CN111162141A - 一种多结纳米线太阳能电池的制备方法 - Google Patents

一种多结纳米线太阳能电池的制备方法 Download PDF

Info

Publication number
CN111162141A
CN111162141A CN201911327292.9A CN201911327292A CN111162141A CN 111162141 A CN111162141 A CN 111162141A CN 201911327292 A CN201911327292 A CN 201911327292A CN 111162141 A CN111162141 A CN 111162141A
Authority
CN
China
Prior art keywords
nanowire
doped
substrate
preparation
inxga1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911327292.9A
Other languages
English (en)
Inventor
郭经纬
刘妍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201911327292.9A priority Critical patent/CN111162141A/zh
Publication of CN111162141A publication Critical patent/CN111162141A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种多结纳米线太阳能电池的制备方法,涉及半导体太阳能电池技术领域,包括如下步骤:a、在衬底1的表面旋涂金属纳米催化剂颗粒或利用金属薄膜退火技术在衬底1表面制备催化剂颗粒;b、将衬底1放入MOCVD或MBE反应系统中,在MOCVD或MBE反应系统中制备底部掺杂纳米线3;c、在MOCVD或MBE反应系统中制备顶部掺杂纳米线;d、改变生长温度,使反应物在底部纳米线表面裂解制备底部纳米线掺杂包层;e、改变生长温度,使反应物在顶部纳米线表面裂解制备顶部纳米线掺杂包层。本发明提高了制得的太阳能电池的光电转换效率,降低了制备材料的成本,简化了制备过程,降低了劳动强度。

Description

一种多结纳米线太阳能电池的制备方法
技术领域
本发明涉及半导体太阳能电池技术领域,尤其是一种多结纳米线太阳能电池的制备方法。
背景技术
光伏发电为将太阳光直接转换成电的过程,具有为满足全球能源需求做出重大贡献的潜力。太阳能作为缓解能源危机的洁净新能源具有非常重要的应用价值及发展前景,太阳能电池是通过吸收太阳能辐射,利用光生伏特效应,使半导体在受到光照射时产生电动势,将太阳辐射能通过光电效应直接转换成电能的装置,是太阳能光伏发电系统的核心技术,基础组成部件。太阳能电池具有无污染、结构简单、体积小、重量轻、便于运输和安装等优点,在很多领域都被广泛的使用。但传统的薄膜结构太阳能电池的光电转换效率低、制备材料成本高。有鉴于此,探索新结构太阳能电池制备方案,解决传统太阳能电池所面临的问题,是本发明的创研动机所在。目前还存与可持续性和成本有关的未解决的问题,这些问题必须加紧迫地加以解决。经济、高效、安全、稳定的太阳能电池制备方法将极大地促进可再生能源的整合,以满足当前的能源需求并实现资源节约型社会。目前的太阳能电池存在的最大的问题就是光电转化效率较低和成本高。
发明内容
本发明需要解决的技术问题是提供一种多结纳米线太阳能电池的制备方法,提高制得的太阳能电池的光电转换效率,降低制备材料的成本,简化制备过程,降低劳动强度。
为解决上述技术问题,本发明所采用的技术方案是:
本发明提供一种新结构的多结纳米线太阳能电池,所述方法包括如下步骤:
a、在衬底1的表面旋涂金属纳米催化剂颗粒或利用金属薄膜退火技术在衬底1表面制备催化剂颗粒;
b、将衬底1放入MOCVD或MBE反应系统中,在MOCVD或MBE反应系统中制备底部掺杂纳米线;
c、在MOCVD或MBE反应系统中制备顶部掺杂纳米线;
d、改变生长温度,使反应物在底部纳米线表面裂解制备底部纳米线掺杂包层;
e、改变生长温度,使反应物在顶部纳米线表面裂解制备顶部纳米线掺杂包层;
所述催化剂颗粒材料为金、铁、银中的一种或几种;所述底部掺杂纳米线、顶部掺杂纳米线、底部纳米线掺杂包层、顶部纳米线掺杂包层为n型掺杂或p型掺杂半导体。
本发明技术方案的进一步改进在于:所述衬底材料为III-V族半导体材料或IV族半导体材料。
本发明技术方案的进一步改进在于:所述衬底材料为硅、锗、碳、碳化硅、砷化镓、氮化镓、砷化铟或磷化铟中的一种或几种。
本发明技术方案的进一步改进在于:所述底部掺杂纳米线、顶部掺杂纳米线、底部纳米线掺杂包层、顶部纳米线掺杂包层选自III-V族半导体材料或IV族半导体材料。
本发明技术方案的进一步改进在于:所述底部掺杂纳米线、顶部掺杂纳米线、底部纳米线掺杂包层、顶部纳米线掺杂包层的材料为锗、砷化镓、氮化镓、砷化铟、磷化铟、AlxGa1-xAs、nxGa1-xAs或InxGa1-xAsyP1-y中的一种或几种,其中0<x<1,0<y<1。
由于采用了上述技术方案,本发明取得的技术进步是:
本发明采用具有高广电转化效率的Ⅲ-Ⅴ族半导体材料,利用纳米线的陷光增效特性,将纵向和横向结构相结合,提高了制得的太阳能电池的光电转换效率,降低了制备材料的成本,简化了制备过程,降低了劳动强度。
附图说明
图1为步骤a中制备催化剂颗粒示意图;
图2为步骤b中制备底部掺杂纳米线示意图;
图3为步骤c中制备顶部掺杂纳米线示意图;
图4为步骤d中制备底部纳米线掺杂包层示意图;
图5为步骤e中制备顶部纳米线掺杂包层示意图;
其中,1、衬底,2、催化剂颗粒,3、底部掺杂纳米线,4、顶部掺杂纳米线,5、底部纳米线掺杂包层,6、顶部纳米线掺杂包层。
具体实施方式
下面结合实施例对本发明做进一步详细说明:
如图1、图2、图3、图4、图5所示,一种新结构的多结纳米线太阳能电池,所述方法包括如下步骤:
a、在衬底1的表面旋涂金属纳米催化剂颗粒2或利用金属薄膜退火技术在衬底1表面制备催化剂颗粒2;
b、利用反应物在催化剂表面裂解温度较低的特点,将衬底1放入MOCVD或MBE反应系统中,在MOCVD或MBE反应系统中制备底部掺杂纳米线3;
c、利用反应物在催化剂表面裂解温度较低的特点在MOCVD或MBE反应系统中制备顶部掺杂纳米线4;
d、改变生长温度,使反应物在底部纳米线表面裂解制备底部纳米线掺杂包层5;
e、改变生长温度,使反应物在顶部纳米线表面裂解制备顶部纳米线掺杂包层6;
所述催化剂颗粒2材料为金、铁、银中的一种或几种;所述底部掺杂纳米线3、顶部掺杂纳米线4、底部纳米线掺杂包层5、顶部纳米线掺杂包层6为n型掺杂或p型掺杂半导体。
所述衬底材料选自III-V族半导体材料或IV族半导体材料。
所述衬底材料为硅(Si)、锗(Ge)、碳(C)、碳化硅(SiC)、砷化镓(GaAs)、氮化镓(GaN)、砷化铟(InAs)或磷化铟(InP)中的一种或几种。
所述底部掺杂纳米线、顶部掺杂纳米线、底部纳米线掺杂包层、顶部纳米线掺杂包层为III-V族半导体材料或IV族半导体材料。
所述底部掺杂纳米线、顶部掺杂纳米线、底部纳米线掺杂包层、顶部纳米线掺杂包层包括锗(Ge)、砷化镓(GaAs)、氮化镓(GaN)、砷化铟(InAs)、磷化铟(InP)、铝镓砷(AlxGa1-xAs)、铟镓砷(InxGa1-xAs)或铟镓砷磷(InxGa1-xAsyP1-y)中的一种或几种,其中0<x<1,0<y<1。
实施例1:
基于InP衬底的InP同质结构多结纳米线太阳能电池制备,具体步骤如下:
a、在InP的衬底1表面旋涂一层直径为50纳米的金(Au)的催化剂颗粒2。
b、将覆有金(Au)催化剂颗粒2的衬底1放入MOCVD反应系统中,在底部掺杂纳米线制备温度下,开始供应n型掺杂硅(Si)源及铟(In)源、磷(P)源等反应物进行底部n型掺杂InP纳米线的制备。
c、500秒后,停止供应各种反应物。改变到顶部掺杂纳米线制备温度下,开始供应p型掺杂锌(Zn)源及铟(In)源、磷(P)源等反应物进行顶部p型掺杂InP纳米线的制备。
d、300秒后,停止供应各种反应物。改变到底部纳米线掺杂包层制备温度,开始供应p型掺杂锌(Zn)源及铟(In)源、磷(P)源等反应物进行底部纳米线p型掺杂InP包层的制备。
e、100秒后,停止供应各种反应物。改变到顶部纳米线掺杂包层制备温度,开始供应n型掺杂硅(Si)源及铟(In)源、磷(P)源等反应物进行顶部纳米线n型掺杂InP包层的制备。
f、200秒后,停止供应各种反应物,待反应系统降至室温后完成基于InP衬底的同质结构多结纳米线太阳能电池的制备。
实施例2:
基于锗(Ge)的的异质结构多结纳米线太阳能电池制备,具体步骤如下:
a、在InP的衬底1表面沉积一层5纳米厚的金(Au)薄膜,将金(Au)薄膜退火后形成催化剂颗粒2。
b、将覆有金(Au)的催化剂颗粒2的衬底放入MBE反应系统中,在底部掺杂纳米线制备温度下,开始供应n型掺杂硅(Si)源及镓(Ga)源、砷(As)源等反应物进行底部n型掺杂GaAs纳米线的制备。
c、300秒后,停止供应各种反应物。改变到顶部掺杂纳米线制备温度下,开始供应p型掺杂镁(Mg)源及铟(In)源、砷(As)源等反应物进行顶部p型掺杂InAs纳米线的制备。
d、400秒后,停止供应各种反应物。改变到底部纳米线掺杂包层制备温度,开始供应p型掺杂锌(Zn)源及铟(In)源、磷(P)源等反应物进行底部纳米线p型掺杂InP包层的制备。
e、200秒后,停止供应各种反应物。改变到顶部纳米线掺杂包层制备温度,开始供应n型掺杂硅(Si)源及铟(In)源、镓(Ga)源、磷(P)源等反应物进行顶部纳米线n型掺杂InxGa1-xP包层的制备。
f、300秒后,停止供应各种反应物,待反应系统降至室温后完成基于锗(Ge)衬底的异质结构多结纳米线太阳能电池的制备。
实施例3:
基于GaAs衬底的异质结构多结纳米线太阳能电池制备,具体步骤如下:
a、在GaAs的衬底1表面旋涂一层直径为30纳米的铁(Fe)的催化剂颗粒2。
b、将覆有铁(Fe)的催化剂颗粒2的衬底放入MOCVD反应系统中,在底部掺杂纳米线制备温度下,开始供应p型掺杂锌(Zn)源及铟(In)源、砷(As)源等反应物进行顶部p型掺杂InAs纳米线的制备。
c、400秒后,停止供应各种反应物。改变到顶部掺杂纳米线制备温度下,开始供应n型掺杂硅(Si)源及镓(Ga)源、磷(P)源等反应物进行底部n型掺杂GaP纳米线的制备。
d、200秒后,停止供应各种反应物。改变到底部纳米线掺杂包层制备温度,开始供应n型掺杂硅(Si)源及铟(In)源、镓(Ga)源、磷(P)源等反应物进行底部纳米线n型掺杂InxGa1-xP包层的制备。
e、300秒后,停止供应各种反应物。改变到顶部纳米线掺杂包层制备温度,开始供应p型掺杂镁(Mg)源及铟(In)源、镓(Ga)源、砷(As)源、磷(P)源等反应物进行顶部纳米线p型掺杂InxGa1-xAsyP1-y包层的制备。
f、400秒后,停止供应各种反应物,待反应系统降至室温后完成基于GaAs衬底的异质结构多结纳米线太阳能电池的制备。
实施例4:
基于Si衬底的异质结构多结纳米线太阳能电池制备,具体步骤如下:
a、在Si的衬底1表面磁控溅射一层10纳米厚的银(Ag)薄膜,将银(Ag)薄膜退火后形成催化剂颗粒2。
b、将覆有银(Ag)的催化剂颗粒2的衬底放入MBE反应系统中,在底部掺杂纳米线制备温度下,开始供应p型掺杂锌(Zn)源及镓(Ga)源、砷(As)源等反应物进行顶部p型掺杂GaAs纳米线的制备。
c、200秒后,停止供应各种反应物。改变到顶部掺杂纳米线制备温度下,开始供应n型掺杂硅(Si)源及铟(In)源、磷(P)源等反应物进行底部n型掺杂InP纳米线的制备。
d、300秒后,停止供应各种反应物。改变到底部纳米线掺杂包层制备温度,开始供应n型掺杂硅(Si)源及铟(In)源、镓(Ga)源、砷(As)源、磷(P)源等反应物进行底部纳米线n型掺杂InxGa1-xAsyP1-y包层的制备。
e、100秒后,停止供应各种反应物。改变到顶部纳米线掺杂包层制备温度,开始供应p型掺杂锌(Zn)源及铟(In)源、镓(Ga)源、砷(As)源等反应物进行顶部纳米线p型掺杂InxGa1-xAs包层的制备。
f、400秒后,停止供应各种反应物,待反应系统降至室温后完成基于Si衬底的多结纳米线太阳能电池的制备。
实施例5:
基于GaAs衬底的异质结构多结纳米线太阳能电池制备,具体步骤如下:
a、利用热蒸发技术在GaAs衬底1表面制备一层8纳米厚的金(Au)薄膜。
b、将覆有金(Au)薄膜的衬底放入MOCVD反应系统中,在650ºC下将金(Au)薄膜退火为催化剂颗粒。
C、将反应系统温度降至450ºC,开始供应p型掺杂源二乙基锌(TEZn)及三甲基镓(TMGa)、砷烷(AsH3)等反应物进行顶部p型掺杂GaAs纳米线的制备。
c、400秒后,停止供应各种反应物。将反应系统温度降至420ºC,开始供应n型掺杂源硅烷(SiH4)及三甲基镓(TMGa)、磷烷(PH3)等反应物进行底部n型掺杂GaP纳米线的制备。
d、200秒后,停止供应各种反应物。将反应系统温度升至630ºC,开始供应n型掺杂源硅烷(SiH4)及三甲基铟(TMIn)、三甲基镓(TMGa)、磷烷(PH3)等反应物进行底部纳米线n型掺杂InxGa1-xP包层的制备。
e、300秒后,停止供应各种反应物。将反应系统温度升至670ºC,开始供应p型掺杂源二乙基锌(TEZn)及三甲基铟(TMIn)、三甲基镓(TMGa)、砷烷(AsH3)、磷烷(PH3)等反应物进行顶部纳米线p型掺杂InxGa1-xAsyP1-y包层的制备。
f、400秒后,停止供应各种反应物,待反应系统降至室温后完成基于GaAs衬底的异质结构多结纳米线太阳能电池的制备。
以上所述是本发明应用的技术原理和非限制性实例,只要其所运用的方案未超出权利要求书所涵盖的范围时,均应在本发明的范围内。

Claims (10)

1.一种多结纳米线太阳能电池的制备方法,其特征在于:包括如下步骤:
a、在衬底(1)的表面旋涂金属纳米催化剂颗粒(2)或利用金属薄膜退火技术在衬底(1)表面制备催化剂颗粒(2);
b、将衬底(1)放入MOCVD或MBE反应系统中,制备底部掺杂纳米线(3);
c、在MOCVD或MBE反应系统中制备顶部掺杂纳米线(4);
d、改变生长温度,使反应物在底部纳米线表面裂解制备底部纳米线掺杂包层(5);
e、改变生长温度,使反应物在顶部纳米线表面裂解制备顶部纳米线掺杂包层(6);
所述催化剂颗粒(2)材料为金、铁、银中的一种或几种;所述底部掺杂纳米线(3)、顶部掺杂纳米线(4)、底部纳米线掺杂包层(5)、顶部纳米线掺杂包层(6)为n型掺杂或p型掺杂半导体。
2.根据权利要求1所述的一种多结纳米线太阳能电池的制备方法,其特征在于:所述衬底(1)的材料为III-V族半导体材料或IV族半导体材料。
3.根据权利要求1所述的一种多结纳米线太阳能电池的制备方法,其特征在于:所述衬底(1)的材料包括硅、锗、碳、碳化硅、砷化镓、氮化镓、砷化铟或磷化铟中的一种或几种。
4.根据权利要求1所述的一种多结纳米线太阳能电池的制备方法,其特征在于:所述底部掺杂纳米线(3)的材料为III-V族半导体材料或IV族半导体材料。
5.根据权利要求1所述的一种多结纳米线太阳能电池的制备方法,其特征在于:所述底部掺杂纳米线(3)的材料包括锗、砷化镓、氮化镓、砷化铟、磷化铟、AlxGa1-xAs、InxGa1-xAs或InxGa1-xAsyP1-y中的一种或几种,其中0<x<1,0<y<1。
6.根据权利要求1所述的一种多结纳米线太阳能电池的制备方法,其特征在于:所述顶部掺杂纳米线(4)材料为III-V族半导体材料或IV族半导体材料。
7.根据权利要求1所述的一种多结纳米线太阳能电池的制备方法,其特征在于:所述顶部掺杂纳米线(4)的材料包括锗、砷化镓、氮化镓、砷化铟、磷化铟、AlxGa1-xAs、InxGa1-xAs或InxGa1-xAsyP1-y中的一种或几种,其中0<x<1,0<y<1。
8.根据权利要求1所述的一种多结纳米线太阳能电池的制备方法,其特征在于:所述底部纳米线掺杂包层(5)材料和顶部纳米线掺杂包层材料为III-V族半导体材料或IV族半导体材料。
9.根据权利要求1所述的一种多结纳米线太阳能电池的制备方法,其特征在于:所述顶部纳米线掺杂包层(6)的材料包括锗、砷化镓、氮化镓、砷化铟、磷化铟、AlxGa1-xAs、InxGa1-xAs或InxGa1-xAsyP1-y中的一种或几种,其中0<x<1,0<y<1。
10.根据权利要求1所述的一种多结纳米线太阳能电池的制备方法,其特征在于:所述顶部纳米线掺杂包层(6)的材料包括锗、砷化镓、氮化镓、砷化铟、磷化铟、AlxGa1-xAs、InxGa1-xAs或InxGa1-xAsyP1-y中的一种或几种,其中0<x<1,0<y<1。
CN201911327292.9A 2019-12-20 2019-12-20 一种多结纳米线太阳能电池的制备方法 Pending CN111162141A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911327292.9A CN111162141A (zh) 2019-12-20 2019-12-20 一种多结纳米线太阳能电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911327292.9A CN111162141A (zh) 2019-12-20 2019-12-20 一种多结纳米线太阳能电池的制备方法

Publications (1)

Publication Number Publication Date
CN111162141A true CN111162141A (zh) 2020-05-15

Family

ID=70557507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911327292.9A Pending CN111162141A (zh) 2019-12-20 2019-12-20 一种多结纳米线太阳能电池的制备方法

Country Status (1)

Country Link
CN (1) CN111162141A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1841659A (zh) * 2005-02-25 2006-10-04 三星电子株式会社 硅纳米线、包括其的半导体器件和制造硅纳米线的方法
CN101030596A (zh) * 2007-03-30 2007-09-05 中山大学 一种异质p-n结纳米线阵列及其制备方法和应用
CN101638216A (zh) * 2001-03-30 2010-02-03 加利福尼亚大学董事会 纳米结构和纳米线的制造方法及由其制造的器件
CN102050426A (zh) * 2009-11-10 2011-05-11 北京邮电大学 异质纳米线制备方法
US20110162698A1 (en) * 2010-01-06 2011-07-07 Samsung Electronics Co., Ltd. Solar cells using nanowires and methods of manufacturing the same
CN102484147A (zh) * 2009-04-15 2012-05-30 索尔伏打电流公司 具有纳米线的多结光生伏打电池
CN102656700A (zh) * 2009-10-22 2012-09-05 索尔伏打电流公司 纳米线隧道二极管及其制造方法
KR20120130493A (ko) * 2011-05-23 2012-12-03 엘지디스플레이 주식회사 태양전지 및 이의 제조 방법
CN103050564A (zh) * 2012-12-21 2013-04-17 北京邮电大学 一种基于多节纳米线径向pn结的太阳能电池及制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101638216A (zh) * 2001-03-30 2010-02-03 加利福尼亚大学董事会 纳米结构和纳米线的制造方法及由其制造的器件
CN1841659A (zh) * 2005-02-25 2006-10-04 三星电子株式会社 硅纳米线、包括其的半导体器件和制造硅纳米线的方法
CN101030596A (zh) * 2007-03-30 2007-09-05 中山大学 一种异质p-n结纳米线阵列及其制备方法和应用
CN102484147A (zh) * 2009-04-15 2012-05-30 索尔伏打电流公司 具有纳米线的多结光生伏打电池
CN102656700A (zh) * 2009-10-22 2012-09-05 索尔伏打电流公司 纳米线隧道二极管及其制造方法
CN102050426A (zh) * 2009-11-10 2011-05-11 北京邮电大学 异质纳米线制备方法
US20110162698A1 (en) * 2010-01-06 2011-07-07 Samsung Electronics Co., Ltd. Solar cells using nanowires and methods of manufacturing the same
KR20120130493A (ko) * 2011-05-23 2012-12-03 엘지디스플레이 주식회사 태양전지 및 이의 제조 방법
CN103050564A (zh) * 2012-12-21 2013-04-17 北京邮电大学 一种基于多节纳米线径向pn结的太阳能电池及制备方法

Similar Documents

Publication Publication Date Title
US10050166B2 (en) Silicon heterojunction photovoltaic device with wide band gap emitter
JP4244549B2 (ja) 光電変換素子及びその製造方法
Andre et al. Investigations of high-performance GaAs solar cells grown on Ge-Si/sub 1-x/Ge/sub x/-Si substrates
CN101183689B (zh) 分级混合式非晶硅纳米线太阳能电池
US20170191185A9 (en) Isoelectronic Surfactant Induced Sublattice Disordering In Optoelectronic Devices
US20160155881A1 (en) Thin film iii-v optoelectronic device optimized for non-solar illumination sources
JP2001524760A (ja) 高効率ソーラセルとその製造方法
KR20210021435A (ko) 격자-정합 희석 질화물 접합을 포함하는 가요성 박막 멀티-접합 광전자 장치 및 그 제조 방법
CN109309139B (zh) 一种高电流密度晶格失配太阳能电池及其制备方法
WO2013093581A1 (en) Methods of fabricating dilute nitride semiconductor materials for use in photoactive devices and related structures
Tomasulo et al. Metamorphic GaAsP and InGaP solar cells on GaAs
KR20210021250A (ko) 단일 격자 - 정합 희석 질화물 접합을 포함하는 가요성 박막 광전자 장치 및 그 제조 방법
Lang et al. Optimization of GaAs solar cell performance and growth efficiency at MOVPE growth rates of 100 μm/h
CN107316909A (zh) 一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法
US20080178931A1 (en) Multi-junction solar cell
CN110911510B (zh) 一种含超晶格结构的硅基氮化物五结太阳电池
US20150122329A1 (en) Silicon heterojunction photovoltaic device with non-crystalline wide band gap emitter
CN102339890A (zh) 新型三结砷化镓太阳电池
CN111162141A (zh) 一种多结纳米线太阳能电池的制备方法
Schmieder et al. GaInP window layers for GaAsP on SiGe/Si single and dual-junction solar cells
CN102738267B (zh) 具有超晶格结构的太阳能电池及其制备方法
CN111180554B (zh) 一种混合结构太阳能电池的制备方法
CN103489952B (zh) 一种SiC衬底单节太阳能电池外延结构及其制备方法
CN105938856A (zh) 一种Si衬底GaAs单结太阳能电池结构及其制备方法
CN109545898A (zh) 一种抗辐照增强型空间GaInP/GaInAs/Ge电池外延片的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200515

RJ01 Rejection of invention patent application after publication