-08-04 2006-08-15 Nanosys, Inc. System and process for producing nanowire composites and electronic substrates therefrom
US20060207647A1 (en) * 2005-03-16 2006-09-21 General Electric Company High efficiency inorganic nanorod-enhanced photovoltaic devices
JP2009507397A (ja) * 2005-08-22 2009-02-19 キュー・ワン・ナノシステムズ・インコーポレイテッド ナノ構造およびそれを実施する光起電力セル
WO2007102781A1 (en) 2006-03-08 2007-09-13 Qunano Ab Method for metal-free synthesis of epitaxial semiconductor nanowires on si
US8003883B2 (en) * 2007-01-11 2011-08-23 General Electric Company Nanowall solar cells and optoelectronic devices
JP5096824B2 (ja) * 2007-07-24 2012-12-12 日本電信電話株式会社 ナノ構造およびナノ構造の作製方法
JP5309386B2 (ja) * 2007-08-20 2013-10-09 国立大学法人北海道大学 半導体発光素子アレー、その製造方法、及び光送信機器
US8491718B2 (en) 2008-05-28 2013-07-23 Karin Chaudhari Methods of growing heteroepitaxial single crystal or large grained semiconductor films and devices thereon
US20100154861A1 (en) * 2008-12-23 2010-06-24 Formfactor, Inc. Printed solar panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060135701A (ko) * 2003-12-23 2006-12-29 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 전기 소자 및 pn 이형 접합 형성 방법
KR20080044183A (ko) * 2006-11-15 2008-05-20 제너럴 일렉트릭 캄파니 비정질-결정성 탠덤형 나노구조 태양전지
JP2008182226A (ja) * 2007-01-11 2008-08-07 General Electric Co <Ge> 多層膜−ナノワイヤ複合体、両面及びタンデム太陽電池
WO2008156421A2 (en) * 2007-06-19 2008-12-24 Qunano Ab Nanowire-based solar cell structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160061997A (ko) * 2013-08-14 2016-06-01 노르웨이전 유니버시티 오브 사이언스 앤드 테크놀러지(엔티엔유) 레이디얼 p-n 접합 나노와이어 태양전지

Also Published As

Publication number Publication date
WO2010120233A2 (en) 2010-10-21
JP5479574B2 (ja) 2014-04-23
KR101633953B1 (ko) 2016-06-27
JP2012524397A (ja) 2012-10-11
CN102484147B (zh) 2015-11-25
US8952354B2 (en) 2015-02-10
CN102484147A (zh) 2012-05-30
EP2419938A2 (en) 2012-02-22
WO2010120233A3 (en) 2011-09-22
US20120032148A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
KR101633953B1 (ko) 나노와이어를 가지는 다중-접합 광전지
US10128394B2 (en) Nanowire-based solar cell structure
JP6093401B2 (ja) 太陽電池内のトンネル接合の高濃度ドープ層
TWI666785B (zh) 太陽能電池及形成太陽能電池的方法
ES2813938T3 (es) Dispositivo fotovoltaico
US10797187B2 (en) Photovoltaic device with back side contacts
US9065006B2 (en) Lateral photovoltaic device for near field use
JP2010263222A (ja) Iv/iii−v族ハイブリッド合金を有する多接合太陽電池
JP2009182325A (ja) 倒置型メタモルフィック多接合ソーラーセルにおけるヘテロ接合サブセル
CN101494246A (zh) 具有iii-v族化合物半导体电池的高聚光度地面太阳能电池组件
US20100024869A1 (en) Photovoltaic Cells With Stacked Light-Absorption Layers And Methods Of Fabricating The Same
US6613974B2 (en) Tandem Si-Ge solar cell with improved conversion efficiency
JP2011077293A (ja) 多接合型太陽電池
JP2014220351A (ja) 多接合太陽電池
US20150034152A1 (en) Solar cell with passivation on the window layer
CN102983208B (zh) 用于iii‑v化合物半导体电池的栅格设计
US20100224237A1 (en) Solar cell with backside contact network
US20220165901A1 (en) Extreme and deep ultraviolet photovoltaic cell

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant