CN103489952B - 一种SiC衬底单节太阳能电池外延结构及其制备方法 - Google Patents

一种SiC衬底单节太阳能电池外延结构及其制备方法 Download PDF

Info

Publication number
CN103489952B
CN103489952B CN201210196649.6A CN201210196649A CN103489952B CN 103489952 B CN103489952 B CN 103489952B CN 201210196649 A CN201210196649 A CN 201210196649A CN 103489952 B CN103489952 B CN 103489952B
Authority
CN
China
Prior art keywords
solar cell
sic substrate
gaas
atom
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210196649.6A
Other languages
English (en)
Other versions
CN103489952A (zh
Inventor
夏伟
吴德华
于军
苏来发
张新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Yongding Communications Co ltd
Original Assignee
Shandong Inspur Huaguang Optoelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Inspur Huaguang Optoelectronics Co Ltd filed Critical Shandong Inspur Huaguang Optoelectronics Co Ltd
Priority to CN201210196649.6A priority Critical patent/CN103489952B/zh
Publication of CN103489952A publication Critical patent/CN103489952A/zh
Application granted granted Critical
Publication of CN103489952B publication Critical patent/CN103489952B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0312Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种SiC衬底单节太阳能电池外延结构及其制备方法。以SiC衬底为衬底采用MOCVD法制得,依次包括SiC衬底、SiGe缓冲层、Ge缓冲层、AlGaAs背场层、GaAs?n-基层、GaAs发射层、AlGaAs窗口层、GaAs电极接触层;所述SiC衬底厚度为400~450μm。本发明使用SiC作为衬底生长半导体GaAs薄膜材料,可代替常规的单晶硅、多晶硅太阳能电池,同时利用本发明的SiC衬底单节太阳能电池外延结构制备的SiC衬底单节太阳能电池是转化效率高的单层薄膜太阳能电池。

Description

一种SiC衬底单节太阳能电池外延结构及其制备方法
技术领域
本发明涉及一种SiC衬底单节太阳能电池外延结构及其制备方法,属于光电子技术领域。
背景技术
全球工业化带来的生态环境持续恶化,以及能源消耗的急剧增加和自然资源的匮乏,使得人们日益认识到开发和利用太阳能等可再生能源的重要性和迫切性。太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中,太阳能光电利用是近些年来发展最快、最具活力的研究领域,也是最受瞩目的开发项目之一。其中,利用太阳光发电最具发展潜力的应用方向之一。
由于太阳的能量是分散的,要求提供所需的能源就必须有足够的接受面积。自然地,通过对新材料、新结构、新工艺、新器件的研究,获得高效率、低成本、能与常规能源发电竞争的太阳能电池始终是光伏研究的主要任务。太阳能电池的发展,最早可追溯至1954年由Bell实验室的发明,当时研发的动机是希望能提供偏远地区供电系统的能源,那时太阳能电池的效率只有6%。从1957年苏联发射第一颗人造卫星,一直到1969年美国太空人登陆月球,太阳能电池的应用得到充分发挥。虽然当时太阳能电池的造价昂贵,但其贡献具有历史意义。近年来全球的通讯市场蓬勃发展,各大通讯计划不断提出,例如Motorola公司的铱(Iridiμm)计划,将使用66颗低轨道的卫星(LEO),BillGates之Teledesic计划,预计将使用840颗LEO卫星,这些都将促使太阳能电池被更广泛地使用在太空中。
据统计,1957-2000年发射的数千个空间飞行器中,90%以上是采用太阳能电池系统作为有效的空间能源。空间飞行器用太阳能电池的首要要求就是要具有高转换效率,以便在重量和体积受限制的条件下,能获得所需求的特定功率输出。
太阳能电池是一种能量转换的光电元件,它是经由太阳光照射后,把光的能量转换成电能,此种光电元件称为太阳能电池(SolarCell)。从物理学的角度来看,有人称之为光伏电池(Photovoltaic,简称PV),其中的photo就是光(light),而voltaic就是电力(electricity)。人类发展太阳能电池的最终目标,就是希望能取代传统能源。众所周知,太阳的能量是取之不尽用之不竭的,从太阳表面所放射出来的能量,换算成电力约3.8×1023kW;若太阳光经过一亿五千万公里的距离,穿过大气层到达地球的表面也约有1.8×1014kW,这个值大约为全球平均电力的十万倍大。若能够“有效的”运用此能源,则不仅能解决消耗性能源的问题,连环保问题也可一并获得解决。目前太阳能电池发展的瓶颈主要有两项因素:一项为效率,另一项为价格。
太阳能电池的种类繁多,若依材料的种类来区分,可分为单晶硅(singlecrystalsilicon)、多晶硅(polycrystalsilicon)、非晶硅(amorphoussilicon,简称a-Si)、Ⅲ-Ⅴ族[包括:砷化镓(GaAs)、磷化铟(InP)、磷化镓铟(InGaP)]、Ⅱ-Ⅵ族[包括:碲化镉(CdTe)、硒化铟铜(CuInSe2)]等。
制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。
中文专利文献CN101859814A公开了一种在Si衬底上生长GaInP/GaAs/Ge三结太阳能电池的方法,该方法是使用价格低廉的Si作为衬底代替价格相对来说比较昂贵的GaAs和Ge来进行太阳能电池的生长,该方法的优点是使用Si衬底这种价格低廉技术成熟的材料作为衬底,成本下降,有利于实现量产。但是Si材料和Ge材料晶格适配大,容易产生应力。且Si材料热导系数小,吸收光的转化率有限。
CN101702413A(CN200910095138.3)公开了一种砷化镓/锑化镓太阳电池的制作方法,以砷化镓单晶片为衬底,利用分子束外延(MBE)生长技术,在砷化镓衬底上生长子电池吸收层,包括:A)580℃条件下在GaAs衬底上生长GaAs缓冲层;B)450℃条件下在生长的GaAs缓冲层上生长GaSb层;C)在GaAs层上制作顶电极,在GaSb层上制作背电极;D)完成电池的制作,进行封装得到成品。该发明采用的是MBE生长技术,不能用于规模化生产。CN101764174A(CN200810207794.3)公开了一种聚光多结砷化镓太阳电池的制造方法,它包括在锗单晶片衬底上制作多结砷化镓外延片、在外延片上涂布一层黑胶保护层,衬底采用腐蚀工艺减薄厚度、在衬底镀一层钯/银/金作为下电极、在外延片上采用负胶光刻工艺光刻出电极图形,并在电极图形上镀金锗镍/银/金作为上电极、在上电极上再蒸镀一层减反射膜以及去胶金属化后划成需要的尺寸等步骤。本发明聚光多结砷化镓太阳电池的制造方法采用刻槽和腐蚀台面工艺,降低了电池的漏电流损失,提高了填充因子和开路电压,因此效率也显著提高,产品合格率也显著增加。该发明利用光刻工艺提高转化效率,但是成本昂贵,可实施性较低。CN101859807A(CN201010189176.8)公开了一种GaAs单结太阳能电池,在电池外延层的表面形成有电极和双层减反膜,双层减反膜的上层膜采用折射率小于下层膜的材料,下层膜采用折射率位于上层膜和窗口层折射率之间的光致发光材料。光致发光材料能够吸收GaAs不能吸收波段的太阳光,并将这部分光转化为能被GaAs所吸收的光,其最终结果是更宽波段的太阳光将被GaAs太阳能电池所吸收并转换为电能,拓宽了GaAs单结太阳能电池对太阳光的吸收波段,提高了电池的光电转换效率。该发明虽然利用双层膜技术提高了光的利用率,但该产品波段拓宽能力极为有限。
在众多的半导体材料中,砷化镓(GaAs)有较高的光吸收系数,其能带可以与太阳光谱有很好的匹配,且耐辐照性能强,工作温度范围宽,很适合制作太阳能电池空间电源。美国率先在80年代中期制定计划,发展MOCVD同质外延GaAs太阳能电池,并于80年代中期实现批量生产。例如,美国太阳能公司当时生产的GaAs/GaAs太阳能电池,批量生产平均效率达17%(AM0,28℃)。除苏联和平号空间站采用了GaAs/GaAs太阳能电池外,1995年发射的阿根廷科学卫星SAC.B和1997年发射的SUNSAT卫星上也采用了单结GaAs太阳能电池。
由于太阳光谱的能量分布较宽,而半导体材料的带隙Eg都是确定的,因此只能吸收其中能量比其禁带宽度值高的光子,太阳光中能量小的光子则透过电池被背面电极金属吸收转化成热能,而高能光子超出禁带宽度的多余能量,通过光生载流子的能量热释作用传递给电池材料本身使其发热。这些能量最终都没有变成有效电能,因此对于单结太阳能电池,即使是晶体材料制成的,理论最高转换效率也只有25%左右。单结GaAs电池只能吸收特定光谱的太阳光,实验室实现的转换效率最高25.8%,高于晶体硅的23%。
太阳能电池发电原理如下:
当P型和N型半导体结合在一起时,在两种半导体的交界面区域里会形成一个特殊的薄层,界面的P型一侧带负电,N型一侧带正电。这是由于P型半导体多空穴,N型半导体多自由电子,出现了浓度差。N区的电子会扩散到P区,P区的空穴会扩散到N区,一旦扩散就形成了一个由N指向P的“内电场”,从而阻止扩散进行。达到平衡后,就形成了这样一个特殊的薄层形成电势差,这就是P-N结,如图1所示。当晶片受光后,P-N结中,N型半导体的空穴往P型区移动,而P型区中的电子往N型区移动,从而形成从N型区到P型区的电流。然后在P-N结中形成电势差,这就形成了电源。
20世纪50年代发现GaAs材料具有光伏效应后,人们在理论和实验上不断对其进行研究。60年代A.Gobat等人首次采用扩散法制备出原理与硅太阳能电池相类似的GaAs太阳能电池,其转换效率只有不到10%。到了70~80年代,采用液相外延技术(LPE)制备的GaAs/GaAs太阳能电池最高效率已达到21%。当时有多家公司能够实现效率在18%左右的GaAs/GaAs太阳能电池量产,如美国休斯公司、日本三菱公司等。当时主要采用的都是LPE技术,而LPE技术研制太阳能电池时存在GaAs材料表面复合速率高、多层复杂结构的生长难以实现和外延层参数难以精确控制等问题,限制了GaAs太阳能电池性能的迸一步提高。
发明内容
针对现有的单晶、多晶硅、有机物太阳能电池转化效率不高,而GaAs太阳能电池不能运用于条件恶劣环境等缺点,本发明提供一种SiC衬底单节太阳能电池外延结构、制备方法,以及SiC衬底单节太阳能电池。
本发明采用耐高温、热导性能优越的SiC作为衬底,SiGe为缓冲层,利用MOCVD设备进行生长基于SiC衬底太阳能电池结构,并成功获得了单节太阳能电池转换效率达到19%的产品。
术语解释:
1、MOCVD:金属有机化学气相沉积,MOCVD法是半导体化合物生长的常规技术。MOCVD设备主要包括六大系统:气体输运系统、源供给系统、反应室和加热系统、尾气处理系统、安全控制系统、计算机控制系统。MOCVD设备为半导体技术领域常用设备。
2、AM0:AM为大气质量,AM0即大气质量为0,代表空间应用环境;AM1表示阳光垂直穿透大气,即0°入射;AM1.5表示阳光以45°斜入射。
3、TMGa:中文名为三甲基镓,分子式为Ga(CH3)3。
4、TMAl:中文名为三甲基铝,分子式为[(CH3)3Al]2。
5、载流子浓度,单位1E18个原子/cm3,含义是每立方厘米中含有1*1018个原子。
本发明的技术方案如下:
一种SiC衬底单节太阳能电池外延结构,以SiC衬底为衬底采用MOCVD法制得,依次包括SiC衬底、SiGe缓冲层、Ge缓冲层、AlGaAs背场层、GaAsn-基层、GaAs发射层、AlGaAs窗口层、GaAs电极接触层。
根据本发明,优选的,SiC衬底厚度为400~450μm;
根据本发明,优选的,SiGe缓冲层厚度为0.2-0.6μm,载流子浓度为1E18个原子/cm3到6E19个原子/cm3
根据本发明,优选的,Ge缓冲层厚度为0.01-0.2μm;
根据本发明,优选的,AlGaAs背场层厚度为0.1-0.5μm,载流子浓度1E18个原子/cm3到4E19个原子/cm3
根据本发明,优选的,GaAsn-基层厚度为2-5μm,载流子浓度为1E17个原子/cm3到5E18个原子/cm3
根据本发明,优选的,GaAs发射层厚度为0.05-0.5μm,载流子浓度为1E18个原子/cm3到8E19个原子/cm3
根据本发明,优选的,AlGaAs窗口层厚度为20-100nm,载流子浓度为1E18个原子/cm3到2E19个原子/cm3
根据本发明,优选的,GaAs电极接触层厚度为0.2-1μm。
根据本发明,最优选的,一种SiC衬底单节太阳能电池外延结构,依次包括430μm厚的SiC衬底、0.4μm厚的SiGe缓冲层、0.08-0.6μm厚的Ge缓冲层、0.3~0.4μm厚的AlGaAs背场层、4-5μm厚的GaAsn-基层、0.3-0.4μm厚的GaAs发射层、70-90nm厚的AlGaAs窗口层、0.7-0.8μm厚的GaAs电极接触层。
一种SiC衬底单节太阳能电池,包括以上所述的SiC衬底单节太阳能电池外延结构。
一种SiC衬底单节太阳能电池外延结构的制备方法,包括采用MOCVD法生长制备单节太阳能电池外延结构,步骤如下:
1、将SiC衬底放入反应室,在400-700℃的温度范围内生长一层SiGe缓冲层,载流子浓度为1E18个原子/cm3到6E19个原子/cm3;然后再生长一层Ge缓冲层;
2、在500-800℃的温度范围内,在Ge缓冲层上生长一层AlGaAs材料作为背场层,载流子浓度1E18个原子/cm3到4E19个原子/cm3
3、继续在背场层上生长一层n-基层,温度500-700℃,生长材料是GaAs,其载流子浓度为1E17个原子/cm3到5E18个原子/cm3
4、在550-800℃温度下,继续生长一层发射层,生长材料是GaAs,其载流子浓度为1E18个原子/cm3到8E19个原子/cm3
5、在500-700℃温度下,在发射层上面继续生长一层窗口层,生长材料为AlGaAs,载流子浓度为1E18个原子/cm3到2E19个原子/cm3
6、在温度为500-800℃条件下,继续生长GaAs电极接触层。
利用本发明制备的单节太阳能电池外延结构,再按现有技术经过金属蒸镀、光刻电极,并蒸镀TiO2/SiO2双层减反射膜等工序可制得SiC衬底单节太阳能电池。
根据本发明的方法,优选的,利用MOCVD生长SiC衬底单节太阳能电池的工艺条件如下:
反应室压力:40~200mbar,
生长温度:400~800℃,
背景H2流量:20000-30000sccm,
有机金属源TMAl(三甲基铝)温度为10~28℃,TMAl为99.9999%的高纯TMAl,
有机金属源TMGa(三甲基镓)温度为-5~10℃,TMGa为99.9999%的高纯TMGa,
砷源:AsH3是99.9995%的高纯AsH3
载气是经纯化器纯化的99.9999%的超高纯氢气。
本发明的方法中未详细限定的均可按本领域现有技术。
本发明的有益效果:
本发明成功使用SiC取代目前的GaAs与Ge衬底,提供一种对空间用高效率单结砷化镓(GaAs)太阳能电池,并实现了单节太阳能结构,SiC衬底有化学稳定性好、导电性能好、导热性能好、不吸收可见光等优点,即便用于太空,也能保证稳定的转化性能。由于SiC衬底优异的导电性能和导热性能,得到转换效率达18~19%的太阳能电池产品。
本发明使用SiC作为衬底生长的半导体GaAs薄膜材料可代替常规的单晶硅、多晶硅太阳能电池,具有历史性的意义,同时本发明得到了转换效率达到18~19%的太阳能薄膜电池,成为目前国内的SiC单层薄膜太阳能电池转化效率最高的。
附图说明
图1是P-N结构示意图。图2是本发明单结SiC基GaAs太阳能电池结构示意图。
图中,1、P区,2、N区,3、空间电荷区,4、内电场,5、电流方向(箭头所指方向),6、电极接触层,7、窗口层,8、发射层,9、n-基层,10、背场层,11、Ge缓冲层,12、SiGe缓冲层,13、SiC衬底。
具体实施方式
下面结合实施例和说明书附图对本发明做详细的说明,但不限于此。
实施例中基于SiC衬底生长GaAs单节太阳能电池,利用德国AIXTRON系列MOCVD设备完成,该MOCVD产能大。利用MOCVD生长SiC衬底单节太阳能电池的工艺条件如下:
反应室压力:40~200mbar,
生长温度:400~800℃,
背景H2流量:20000-30000sccm,
有机金属源温度TMAl为10~28℃,TMAl为99.9999%的高纯TMAl,
有机金属源温度TMGa为-5~10℃,TMGa为99.9999%的高纯TMGa,
AsH3是99.9995%的高纯AsH3,载气是经纯化器纯化的99.9999%的超高纯氢气。
实施例1、一种SiC衬底单节太阳能电池外延结构,如图2所示,依次包括SiC衬底13、SiGe缓冲层、Ge缓冲层11、AlGaAs背场层10、GaAsn-基层9、GaAs发射层8、AlGaAs窗口层7、GaAs电极接触层6;采用MOCVD法生长,制备方法步骤如下:
1、将430μm厚的SiC衬底13放入反应室,在500-600℃的温度范围内生长一层0.4μm厚的SiGe缓冲层12,载流子浓度需要达到5E18个原子/cm3,然后生长一层0.6μm厚的Ge缓冲层11;
2、在600℃的温度范围内,生长一层0.3μm厚的AlGaAs作为背场层10,载流子浓度5E18个原子/cm3
3、继续在背场层上生长,在650℃范围内,生长一层较厚的GaAsn-基层9,厚度在4μm,其载流子浓度为5E17个原子/cm3
4、在700℃的温度条件下,继续生长一层发射层8GaAs,厚度在0.4μm,其载流子浓度为7E18个原子/cm3
5、在600℃的条件下,在发射层上面继续生长一层AlGaAs窗口层7,厚度为80nm,载流子浓度为4E18个原子/cm3
6、最上面一层:在温度为600℃环境下生长GaAs电极接触层6,厚度为0.8μm。
在制备的单节太阳能电池外延结构基础上经过金属蒸镀、光刻电极,并蒸镀TiO2/SiO2双层减反射膜,在AM0,1sun,25℃条件下实现最高光电转换效率为18%。
实施例2、一种SiC衬底单节太阳能电池外延结构的制备方法,如图2所示,采用MOCVD法生长,步骤如下:
1、将430μm厚的SiC衬底13放入反应室,在600℃的温度范围内生长一层0.4μm厚的SiGe缓冲层12,载流子浓度需要达到5E18个原子/cm3;然后生长一层0.08μm厚的Ge缓冲层11;
2、在650℃的温度范围内,生长一层0.4μm厚的AlGaAs作为背场层10,载流子浓度5E18个原子/cm3
3、继续在背场层上生长,在600℃温度条件下,生长一层较厚的n-基层9GaAs,厚度在5μm,其载流子浓度为5E18个原子/cm3
4、在650℃的温度条件下,继续生长一层发射层8GaAs,厚度在0.3μm,其载流子浓度为5E19个原子/cm3
5、在650℃的条件下,在发射层上面继续生长一层窗口层7AlGaAs,厚度为80nm,载流子浓度为2E19个原子/cm3
6、最上面一层:在温度为650℃环境下生长电极接触层6,材料为GaAs,厚度为0.8μm。
在制备的单节太阳能电池外延结构基础上经过金属蒸镀、光刻电极,并蒸镀TiO2/SiO2双层减反射膜,在AM0,1sun,25℃条件下实现最高光电转换效率为19%。

Claims (9)

1.一种SiC衬底单节太阳能电池外延结构的制备方法,以SiC衬底为衬底采用MOCVD法制备单节太阳能电池结构,依次包括SiC衬底、SiGe缓冲层、Ge缓冲层、AlGaAs背场层、GaAsn-基层、GaAs发射层、AlGaAs窗口层、GaAs电极接触层;所述SiC衬底厚度为400~450μm;步骤如下:
(1)将SiC衬底放入反应室,在400-700℃的温度范围内生长一层SiGe缓冲层,载流子浓度为1E18个原子/cm3到6E19个原子/cm3;然后再生长一层Ge缓冲层;
(2)在500-800℃的温度范围内,在Ge缓冲层上生长一层AlGaAs材料作为背场层,载流子浓度1E18个原子/cm3到4E19个原子/cm3
(3)继续在背场层上生长一层n-基层,温度500-700℃,生长材料是GaAs,其载流子浓度为1E17个原子/cm3到5E18个原子/cm3
(4)在550-800℃温度下,继续生长一层发射层,生长材料是GaAs,其载流子浓度为1E18个原子/cm3到8E19个原子/cm3
(5)在500-700℃温度下,在发射层上面继续生长一层窗口层,生长材料为AlGaAs,载流子浓度为1E18个原子/cm3到2E19个原子/cm3
(6)在500-800℃温度条件下,继续生长GaAs电极接触层。
2.如权利要求1所述的SiC衬底单节太阳能电池外延结构的制备方法,其特征在于所述SiGe缓冲层厚度为0.2-0.6μm;所述Ge缓冲层厚度为0.01-0.2μm。
3.如权利要求1所述的SiC衬底单节太阳能电池外延结构的制备方法,其特征在于所述AlGaAs背场层厚度为0.1-0.5μm。
4.如权利要求1所述的SiC衬底单节太阳能电池外延结构的制备方法,其特征在于所述GaAsn-基层厚度为2-5μm。
5.如权利要求1所述的SiC衬底单节太阳能电池外延结构的制备方法,其特征在于所述GaAs发射层厚度为0.05-0.5μm。
6.如权利要求1所述的SiC衬底单节太阳能电池外延结构的制备方法,其特征在于所述AlGaAs窗口层厚度为20-100nm。
7.如权利要求1所述的SiC衬底单节太阳能电池外延结构的制备方法,其特征在于所述GaAs电极接触层厚度为0.2-1μm。
8.如权利要求1所述的SiC衬底单节太阳能电池外延结构的制备方法,其特征在于该单节太阳能电池结构依次包括430μm厚的SiC衬底、0.4μm厚的SiGe缓冲层、0.08-0.6μm厚的Ge缓冲层、0.3~0.4μm厚的AlGaAs背场层、4-5μm厚的GaAsn-基层、0.3-0.4μm厚的GaAs发射层、70-90nm厚的AlGaAs窗口层、0.7-0.8μmGaAs电极接触层。
9.一种SiC衬底单节太阳能电池,包括利用权利要求1~8任一项制备的SiC衬底单节太阳能电池外延结构。
CN201210196649.6A 2012-06-14 2012-06-14 一种SiC衬底单节太阳能电池外延结构及其制备方法 Expired - Fee Related CN103489952B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210196649.6A CN103489952B (zh) 2012-06-14 2012-06-14 一种SiC衬底单节太阳能电池外延结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210196649.6A CN103489952B (zh) 2012-06-14 2012-06-14 一种SiC衬底单节太阳能电池外延结构及其制备方法

Publications (2)

Publication Number Publication Date
CN103489952A CN103489952A (zh) 2014-01-01
CN103489952B true CN103489952B (zh) 2016-01-06

Family

ID=49830045

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210196649.6A Expired - Fee Related CN103489952B (zh) 2012-06-14 2012-06-14 一种SiC衬底单节太阳能电池外延结构及其制备方法

Country Status (1)

Country Link
CN (1) CN103489952B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105938856B (zh) * 2016-06-27 2018-02-09 山东浪潮华光光电子股份有限公司 一种Si衬底GaAs单结太阳能电池结构及其制备方法
CN105938855B (zh) * 2016-06-27 2017-05-10 山东浪潮华光光电子股份有限公司 一种蓝宝石衬底单结太阳能电池结构及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0831077A1 (de) * 1996-09-18 1998-03-25 TeCe Technical Ceramics GmbH & Co. KG Keramisches Substrat für kristalline Silicium-Dünnschicht-Solarzellen
CN101232050A (zh) * 2007-01-24 2008-07-30 中国科学院半导体研究所 单结铟镓氮太阳能电池结构及制作方法
CN101467245A (zh) * 2006-05-31 2009-06-24 康宁股份有限公司 薄膜光伏结构及其制造
CN102044578A (zh) * 2009-10-15 2011-05-04 晶元光电股份有限公司 高效率太阳能电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0831077A1 (de) * 1996-09-18 1998-03-25 TeCe Technical Ceramics GmbH & Co. KG Keramisches Substrat für kristalline Silicium-Dünnschicht-Solarzellen
CN101467245A (zh) * 2006-05-31 2009-06-24 康宁股份有限公司 薄膜光伏结构及其制造
CN101232050A (zh) * 2007-01-24 2008-07-30 中国科学院半导体研究所 单结铟镓氮太阳能电池结构及制作方法
CN102044578A (zh) * 2009-10-15 2011-05-04 晶元光电股份有限公司 高效率太阳能电池

Also Published As

Publication number Publication date
CN103489952A (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
CN103515462B (zh) 一种含复合DBR的Ge基GaAs薄膜单结太阳能电池及其制备方法
CN102334194A (zh) 在冶金级Si衬底上基于外延晶体硅薄膜的太阳能异质结电池设计
CN103975449A (zh) 太阳能电池
CN107863400A (zh) 用于多结太阳能电池的InP晶格常数的II型高带隙隧道结
US20180331245A1 (en) Dual-junction thin film solar cell module, and preparation method thereof
CN102790120B (zh) GaInP/GaAs/Ge三结级联太阳能电池及其制备方法
CN103928539A (zh) 多结iii-v太阳能电池及其制造方法
CN101752444B (zh) p-i-n型InGaN量子点太阳能电池结构及其制作方法
CN101859814B (zh) 在硅衬底上生长InGaP/GaAs/Ge三结太阳能电池的方法
CN102790116B (zh) 倒装GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法
CN101431117A (zh) 具有掺杂阻挡层的多结太阳电池
CN103489952B (zh) 一种SiC衬底单节太阳能电池外延结构及其制备方法
CN101976689B (zh) 一种五结半导体太阳能光伏电池芯片
CN201936889U (zh) 一种四结化合物半导体太阳能光伏电池芯片
CN110931593A (zh) 一种晶格匹配的硅基无砷化合物四结太阳电池
CN102437227A (zh) 一种含有InAs量子点结构的多结太阳电池
Angadi et al. A review on different types of materials employed in solar photovoltaic panel
CN102790119A (zh) GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法
CN103000740A (zh) GaAs/GaInP双结太阳能电池及其制作方法
CN101980367B (zh) 一种四结化合物半导体太阳能光伏电池芯片
KR20100030549A (ko) 태양 전지 및 태양전지 제조방법
CN109103278B (zh) 一种无铝的高效六结太阳能电池及其制备方法
CN105938856A (zh) 一种Si衬底GaAs单结太阳能电池结构及其制备方法
CN213546329U (zh) 一种基于微纳结构的太阳能电池
CN110137298B (zh) GaAs基多结太阳电池的Ge/Si异质结底电池制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20151111

Address after: 261061 Weifang high tech Zone, Jin Road, No. 9, No.

Applicant after: SHANDONG INSPUR HUAGUANG OPTOELECTRONICS Co.,Ltd.

Address before: Tianchen Avenue high tech Zone of Ji'nan City, Shandong Province, No. 1835 250101

Applicant before: Shandong Huaguang Optoelectronics Co.,Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200918

Address after: Wujiang District of Suzhou City, Jiangsu province 215200 Lili town Yuexiu Road No. 888

Patentee after: JIANGSU YONGDING COMMUNICATIONS Co.,Ltd.

Address before: 261061 No. 9, Golden Road, hi tech Zone, Shandong, Weifang

Patentee before: SHANDONG INSPUR HUAGUANG OPTOELECTRONICS Co.,Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160106

CF01 Termination of patent right due to non-payment of annual fee